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Abstract 

MicroRNA (miRNA) sponges have been shown to function as competing endogenous RNAs 

(ceRNAs) to regulate the expression of other miRNA targets in the network by sequestering 

available miRNAs. As the first systematic investigation of the genome-wide genetic effect on 

ceRNA regulation, we applied multivariate response regression and identified widespread 

genetic variations that are associated with ceRNA competition using 462 Geuvadis RNA-seq 

data in multiple human populations. We showed that SNPs in gene 3’UTRs at the miRNA seed 

binding regions can simultaneously regulate gene expression changes in both cis and trans by 
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the ceRNA mechanism. We termed these loci as endogenous miRNA sponge expression 

quantitative trait loci or “emsQTLs”, and found that a large number of them were unexplored in 

conventional eQTL mapping. We identified many emsQTLs are undergoing recent positive 

selection in different human populations. Using GWAS results, we found that emsQTLs are 

significantly enriched in traits/diseases associated loci. Functional prediction and prioritization 

extend our understanding on causality of emsQTL allele in disease pathways. We illustrated 

that emsQTL can synchronously regulate the expression of tumor suppressor and oncogene 

through ceRNA competition in angiogenesis. Together these results provide a distinct catalog 

and characterization of functional noncoding regulatory variants that control ceRNA crosstalk. 

 

Introduction 

Recent RNA biology has revealed that specific RNAs can operate as ceRNAs to titrate away the 

pools of active miRNAs, indirectly regulating the expression of other transcripts targeted by the 

same set of miRNAs. Endogenous miRNA sponges, including mRNA, pseudogene transcripts, 

long non-coding RNAs and circular RNAs, have been discovered in quick succession1; 2, and 

play critical roles in cellular metabolism and disease development3; 4. Besides the different type 

of transcripts, it has been proposed that structure variations can perturb ceRNA competition and 

initiate subsequent disease pathway, such as large deletion and insertion, copy number 

variation, as well as chromosomal translocation5-7. ceRNA crosstalk is determined by miRNA 

response elements (MRE), which encode the ceRNA regulatory network and sustain the 

dynamic equilibrium for all ceRNAs and miRNAs within the network8. Under this circumstance, 

any genetic event affecting MRE will trigger the perturbation of ceRNA regulation by titrating 

miRNA availability. One example is SNP rs17228616, which disrupts the interaction between 

miR-608 and AChE and suppresses other miR-608 targets such as CDC42 and IL69. 
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Nevertheless, there has been no study to our knowledge that systematically tests whether such 

genetic effect is pervasive in the human evolution and populations. 

Quantitative traits, such as gene expression and epigenetic modifications, are thought to be 

largely heritable during species evolution10; 11. Recently next generation sequencing 

technologies have enabled us to unravel the correlation between genetic variants and different 

molecular phenotypes, and facilitated the discovery of many human quantitative trait loci 

(QTLs)12. For miRNA-related molecular traits, researchers have discovered many miRNA gene 

expression QTLs (miRNA-eQTL) that control miRNA gene expression13-16 and 3' untranslated 

region (3'UTR)-eQTLs that are associated with miRNA target expression17; 18. With a better 

knowledge of ceRNA crosstalk and competition, it is very important to understand how genetic 

polymorphisms shape human ceRNA regulation. Using 1000 Genomes Project genotype and 

Geuvadis RNA-seq phenotype data, our study here represents the first effort to investigate the 

genetic variants associated with ceRNA crosstalk.   

 

Material and Methods 

The logic for detecting genetic variants affecting ceRNA regulation 

We assume that genetic variants, such as SNPs and indels that affect miRNA response 

elements (MREs) will perturb ceRNA regulation by titrating miRNA availability. Specifically, a 

causal variation in the seed region of miRNA binding site can introduce different consequences 

of miRNA-target interaction, by creating or erasing an MRE, or strengthening or weakening an 

MRE in a ceRNA driver gene (ceD). These subtle changes could perturb the original miRNA 

and ceRNA regulatory network and the dynamic distribution of other miRNA target genes. Since 

we focused on the independent effect of one SNP or indel in one MRE of a ceD, the variants will 
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mostly affect the distribution of associated miRNA and its direct targets (ceTs) although the 

cascade effect could impact other miRNAs and ceRNAs (Supplemental Figure S1). To simplify 

the investigation of variant effect, we focused on unique miRNA-centered regulatory network in 

this study. A SNP or indel that creates or strengthens an MRE will decrease the expression of 

its own host gene (refer to ceD in this study) and increase the expression of the corresponding 

ceT, while a SNP or indel that erases or weakens an MRE will have the opposite effect. We 

therefore termed these variants candidate endogenous miRNA sponge (ceRNA) expression 

quantitative trait loci (emsQTLs). 

