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Abstract

Background: Bayesian networks are directed acyclic graphical models widely
used to represent the probabilistic relationships between random variables.
Recently, they have been applied in various biological contexts, including gene
regulatory networks and protein-protein interactions inference. Generally, learning
Bayesian networks from experimental data is NP-hard, leading to widespread use
of heuristic search methods giving suboptimal results. However, in cases when the
acyclicity of the graph can be ensured, it is possible to find the optimal network
in polynomial time. While our previously developed tool BNFinder implements
polynomial time algorithm, reconstructing networks with the large amount of
experimental data still leads to numerous days of the computations given single
CPU.
Results: In the present paper we propose parallelized algorithm designed for
multi-core and distributed systems and its implementation in the improved
version of BNFinder - our tool for learning optimal Bayesian networks. The new
algorithm has been tested on simulated datasets as well as different experimental
data showing that it has much better efficiency of parallelization than the
previous version. When tested on the DREAM datasets in comparison with other
methods, BNFinder gives consistently the best results in terms of the area under
the ROC curve as well as in the number of positive predictions at the top of the
prediction ranking. The latter is especially important for the purposes of the
future experimental validation of the predictions.
Conclusions: We show that the new method can be used to reconstruct
networks in the size range of thousands of genes making it practically applicable
to whole genome datasets of prokaryotic systems and large components of
eukaryotic genomes. Our benchmarking results on realistic datasets indicate that
the tool should be useful to wide audience of researchers interested in discovering
dependencies in their large-scale transcriptomic datasets.
Keywords: Bayesian networks learning; gene regulatory networks inference;
distributed computing; DREAM challenge

Background
Bayesian networks (BNs) are graphical representations of multivariate joint proba-
bility distributions by factorization consistent with the dependency structure among
variables. In practice, this often gives concise structures that are easy to interpret
even for non-specialists. A BN is a directed acyclic graph with nodes represent-
ing random variables and edges representing conditional dependencies between the
nodes. Nodes that are not connected represent variables that are conditionally inde-
pendent of each other [1]. In general, inferring BN structure is NP-hard [2], however
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it was shown by Dojer [3] that it is possible to find the optimal network structure
in polynomial time when datasets are fixed in size and the acyclicity of the graph
is pre-determined by external constraints. The latter is true when dealing with
dynamic BNs or when user defines the regulation hierarchy restricting the set of
possible edges in case of static BNs. This algorithm was implemented in BNFinder
- a tool for BNs reconstruction from experimental data [4].

One of the common use of BNs in bioinformatics is inference of interactions be-
tween genes [5] and proteins [6]. Even though it was originally developed for this
purpose, BNFinder is a generic tool and can be used not only for the reconstruction
of gene regulatory networks from expression profiles. Since its original publication,
it was successfully applied to linking expression data with sequence motif informa-
tion [7], identifying histone modifications connected to enhancer activity [8] and
to predicting gene expression profiles of tissue-specific genes [9]. Even though it
can be applied to many different datasets, the practical usage of the algorithm is
limited by its running times that can be relatively long. The bottleneck is the fact
that the running time are defined by the most complex variable (which in case of
genetic networks is a gene with the biggest number of parents/regulators). Since
the algorithm published by Dojer [3] was relatively easily parallelizable, we have
developed a new version of BNFinder that takes advantage of multiple cores via the
multiprocessing python module.

Implementation
The general scheme of the learning algorithm is following: for each of the random
variables find the best possible set of parent variables by considering them in a
carefully chosen order of increasing cost function. Current BNFinder 2 version [10]
can be considered variable-wise as it includes a simple parallelization based on
distributing the work done on each variable between the different threads. However,
such approach has natural limitations. Firstly, the number of parallelized tasks can-
not exceed the number of random variables in the problem, meaning that in the
cases where only a few variables are considered (e.g. in classification by BNs) we
get a very limited performance boost. Secondly, variable-wise parallelization is
vulnerable (in terms of performance) to the datasets with highly heterogeneous
variables, i.e. variables whose true dependency graph has a wide range of connec-
tions. As the time spent on computing parents sets for different variables varies - it
leads to randomly uneven load of threads. In biology we usually observe networks
with scale-free topology consisting of a few hub nodes with many parents and a
large number of nodes that have one or small number of connections [11]. If one
applies variable-wise algorithm to such networks the potential gain in the algo-
rithm performance is not greater than in the case where all the nodes have as many
parents as the most biggest hub node.