Expression data and genotype data 

We used Geuvadis RNA sequencing data and small RNA sequencing data of 462 unrelated 

human lymphoblastoid cell line samples from the CEPH (CEU), Finns (FIN), British (GBR), 

Toscani (TSI) and Yoruba (YRI) populations in 1000 Genomes project16; 19. To be consistent 

with Geuvadis eQTL detection framework, we directly utilized Geuvadis quantifications for gene 

and miRNA expression.  Geuvadis also provides 462 human genotypes as processed VCFs, of 

which 421 samples are from 1000 Genomes project Phase1 release v3 and 42 samples are 

from 1000 Genomes project Phase 2 Omni 2.5M genotype array with imputation. We used 

major allele frequency (MAF) > 5% as cutoff to select variants for downstream analysis. 

Construct variant-miRNA-ceD-ceT unit 

We extracted human 3'UTR sequences according to GENCODE20 V12 annotation (consistent 

with Geuvadis RNA-seq quantification) and 714 Geuvadis quantified miRNA sequences from 

miRBase21. We mapped Geuvadis biallelic genotypes to 3'UTR sequences to construct 

reference and mutant miRNA targets. Assuming variant independence, we used TargetScan 6.2 

to predict miRNA-target relationship22. To select reliable miRNA-target pairs, we filtered the 

prediction by TargetScan Context+ Score (TargetScan cutoff: < -0.310 for 8mer, < -0.161 for 
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7mer-m8, < -0.099 for 7mer-1A). We also adopted ViennaRNA Package23 to estimate the 

secondary structure-based energies of mRNA with (∆Gduplex) or without (∆Gopen)  interaction with 

miRNA, and used RNAhybrid to display the binding pattern23. We then selected those “variant-

miRNA-target” units that meet any of the following three criteria: 1) target gain: sequence with 

alternative allele is a miRNA target site but not for reference allele; 2) target loss: reference 

allele is but alternative allele is not a miRNA target site; 3) change of context+ score between 

target sites with reference allele and alternative allele. We treated the miRNA targets meeting 

the above criteria as putative ceDs. For each selected variant-miRNA-ceD unit, we further 

searched candidate ceTs under the control of the same miRNA as the ceD (on either reference 

and mutant 3'UTR) according to TargetScan prediction. Finally, we tested the association 

between a genetic variant and each ceD-ceT pair under a miRNA-centered regulatory network. 

Control for confounding factors  

The quantifications of gene and miRNA expression are usually affected by different technical 

variations and hidden factors, which will reduce power to interpret expression variability caused 

by genetic factors. To maximize the emsQTL detection power, we used PEER24 to estimate the 

hidden confounding factors (K) in expression quantifications, and selected the first ten PEER 

factors (K=10) according to the performance report of Geuvadis eQTL detection. We also 

calculated expression residuals for miRNA quantifications after accounting for estimated PEER 

factors, which serve as an essential confounder to control miRNA expression variability. In order 

to control population stratification, we performed principal component analysis to estimate 

principal components (PCs) for 462 individual genotype data and selected first three PCs as 

additional model covariates in the QTL analyses. 

Multivariate linear model 
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We wanted to test if the variant regulates the expression of ceD and ceT in a reciprocal pattern 

due to the ceRNA competition. This can normally be achieved by a two-step linear regression 

on gene expressions against genotype and a set of confounders, with ceD selection in the first 

step and ceT selection in the second step. However, expressions of the ceD and ceT pairs 

usually show positive correlation at the functional allele state, suggesting that we could benefit 

from modeling the relationship between these two responses jointly. Therefore, we used the 

multivariate linear regression on two responses to simultaneously model the genetic contribution 

on variability of ceRNA regulation. For each variant-miRNA-ceD-ceT unit, we considered gene 

expression, measured as the sum of all transcript RPKMs of ceD (Yd) and ceT (Yt), as two 

dependent variables and transform them to standard normal. We further incorporated the 

following confounding factors beside the individual genotype (G): the PEER residual of miRNA 

expression (Mr), the 10 PEER factors of ceD expression (PFd), the 10 PEER factors of ceT 

expression (PFt), and first three PCs of individual genotype (PC). The separate regression 

model is shown below: 

𝒀𝒅 = 𝜷𝟎𝟏 +  𝜷𝟏𝟏𝑮 +  𝜷𝟐𝟏𝑴𝒓 +  𝜷𝟑𝟏𝑷𝑭𝒅 +  𝜷𝟒𝟏𝑷𝑭𝒕 + 𝜷𝟓𝟏𝑷𝑪 +  𝜺𝟏   (1) 

𝒀𝒕 =  𝜷𝟎𝟐 + 𝜷𝟏𝟐𝑮 +  𝜷𝟐𝟐𝑴𝒓 +  𝜷𝟑𝟐𝑷𝑭𝒅 + 𝜷𝟒𝟐𝑷𝑭𝒕 + 𝜷𝟓𝟐𝑷𝑪 +  𝜺𝟐   (2) 

The multivariate regression on both ceD and ceT: 

(𝒀𝒅, 𝒀𝒕) = 𝑮 +  𝑴𝒓 +  𝑷𝑭𝒅 + 𝑷𝑭𝒕 +  𝑷𝑪 +  𝜺      (3) 

where we simultaneously measured two responses Yd and Yt, and the same set of predictors on 

each sample unit. 𝜺 = (𝜺𝟏, 𝜺𝟐)′ has expectation zero and an unknown covariance matrix. The 

errors associated with different responses on the same sample unit may have different 

variances and may be correlated. 
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Thus, the variant effect for ceD and ceT can be estimated by the corresponding coefficients on 

genotype (𝛽𝑑 and 𝛽𝑡), and we measured this multivariate model by Pillai's trace test statistics. 