While variable-wise algorithm seems to be the most straightforward one, it is
also possible to consider different possible parents sets in parallel denoting set-wise
algorithm. It means that in the first step we compute singleton parents sets using
all available threads, in the second step we compute two-element parents sets in
parallel and so on, until we reach parents sets size limit or score function limit.
However, set-wise algorithm requires more synchronizations between the threads
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[12] in comparison with variable-wise. As it is difficult to tell, which problem might
be more important in practice, we have implemented and tested two approaches:
set-wise only and hybrid one - a combination of variable-wise and set-wise.
Obviously that hybrid algorithm gives exactly the same speedup as current version
of BNFinder, which implements variable-wise algorithm, when the number of cores
is fewer or equal to the number of random variables. In the opposite case (when
the number of cores is greater than the number of random variables) the excessive
number of cores is allocated to set-wise type of parallelism to get additional boost
in the performance.

Figures 1,2 and 3 show python pseudocode for variable-wise, set-wise and hy-
brid algorithms accordingly, which was simplified in comparison to the original
implementation for better illustration. As was stated above set-wise algorithm
uses all given cores to compute parents sets for one gene and after finding parents
it proceeds with the next gene. On the contrary hybrid algorithm uniformly dis-
tributes cores between genes, for example, if user has 3 genes in the network and
6 cores available, each gene will have 2 cores for computing its parents set. So, the
complexity of set-wise (left side of inequality) and hybrid (right side of inequality)
algorithms can be described in following way:∑n

i=1 ti

k
= avgn

i=1 tin

k
≤ maxn

i=1 tin

k

where k is the core number, n is the number of random variables, and t is the time
one needs to compute optimal parents set for one variable.

Thus, the time to reconstruct the whole network in case of set-wise approach is
the sum of time needed for each random variable, which is in fact average time one
spends on finding the parents set for one variable, while inferring BN with hybrid
approach is bounded by the maximum time one spends on one variable.

Results
Performance testing
Algorithms comparison. We compared implementations of three different al-
gorithms: variable-wise, set-wise and hybrid. The original implementation
(variable-wise) serves as a baseline for computing the speedup and efficiency of
the parallelization. For testing we used synthetic benchmark data as well as real
datasets concerning protein phosphorylation network published by Sachs et al. [13].
Set-wise and hybrid algorithms performance on 20 genes synthetic network were
almost identical, while the speedup of the hybrid algorithm was better - 34x versus
29x (See Figure 4). Obviously, for reasons described in the implementation section
the variable-wise algorithm is reasonable to use only with 20 cores or less. Ef-
ficiency comparison showed that hybrid algorithm has more unstable behaviour,
performing better when the number of cores correlates with the number of genes
(see Figure 4).

Real experimental dataset showed significant difference between two algorithms.
Clearly, the set-wise algorithm outperforms the hybrid one: with the efficiency
of 0.5 it showed 8x speedup on phosphorylation network with 11 genes, while the
hybrid algorithm showed only 1.5x speedup (See Figure 5). Again, variable-wise
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algorithm cannot give any speedup with more than 11 cores. Tests on Sachs data
revealed hybrid algorithm sensitivity to highly heterogeneous variables in the input
data, because out of the 11 genes in the network only one gene has 6 parents, while
others have 1-2 parents. Importantly, the better performing algorithm is also the
one showing more consistent behaviour.

Even though both new algorithms are better than current BNFinder 2 version we
consider set-wise algorithm better one, cause it gives more predictable outcome.

Tests on benchmark and Sachs data were performed on the same server with
AMD Opteron (TM) Processor 6272 (4 CPUs with total of 64 cores) and 512GB
RAM. During the tests server was loaded only by regular system processes, but to
ensure statistical significance we performed each test several times, so Figures 4 and
5 represent average results.

Stress testing. After establishing that the best algorithm is the set-wise, we de-
cided to test it on large datasets to see if we are able to use it in genome-wide anal-
yses. Previously we compared BNFinder with Banjo software on the data provided
with it [4, 14]. But for the new algorithm testing we chose Challenge 5 (Genome-
Scale Network Inference) from DREAM2 competition (Dialogue for Reverse En-
gineering Assessments and Methods) [15, 16]. Challenge data is a log-normalized
compendium of Escherichia coli expression profiles, which was provided by Tim
Gardner to DREAM initiative [17]. The participants were not informed about the
data origin and were provided only with 3456 genes x 300 experiments dataset and
the list of transcription factors.