However, in our definition of emsQTLs, we required opposite expression trend between ceD 

and each of its ceTs accompanying the genotype change (AA = 0, AB = 1 and BB = 2), so we 

further filtered variants to only keep those with their 𝛽𝑑  and 𝛽𝑡  values having opposite signs 

(𝛽𝑑 ×  𝛽𝑡 < 0). We finally reported the variant-miRNA-ceD-ceT unit with Benjamini-Hochberg 

false discovery rate < 0.05. 

emsQTL attributes analysis 

To be consistent with the Geuvadis RNA-seq quantification, we utilized GENCODE V12 gene 

annotation to investigate the functional properties of ceDs and ceTs. We also used DAVID to 

find enriched gene annotations and pathways25. We used SNVrap to annotate genetic variants26; 

27, and grouped the GWAS traits according to ontology mapping (human phenotype ontology 

and disease ontology) of GWASdb28. 

Evolutionary analysis 

We used six statistical measurements, including difference of derived allele frequency (DDAF)29, 

fixation Index (FST)30, Tajima’s D (TD)31, integrated haplotype score (iHS)32, cross-population 

extended haplotype homozygosity (XPEHH)33 and cross-population composite likelihood ratio 

(XPCLR)34, to evaluate signals of positive selection on each detected emsQTL SNP using 

genotype data from five populations of 1000 Genomes project (CEU, FIN, GBR, TSI and YRI). 

Statistical significance was evaluated by dbPSHP35, and we only kept emsQTL SNP with at 

least one statistically significant score out of the six scores (Supplemental Table S1). 

Hierarchical clustering was used to cluster the selected emsQTLs according to their derived 

allele frequencies (DAF). 

Functional prediction of variant effect  
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We adopted TargetScan context+ score and combined interaction energy score36 (∆∆G = 

∆Gduplex - ∆Gopen) to measure the alteration of binding affinity for each miRNA-target interaction. 

We then calculated the distance of context+ score (∆context+ score) and the distance of 

combined interaction energy (∆∆∆G) between alternative allele and reference allele, which are 

used to predict the miRNA-target binding affinity change. In analogy with 𝛽𝑑, a negative score 

represents the gain-of-function effect, whereas a positive score represents the loss-of-function 

effect. 

GWAS enrichment 

GWAS traits/diseases associated SNPs (TASs) were collected from GWASdb, NHGRI GWAS 

Catalog34, HuGE37, PheGenI38 and GRASP35, resulting in 33,645 significant SNPs with P < 1E-5. 

To link the signal in the linkage disequilibrium (LD) region, we calculated SNP correlations by 

MATCH based on the 1000 Genomes project super population for EUR. We obtained all linked 

SNPs with r2 > 0.8 for each GWAS leading TAS and identified emsQTLs overlapping with this 

expanded list. To test the enrichment of emsQTLs in GWAS signals, we prepared two 

background datasets for the SNP distribution in the miRNA binding site. We mapped all 1000 

Genomes project SNPs into miRNA seed binding region predicted by TargetScan as the first 

background. We further required that SNPs in first background should have changed binding 

affinity (∆context+ score is not equal to zero) under different alleles to form the second strict 

background. Using those two backgrounds, we overlapped them with extended GWAS signals 

and tested the enrichment by hypergeometric test.   

 

Results 

Genetic Effects on ceRNA Regulation in Human Populations 
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Our variant selection pipeline (Supplemental Figure S2) successfully mapped 3,544 unique 

genetic variants (including 3,263 SNPs and 281 indels) on miRNA seed binding sites in the 

3'UTR of 2,753 genes (putative ceDs) using 462 Geuvadis individuals. These loci have shown 

differentiated interaction patterns with 439 miRNAs (out of 714 profiled by Geuvadis) between 

the reference and alternative alleles. For each putative ceD, we can match over hundreds of 

other genes (ceTs) which are targeted by the same miRNA according to TargetScan prediction. 

We applied the multivariate linear regression (in Equation 3) to detect genomic loci that regulate 

expression levels of a ceD and each of the corresponding ceT. The model includes several 

essential confounding factors as regressors, including miRNA expression for controlling 

variability of miRNA concentration among individuals, PEER factors (K) estimating the hidden 

confounding factors of RNA-seq quantifications, and principal components of individual 

genotype accounting for population stratification. This multivariate linear model can 

simultaneously test for two responses of both ceD and ceT expressions and take advantage of 

the potentially correlated nature between ceD and ceT. After controlling at the FDR of 5%, we 

further filtered out units with 𝛽𝑑 ×  𝛽𝑡 > 0 and only retained those showing opposite signs of 

association between genetic variants and gene expression of the two ceRNAs.   

Genome-wide detection of emsQTLs in different populations 

We applied the model and the filtering strategy to five Geuvadis populations independently and 

successfully detected many emsQTLs.  We found 67 (CEU, 91 individuals), 97 (FIN, 95 

individuals), 106 (GBR, 94 individuals), 66 (TSI, 93 individuals) and 47 (YRI, 89 individuals) 

significant associations of unique variant at 5% FDR respectively (Supplemental Table S2). To 

improve the detection power, we merged the four European subpopulations (EUR, 373 

individuals) and detected 387 total significant emsQTLs and 1,875 variant-miRNA-ceD-ceT units 

(Supplemental Table S3, Figure 1). In the 387 emsQTLs associated with the EUR population, 

344 are SNPs and remainings are indels (Figure 2A), suggesting an enrichment of indels over 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2015. ; https://doi.org/10.1101/016865doi: bioRxiv preprint 

https://doi.org/10.1101/016865
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

SNPs in affecting miRNA-target interaction and subsequent ceRNA regulation (P = 0.04, chi-

square test). Different from eQTL detection, emsQTL are not only directly associated with its 

located ceD in cis, but also associated with the corresponding ceT in trans through their 

common miRNA regulator. To investigate if some functional eQTLs can be explained by ceRNA 

regulation, we checked the number of emsQTLs that overlap with the Geuvadis fine mapping 

(“the best”) eQTL result from the EUR population, and found to our surprise only 6 overlaps. 

However, when we considered the Geuvadis all mapped eQTLs, the overlap of emsQTLs is 

significantly improved (43%, Figure 2B). This suggests that other independent associations may 

exist in the linked region of each finely mapped eQTL, and the emsQTLs spectrum have 

pinpointed many additional associations that were missed by conventional eQTL analyses.  

Positive selection on ceRNA regulation 

By simply overlapping the emsQTLs in different subpopulations, we can also find many loci in 

common or specific to each population (Figure 2C and 2D). Similar patterns can be observed for 

related miRNAs, ceDs and ceTs of emsQTLs as well (Supplemental Figure S3). Surprisingly, 

the number of detected emsQTLs is drastically different among different subpopulations despite 

their similar sample sizes and expected statistical power. When we ranked the number of 

detected emsQTLs of each subpopulation in ascending order, we found that the sequence of 

subpopulations (YRI, TSI, CEU, FIN, GBR) follows precisely the human migration path in 

Europe (Supplemental Figure S4). This phenomenon may suggest that the recent positive 

selection is shaping the evolution of ceRNA regulation in human populations due to migration 

and subsequent adaption. To investigate whether emsQTLs are putative targets of the recent 

positive selection, we screened emsQTLs using six statistical measures (DDAF, FST, TD, iHS, 

XPEHH, and XPCLR) for each subpopulation. We found 46 emsQTLs with positively selected 

signals for at least one of the measures according to their corresponding empirical thresholds 

(Supplemental Table S4). Hierarchical clustering for derived allele frequencies of these 46 
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genetic variants clearly recovers the population relationship and shows distinct pattern on 

individual locus (Figure 3A). For example, one of YRI-specific emsQTLs rs1050286 (P = 8.11E-

6) shows disparate derived allele frequency between African (DAF of YRI: 0.89) and European 

population (DAF of TSI: 0.44; CEU: 0.47; GBR: 0.54; FIN: 0.53) (Supplemental Figure S5). SNP 

rs1050286 has four measures passing the significant cutoff in the YRI population (DDAF: 0.266; 

FST: 0.12; iHS: 2.285; XPEHH: 1.24), suggesting its likely positive selection in YRI. Long-range 

haplotype analysis also confirmed the selective sweep around this locus (Figure 3B and 3C). 

This population-specific emsQTL was detected by our model to regulate ceD OLR1 and ceT 

HORMAD2 by miR-149-5p, and derived allele A enhances the binding affinity for miR-149-5p 

and OLR1 according to direction of 𝛽𝑑  coefficient (positive value). Therefore, the gene 

expression of OLR1 is down-regulated in allele A state, which increases the gene expression of 

target ceRNA HORMAD2 from miRNA sponge effect. Previous studies have implicated the 

overexpression of OLR1 gene in many diseases including alzheimer’s disease, atherosclerosis, 

myocardial infarction, obesity, dyslipidemia, and cancer39-41. Our ceRNA analysis suggests that 

the protective role of allele A on rs1050286 in African population arises from miR-149-5p shifting 

its targets from HORMAD2 to OLR1 and reduces the OLR1 expression through ceRNA 

competition.  

 

Putative Causality of emsQTLs 

Evaluating emsQTLs properties with functional investigations 

Functional interpretation of emsQTLs is pivotal to our understanding their underlying biological 

mechanisms and phenotype causality. Coefficients of ceD and ceT in our regression model can 

reflect the degree of gene expression perturbation under different genotypes. Using the EUR 

387 emsQTLs, we found a majority of 𝛽𝑑 and 𝛽𝑡 to be small (< 1) in the 1,875 significant variant-
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miRNA-ceD-ceT units (Figure 4A and 4B), which indicates a moderate effect of these genetic 

variations in increasing the precision of target gene expression and ceRNA regulation. To 

investigate whether the 298 emsQTL-associated ceDs and 1,459 ceTs are engaged in 

important biological processes, we performed DAVID gene-annotation enrichment analysis for 

these two gene sets. ceDs were enriched in nucleotides binding, suppressor of cytokine 

signaling family protein binding and DNA repair (Supplemental Figure S6), while ceTs were 

enriched in sialyltransferase function, tyrosine protein kinase function, positive gene regulation, 

transcription regulation and cell proliferation (Supplemental Figure S7). These may indicate that 

many emsQTLs affect expressions of transcriptional regulators and signaling genes directly, 

and then regulate expressions of other genes through the ceRNA competition mechanism.  