We tested BNFinder on Challenge 5 data with different parents sets limit pa-
rameter (i.e. number of potential parents) to see whether it has any effect on the
accuracy of resulting network. Also it is important to know, that parents sets limit
increases the computation time dramatically in non-linear way, especially in case of
dataset with many variables. We compared set-wise algorithm performance with
context likelihood of relatedness (CLR) algorithm - an extension of the relevance
networks approach, that utilizes the concept of mutual information [17]. We chose
CLR, because it is very fast and easy to use tool, which provides good results.
In addition, CLR-based algorithm - synergy augmented CLR (SA-CLR) was best
performed algorithm on Challenge 5 [18].

Table 1 DREAM2 Challenge 5 data testing. CLR with cutoff means limiting output results to
100000 genes interactions. l stands for BNF parents sets limit.

CLR CLR with cutoff BNF, l=1 BNF, l=2 BNF, l=3
CPU time, hours 0.7879 0.1999 2.0021 383.7149 109200

Actual time, hours 0.2626 0.0666 0.0667 12.7904 336
CPU number 3 3 30 30 ∼325

The CLR tests were performed on the GP-DREAM platform, designed for the
application and development of network inference and consensus methods [19]. BN-
Finder tests for parents sets limit 1 and 2 were performed on the same server as
previous BNFinder tests in this paper, however, with the limit 3 we had to use more
powerful environment. In this case it was Ukrainian Grid Infrastructure [20], which
was accessed through nordugrid-arc middleware only (arc client version 4.1.0), so
the tasks submitting process was automated and unified [21]. The results in Table
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1 are not precisely comparable due to differences in used hardware, especially when
using such heterogeneous environment as Grid. Also we couldn’t obtain stable num-
ber of cores over time with the Grid, as the clusters were loaded with other tasks.
So, during the experiment we were utilizing from 250 to 400 cores at the same time.

Even though computing with parents sets limit 3 takes significant amount of time
and resources, it is clear that BNFinder is able to reconstruct genome-scale datasets,
significantly broadening its application range. Moreover, BNFinder is well adapted
to parallel and distributed computing.

Accuracy testing
Previously we compared accuracy of BNFinder algorithm with Banjo [4] on data
provided with it and separately on Sachs data [10], which we used in this work to
test the performance. However, as we already had results from DREAM testing, it
was reasonable to test both BNFinder and CLR with Challenge 5 gold standard
network.

As we’ve stated before, BNFinder requires external constraints ensuring network
acyclicity for inferring static Bayesian networks (with dynamic Bayesian networks
you might have the loops). In the case of Challenge 5 data such constrains are
encoded in the transcription factors list. Since allowing TF-TF interactions would
lead to the cycles in the network, BNFinder is unable to infer interactions between
TFs. In order to make a more realistic comparison of the results we compared
BNFinder result with a slightly modified gold standard network, where TF-TF
interactions were excluded. Overall, it didn’t influence the total accuracy much as
the gold standard contains very few of such interactions. As CLR is unable to infer
the sign of interaction (inhibition or activation) we used unsigned gold standard.
The results are presented in Table 2.

Table 2 Algorithms accuracy test on DREAM2 Challenge 5 data. BNFinder and CLR are
compared with the best scored method. Area Under the PR and ROC Curves are considered as
well as precision at n-th correct prediction. BNFinder is used with parents sets limit 1 and
suboptimal parents sets 100, CLR is used with default parameters.

CLR BNF BNF, gold standard Winner: Team 48
without TF-TF

AUPR 0.051398 0.028769 0.030584 0.059499
AUROC 0.617187 0.606326 0.629420 0.610643

n=1 1 1 1 1
n=2 1 1 1 1
n=5 0.5 0.714286 0.714286 0.714286

n=20 0.588235 0.8 0.8 0.689655
n=100 0.591716 0.164745 0.164745 0.675676
n=500 0.025204 0.014771 0.014771 0.036044

It is important to note that the overall AUROC is comparable between the meth-
ods with BNFinder leading in the gold standard without TF-TF interactions. Even
more relevant is the fact that the fraction of positive predictions at the very top 20
of the rank is by far the highest for BNFinder.