The variant’s effect on miRNA-target interaction can be assessed by functional prediction 

algorithms that have been developed to estimate the change of binding affinity among different 

variant alleles26; 42; 43. To evaluate whether the direction of association (𝛽𝑑) is concordant with 

computational prediction on ceD through variant effect in cis, we calculated two scores, 

∆context+ score and ∆∆∆G, using TargetScan and an energy-based method36 for the 387 

emsQTLs in EUR population. Intuitively, ∆context+ score reflects the discrepancy of binding 

affinity and ∆∆∆G measures difference of combined interaction energy between alternative 

allele and reference allele. We found 53% and 39% of emsQTLs have 𝛽𝑑 in consistent direction 

with ∆context+ score and ∆∆∆G in functional prediction respectively (Figure 4C), and this 

increases to 75% if we consider the consistency with either ∆context+ score or ∆∆∆G as 

independent validation (Figure 4C). These results suggest that majority of detected emsQTLs 

can be validated by functional prediction in their ceD locus. 

The concordance of direction between statistical association and functional prediction can help 

us in silico prioritize the emsQTL candidates with potential causal evidence. From the 1,413 

concordant variant-miRNA-ceD-ceT units for 250 emsQTLs, one can infer their molecular 
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causality from both computational prediction and quantitative interpretation. Here, we use an 

example to illustrate how the emsQTL works. SNP rs1056984 is predicted to affect the seed 

binding between hsa-miR-296-5p and 3'UTR of DIDO1. TargetScan predicted binding under 

ancestral allele G (7mer-m8, context+ score: -0.236), but not under the derived allele A on this 

SNP. Further thermodynamic estimation confirmed that allele G has better binding affinity to 

miRNA (MFE of A allele: -26.7 kcal/mol; MFE of allele G: -30.5 kcal/mol). The simulated binding 

pattern also shows that allele G will enhance the binding stability by creating G:C match to 

position 8 of hsa-miR-296-5p (Figure 5A and 5B). Our model detected rs1056984 to be an 

emsQTL (P=4.76E-05) that controls the regulation among hsa-miR-296-5p, ENSG00000101191 

(DIDO1) and ENSG00000185361 (TNFAIP8L1). The 𝛽𝑑value of ceD DIDO1 is -1.34 (Figure 5C), 

and the 𝛽𝑡 value of ceT TNFAIP8L1 is 0.20 (Figure 5D). The negative value of 𝛽𝑑  further shows 

that rs1056984 is perhaps a gain-of-function mutation, which is consistent with functional 

prediction. This reversed relationship between coefficients indicates that genetic effect is driving 

the competing process of ceRNAs regulation. As the sequence of this allele changes from AA to 

AG to GG, the gradually enhanced sponge effect down-regulates DIDO1 expression (ceD) and 

up-regulates TNFAIP8L1 expression (ceT). When this locus is homozygous GG, we observed a 

significantly positive correlation (Cor = 0.29, P = 0.01) between DIDO1 and TNFAIP8L1, further 

supporting the interaction between ceD and ceT through competition for hsa-miR-296-5p 

(Figure 5E).  

When we searched biological functions for DIDO1, TNFAIP8L1 and miR-296-5p, we found that 

this emsQTL may represent a new mechanism for miR-296-5p triggered carcinogenesis. miR-

296 has been characterized as "angiomiR" which can regulate angiogenesis44. It is reported to 

have a specific role to promote tumor angiogenesis by targeting HGS mRNA and resulting in the 

overexpression of VEGF receptors in angiogenic endothelial cells45-47. MiR-296 may also 

contribute to carcinogenesis by dysregulating p5348. In this scenario, DIDO1 gene is a tyrosine-
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phosphorylated putative transcription factor, previously thought to induce apoptosis and mitotic 

division49; 50, and might be a tumor suppressor gene51. In contrast, majority of publications 

reported TNFAIP8L1 to be an antiapoptotic molecule and oncogene in developing many 

cancers13; 52-54. Here, we predicted emsQTL rs1056984 to affect the ceRNA regulation in 

switching the expression of tumor suppressor and oncogene under different genotypes. 

Specifically, efficient miRNA competition occurs in the ancestral allele G, however, the derived 

allele A of rs1056984 has a protective effect in maintaining tumor suppressor DIDO1 expression 

and inhibiting oncogenic TNFAIP8L1 expression by shifting miR-296-5p binding from DIDO1 to 

TNFAIP8L1 (Figure 5F). Although there is no diseases/traits associated evidences for 

rs1056984 at the current stage, we found that African population have lower derived allele 

frequency (DAF of YRI is 0.28, DAF of CEU is 0.65) in the 1000 Genomes project 

(Supplemental Figure S8). Further calculation on FST (0.24) between CEU and YRI indicates 

that positive selection may drive the evolution of this locus. 