Exploring BNFinder parameter space. The main advantage of BNFinder in com-
parison with heuristic search Bayesian tools such as Banjo is that BNFinder recon-
structs optimal networks, which also means that with the same parameters one will
always get the same result. However, with BNFinder one can use number of parame-
ters such as scoring functions (Bayesian-Dirichlet equivalence, Minimal Description
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Length or Mutual information test), static or dynamic (also with self-regulatory
loops) BNs, perturbation data, or even prior information on the network structure.
All of these may alter results significantly, so, naturally we are interested in choos-
ing best parameters for a particular dataset. Here we studied the impact of two
very important parameters: parents sets limit and number of suboptimal parents
sets (gives alternative sets of regulators with lower scores). The results are shown
in Table 3.

Table 3 Testing BNFinder with different parameters on DREAM2 Challenge 5 data.
Subparents: 25 Subparents: 50 Subparents: 100

Parents sets limit 1 2 3 1 2 1 2
AUPR 0.028645 0.030669 0.023191 0.028686 0.031859 0.028769 0.031372

AUROC 0.573914 0.574862 0.570626 0.587847 0.587919 0.606326 0.597899
n=1 1 0.333333 0.125 1 0.5 1 0.333333
n=2 1 0.4 0.222222 1 0.5 1 0.5
n=5 0.714286 0.625 0.102041 0.714286 0.714286 0.714286 0.555556

n=20 0.8 0.714286 0.162602 0.8 0.714286 0.8 0.714286
n=100 0.167224 0.241546 0.205761 0.164745 0.251256 0.164745 0.249377
n=500 0.018126 0.024327 0.024021 0.015903 0.023938 0.014771 0.023157

For parents sets limit 3 we have used only 25 subparents (suboptimal parents
sets), because we did not see significant improvement when it was increased and it
would have been too extensive to complete the computations in realistic time for
larger parents limit sizes.

The gold standard consists of TFs and sigma-factors regulations taken from Reg-
ulonDB version 4 [15]. As stated in [15] RegulonDB is 85% complete, so some
false-positives may be incorrectly assigned. In addition, only 771 out 1095 genes in
the gold standard have from 1 to 3 parents (regulators), while the maximum num-
ber is 10 (see Table 4), which means that parents sets limit 3 is not nearly enough
to infer true interactions.

In Table 5 we have summarized the total number of interactions returned by BN-
Finder with different maximal parents per gene and different number of suboptimal
parent sets. The results indicate that increasing the size of the allowed parent set
leads to the decrease in the total returned edges in the network. This may seem sur-
prising at first, but it is consistent with highly overlapping suboptimal parents sets.
In such case, when we allow parent sets to be larger, it leads to actually removing
at least some spurious interactions.

Taken together with the results shown in Table 3, it leads to the conclusion, that
if the user is interested in the very top of the strongest interactions in the network,
he or she should use small numbers of sub-optimal parent sets and small limit on
the parent-set size. However, if one is interested in discovering the more global
picture of the true regulatory network, one should focus on the higher number of
sub-optimal parent sets with limit on the set size as high as it is computationally
feasible. In the particular example of the DREAM network studied in our work, it
seems that looking at 50 or 100 subparents gives best accuracy when looking at the
top 100 predicted edges.

Table 4 The number of genes parents in DREAM2 Challenge5 gold standard. The total number of
genes in gold standard is 1095.

Parents number 1 2 3 4 5 6 7 8 9 10
Genes number 269 317 185 125 111 42 37 5 2 2
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Table 5 The number of the interactions in the output network based on different BNFinder
parameters.

Subparents=25 Subparents=50 Subparents=100
Parent limit=1 78366 156685 313061
Parent limit=2 65108 116424 213389

Given the results, we advise that before applying BNFinder to any kind of data one
should study the data origin and consider the vertices degree in the network graph
in order to choose optimal parents sets limit and number of suboptimal parents.

Discussion
DREAM results interpretation. As we stated above gold standard provided by
DREAM2 Challenge 5 cannot be considered as a complete one. While it is hard to
estimate the magnitude of the problem exactly, we can assume there is a substantial
number of results incorrectly classified as false-positives. Experimentally validating
all inferred interactions does not seem to be possible as it would take too much
time to be practical. Therefore researches usually verify only a selected few of them
[17]. It means that results in Table 2 are not absolute and tested tools could behave
differently on the different datasets, not even mentioning that AUPR characteristic
is way too low for all the tools.