 

emsQTLs explain GWAS traits and diseases associated signals in miRNA binding sites 

To investigate if emsQTL-affected gene expression changes contribute to human phenotypes, 

we connected emsQTLs in EUR population to GWAS trait/disease-associated SNPs (TASs), 

and found 8 of 387 ubiquitous emsQTLs to overlap with GWAS leading TASs (Table 1). The top 

mapped TAS rs7294, which locates in the 3'UTR region of VKORC1, has been frequently 

shown to be associated with warfarin maintenance dose in anticoagulant therapy55-57. 

Individuals with derived allele A produce less Vitamin K epoxide reductase than those with the 

G allele ("non-A haplotype"), thus the former need lower warfarin doses to inhibit the enzyme 

and produce an anticoagulant effect58. Our emsQTL analysis suggests that at the molecular 

level, allele A of rs7294 may promote the interaction among miR-147a and VKORC1 target site 

(𝛽𝑑 = -1.12) to down-regulate VKORC1 expression (Supplemental Figure S9A), consistent with 
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the previously observed VKORC1 expression in A allele individuals58. Also, the competition 

effect of this locus can help connect VKORC1 to three significant ceTs EIF2B5, LRRFIP1 and 

RPTOR (Supplemental Figure S9B-D) that are important in translational initiation or signaling 

pathway regulation.  

Since GWAS TAS may not be causal, we further scanned SNPs in high LD (r2 > 0.8) of GWAS-

identified TASs. We identified 15.7% of 344 emsQTLs (SNPs only and not indels) to be strongly 

associated with 145 GWAS hits (Supplemental Table S5),  an significant enrichment of 

emsQTLs in GWAS TASs comparing with background SNPs for both the miRNA seed binding 

site (P = 7.54E-28, hypergeometric test) and differentiated miRNA binding signals (P = 3.30E-4, 

hypergeometric test) (Supplemental Table S6). Most of these 145 GWAS index SNPs locate in 

introns or intergenic regions with poorly annotated functions (Supplemental Table S7). 

Therefore, our emsQTL analysis could potentially identify causal mechanisms underlying 

disease/trait SNPs. Interestingly, phenotypes associated with these 145 GWAS hits are mostly 

related to autoimmune diseases and blood cell traits (Supplemental Table S7), suggesting the 

effect of emsQTLs to be driven by cell type specificity of the lymphoblastoid cells in the 

Geuvadis data. 

 

Functional Effect of emsQTLs in ceRNA Regulatory Network 

Prioritization of emsQTLs 

To comprehensively evaluate the association between emsQTLs and ceRNA regulation, we rely 

not only on the statistical significance, but also on the magnitude of emsQTLs function on 

titrating miRNA availability and ceRNA-dependent gene expression changes. Several factors 

have been reported to influence ceRNA effectiveness, including miRNA and ceRNA expression 

level, the binding affinity of MRE, as well as the positive correlation between ceRNAs 
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expression3; 5; 59. We attempted to prioritize the functional emsQTLs according to these factors. 

Since our regression model has already accounted for confounding factors from miRNA 

expression variation in the emsQTL calling step, we therefore only focused on ceRNA-related 

factors in the prioritization. We first calculated the degree of gene expression change on ceD 

and ceT in different genotypes, which can be measured by the sum of log|𝛽𝑑| and 𝑙𝑜𝑔|𝛽𝑡|. We 

further required consistent direction between 𝛽𝑑 and the ∆context+ functional prediction score 

from TargetScan. Finally, we asked for positive correlation (> 0.1) for ceD and ceT in the 

specific homozygous emsQTL genotypes, when ceD and ceT actively compete for miRNA 

binding. Based on aforementioned criteria, we successfully identified 239 variant-miRNA-ceD-

ceT units for 93 unique emsQTLs with sufficient functional evidences (Supplemental Table S8). 

The top variant rs3208409 creates a miR-940-3p binding site in the 3'UTR of HLA-DRB1 gene, 

which competes with L3MBTL2 for miR-940-3p binding (P = 7.94E-27). The large effect of 

rs3208409 on the gene expression of ceD (𝛽𝑑 = -115.18) and ceT (𝛽𝑡 = 1.14), the consistent 

functional prediction (∆context+ score = -0.21), and the high correlation (Cor=0.38) between 

ceD and ceT in homozygote individuals provide robust evidences of the causality of this 

emsQTL (Supplemental Figure S10).  We further overlapped this prioritized list with GWAS 

signals and identified 21 phenotype-associated variant-miRNA-ceD-ceT units (Supplemental 

Table S9). 

 

Genetic effect on ceRNA regulatory network 

The altered expression of individual genes might affect the expression of many other genes in 

the whole ceRNA regulatory network by the miRNA sponge mechanism60; 61. From the 1,875 

significant variant-miRNA-ceD-ceT units our model identified, we constructed the global ceRNA 

regulatory network under the control of 387 independent emsQTLs in the EUR population 
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(Supplemental Figure S11). We also generated the network for 21 phenotype-associated 

variant-miRNA-ceD-ceT units (Supplemental Figure S12). Majority of ceDs can be associated 

with more than one ceTs by single genetic effect. For example, rs11540855 on ceD ABHD8 

could influence the expression of two ceTs AXIN1 and RPRM through competing for binding to 

miR-4707-3p (Figure 6A), and the expression of ABHD8 and its two ceTs are positively 

correlated under the active genotype GG (Figure 6B-D). Interestingly, emsQTL rs11540855 

located in the 3’ UTR of ABHD8 on 19p13 has been recently reported to have top significant 

association with breast cancer risk (GWAS P = 1.65E-09) after genotype imputation62; 63. In 

addition, AXIN1 and RPRM were recently reported as tumor suppressors in breast cancer 

development64, and miR-4707-3p is highly expressed in breast cancer65.  These evidences 

suggest that emsQTL rs11540855 might influence breast cancer developments by regulating 

tumor suppressors AXIN1 and RPRM through the ceRNA pathway. In addition to the 

aforementioned regulatory relationship, one ceD can also be regulated by multiple miRNAs, and 

a single miRNA can regulate multiple ceDs and ceTs through different emsQTLs. These 

interactions highlight the complexity of genetic effect on ceRNA regulatory network.  

Discussion 

In this study, we, for the first time, integrated the 1000 Genomes genotype and Geuvadis RNA 

sequencing data to investigate the effect of human genetic variations on ceRNA regulation. 

Using a multivariate linear model, we successfully identified hundreds of emsQTLs and related 

ceDs/ceTs at the genome-wide level. We found that recent natural selection is shaping many 

emsQTLs in different human populations. Functional analysis of these genetic variants indicated 

that most of emsQTLs are functionally relevant to important biological processes and are 

significantly enriched in GWAS risk loci. Furthermore, we prioritized these loci with their 

associated ceRNAs according to different criteria and evaluated their collective effect on the 
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ceRNA regulatory network. Our study provides a novel angle to interpret genetic effect in post-

transcriptional gene regulation. 

Although our regression model already considered many candidate confounding factors, such 

as miRNA expression level, ceRNA expression variability, as well as population genetic 

structure, there may still be missing factors that impact the performance and statistical power in 

the emsQTL detection. One potential limitation is that we only treated each pair of ceD and ceT 

as an independent test unit in the local miRNA-centered regulatory network instead of modeling 

the whole ceRNA regulatory network. Recent studies have shown that a small perturbation of 

ceRNA expression usually shifts the equilibrium of ceRNA regulatory network especially when 

concentrations of miRNAs and targets are comparable66. The cascade effect from miRNA 

redistribution and ceRNA competition in the global level8; 67 requires a complete and complex 

mathematical model to accurately describe full responses of the whole network. Another 

limitation of our study is that current computational predictions of miRNA binding sites still have 

inadequate performances68. To balance sensitivity and specificity of miRNA target prediction, 

we chose to use a strict context+ score threshold from TargetScan predictions, instead of the 

union or intersection of multiple miRNA-target prediction algorithms such as TargetScan, PITA36, 

miRanda69, etc. Therefore, it is likely that our emsQTLs detection missed some causal variants 

not predicted by TargetScan. Future experiments such as CLIP-seq, if done on individuals, 

could better capture miRNA-target interactions and improve our emsQTLs inference.  

Using genetic and transcriptomic data from different populations, we found many population-

specific emsQTLs and identified putative loci undergoing recent positive selection. These results 

represent a useful supplement to studies of recent natural selection of human miRNA targets70-

72 and significantly extent functional categories for positively selected loci73. Currently, available 

transcriptome profiles of five subpopulation from Geuvadis, of which majority are from European 

populations, prevent the inference of positive selection signals in other human races such as 
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Asian and Native American populations. The recent human Genotype-Tissue Expression (GTEx) 

project has produced large-scale transcriptome profiles in multiple tissues of hundreds of 

donors74, which provides new opportunities to study tissue-specific associations between 

genetic variations and ceRNA regulation.  

Since many genes contain multiple binding sites of the same miRNA, some might suspect 

single MRE perturbations to have small effects on ceRNA expression and the downstream 

miRNA regulatory network. This is not surprising, considering that most QTLs usually also only 

account for a small fraction of the total genetic heritability in the population. However, although 

many QTLs individually exert relatively small effects, together they might contribute to a 

significant complex trait75. Theoretical simulations and quantitative experiments have 

demonstrated that some perturbations on individual miRNA binding site can indeed affect the 

entire ceRNA regulatory network8; 76; 77. Our emsQTL analyses on human populations suggest 

that DNA polymorphisms affecting ceRNA regulation is a widespread phenomenon in the 

human evolution and contribute significantly to complex traits. 

 

Description of Supplemental Data 

Supplemental Data include twelve figures and nine tables. 
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Figure legends 

Figure 1: Circos plot of all detected emsQTLs. Features or glyphs are displayed from the outer 

to the inner, include the number of chromosome, the chromosome ideograms, copy number 

variation hotspots (red region), Manhattan plot for emsQTLs with –log10(P-value), Manhattan 

plot for GWAS TASs in miRNA binding site predicted by TargetScan, genome variant density 

(red: dbSNP, black: 1000 Genomes, purple: HapMap 3), OMIM gene distribution and disease-

susceptible region distribution. 

Figure 2: Genome-wide detection of emsQTLs. (A) The proportion of emsQTLs for SNP and 

indel. (B) The overlapping of emsQTLs in Geuvadis eQTLs. (C) Venn diagram of emsQTLs in 

European populations. (D) Venn diagram of emsQTL between European and African 

populations. 

Figure 3: The positive selection of emsQTLs. (A) The hierarchical clustering of according to 

derived allele frequency for 46 putatively positive selected emsQTLs in different population. (B) 

iHS scores in rs1050286 locus for YRI. (C) XPEHH scores in rs1050286 locus for YRI. 

Figure 4: The functional properties of emsQTLs for EUR population. (A) The distribution of 𝛽𝑑. 

(B) The distribution of 𝛽𝑡. (C) The direction concordance between association and functional 

prediction for all emsQTLs. 

Figure 5: The genetic effect of rs1056984 in ceRNA regulation for EUR population. (A) 

Hybridization pattern between miR-296-5p and binding site of DIDO1 on derived allele A. (B) 

Hybridization pattern between miR-296-5p and binding site of DIDO1 on ancestral allele G. (C) 

Boxplot of gene expression of DIDO1 on different genotype. (D) Boxplot of gene expression of 

TNFAIP8L1 on different genotypes. (E) The gene expression correlation of DIDO1 and 

TNFAIP8L1 under different genotypes. (F) Schematic diagram for rs1056984 affecting ceRNA 

competition under different alleles, it impacts the expression of tumor suppressor and oncogene 

in a reciprocal and coordinate manner. MFE: minimum free energy. 

Figure 6: The genetic effect of rs11540855 in ceRNA regulation for EUR population. (A) Small 

ceRNA regulatory network driven by rs11540855, red circle: ceDs; yellow triangle: miRNA; bule 

circle: ceTs; red suppression line: the miRNA-ceD regulation, G for gain-of-function mutation; 

gray suppression line: the miRNA-ceT regulation; orange arrow: ceD activate ceTs in gain-of-

function situation (βd <  0 and βt >  0). (B) Boxplot of gene expression of ABHD8 on different 

genotypes. (C) Boxplot of gene expression of AXIN1 on different genotypes and the correlation 

with ABHD8 on genotype GG. (C) Boxplot of gene expression of RPRM on different genotypes 

and the correlation with ABHD8 on genotype GG.
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Tables 

Table 1: The emsQTLs that overlap with GWAS leading TASs 

Chr Pos SNP Ref Alt 
emsQTL  
P-valuea 

ceD ceTs miRNA Effectb 
GWAS  
P-valuec 

GWAS Traits 

16 31102321 rs7294 C T 1.37E-06 VKORC1 
EIF2B5, RPTOR, 

LRRFIP1 
miR-147a Gain 1.40E-45 

Warfarin and acenocoumarol 
maintenance dosage58; 78 

11 18388128 rs4596 G C 1.15E-05 GTF2H1 
TSTD2, TMOD1, 

TOB1, PPARGC1A, 
KLF5 

miR-642a-5p Loss 2.17E-35 
Amyloid A Levels79, Colorectal 

cancer80 

12 56863770 rs2657880 G C 1.87E-51 SPRYD4 XKR6, AC004985.2 miR-3157-5p Loss 2.28E-31 
Serum metabolite levels81, 

Lymphocyte counts82,  
Metabolite levels83 

10 100176869 rs701801 C T 4.70E-13 HPS1 TRIOBP, KLHL30 miR-491-5p Loss 1.34E-25 
Serum metabolism84, Endocrine 

traits85 

19 10397238 rs281437 C T 0.00019 ICAM1 
C16orf54, 

FBXO41, SH2D4A 
miR-3667-5p Loss 3.00E-10 

Soluble intercellular adhesion 
molecule 1 level86, hepatic 

fibrosis87 

16 67708897 rs12449157 A G 7.69E-06 GFOD2 
COASY, LMAN2L, 

VPS9D1 
miR-4792-5p Gain 2.00E-07 

Triglycerides88, Haemoglobin 
level89, 

Hypercholesterolemia90 

17 37921742 rs907091 C T 9.50E-05 IKZF3 RGL3, DDX11 miR-330-5p Gain 3.38E-07 
Esophageal cancer91, Allergy92 

Primary biliary cirrhosis93 

8 11643915 rs804292 G A 0.00024 NEIL2 ZNF583 miR-143-3p Loss 2.00E-06 Alcohol/nicotine dependence94 

a: the best emsQTL P-value among all significant variant-miRNA-ceD-ceT units; b: the predicted function effect of alternative allele for miRNA-target interaction; c: the best GWAS 
P-value among all mapped GWAS traits   
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