To be more precise only 1146 from 3456 genes are present in gold standard (1095
genes and 152 transcription factors, some of them counted among the 1095 [15]).
Therefore DREAM evaluation scripts exclude interactions, which are not in gold
standard, from predicted network before computing AUROC and AUPR. Assuming
the dataset covers all possible states of the biological system the inferring of each
interaction is equally difficult/simple. However, in the reality we have to deal with
groups of genes, some of them are differentially expressed and some are not. It is
possible to imagine the situation that some tool perfectly predicted interactions not
present in gold standard and poorly predicted other interactions, which happened
to be not differentially expressed. Basically, using DREAM dataset and evaluation
scripts we compare how the tools predicted gold standard only interactions, while
not comparing at all how the tools inferred others. As we do not know the design
of the experiments we cannot find differentially expressed genes, but we can make
more accurate comparison between the tools by excluding non gold standard genes
from the dataset before reconstructing the networks.

As stated in challenge synopsis the data was log-normalized [16]. So, first of all
we performed quality check with ArrayQualityMetrics R packet [22] and quantile
normalizing [23], which is shown in Figure 6. After that we excluded all the genes,
which are not present in the gold standard interactions list, and inferred the net-
works on modified data. The results in Table 6 show that accuracy of both tools
increased significantly, which is caused by data dimensionality reduction and by the
fact, that we do not exclude highly ranked interactions (which are not in the gold
standard). We also used BNFinder with increased number of parents and subopti-
mal parents sets, which gave us even better result. Table 6 represents more precise
tools comparison, however, we still believe that such evaluation of inference meth-
ods are far from giving us full-scale and optimal picture of accuracy performance,
so experimental validation is still needed.
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Table 6 Testing BNFinder on modified DREAM data. Full dataset is unmodified DREAM2
Challenge 5 dataset with 3456 genes, while gold standard genes only dataset contains 1146 genes.
CLR is used with default parameters. BNF: l stands for parents limit parameter, i - for number of
suboptimal parents.

Full dataset Gold standard genes only dataset
CLR BNF CLR BNF, l=1, i=100 BNF, l=2, i=300

Precision-Recall 0.051398 0.028769 0.069420 0.048650 0.060894
ROC curve 0.617187 0.606326 0.710807 0.733716 0.808610

n=1 1 1 1 1 1
n=2 1 1 1 1 1
n=5 0.5 0.714286 1 1 1

n=20 0.588235 0.8 0.740741 1 1
n=100 0.591716 0.164745 0.628931 0.373134 0.442478
n=500 0.0252 0.014771 0.054295 0.038285 0.053787

Scalability and optimization. Even though set-wise algorithm with only one level
of parallelization (between different parents sets) are proved to be faster and more
efficient on the single computational unit (e.g. one physical server) one might argue
that such algorithm is not scalable when using distributed computing. Nevertheless,
we successfully used BNFinder on 4 different clusters incorporated in Ukrainian
Grid. This task was achieved by introducing new parameter called ”subset”, which
allows user to specify the subset of variables for which BNFinder will compute the
parents sets. The variables in the subset are considered sequentially, i.e. set-wise
algorithm is used. Such approach allowed us to distribute genes subsets among all
the clusters, so we could use computational resources more efficiently. Moreover, new
parameter could be useful for those researches who are interested only in particular
variables, but not the whole network.

It is important to note, that using parents set limit might remove the problem
of highly heterogeneous variables in the input data, especially if one uses very low
limit. Consider taking benchmark data we used before with parents sets limit 2
and 6, which reduces the number of tasks for set-wise algorithm. Therefore time
spent on each random variable in case of parents set limit 2 should be almost equal,
making usage of hybrid algorithm more preferable. Figure 7 shows the difference
between two algorithms in accordance with different parents set limit. As limit
grows the complexity of finding parents sets grows in non-linear way, thus set-wise
algorithm predictably shows better results, so we can compare it with Fig. 4, where
limit are not used. Taking into account this important note we optimized BNFinder
to use hybrid algorithm, when limit is less or equal to 3, and set-wise algorithm
in the opposite case. We chose parents sets limit 3, cause in most cases using bigger
limit significantly increases computational complexity.

Conclusions
Here we presented new improved version of BNFinder algorithm for Bayesian net-
works reconstruction. Our method is highly parallel and gives the research com-
munity the ability to obtain the results much faster using the publicly available
grids and clusters. Along with the parallelization we showed that BNFinder imple-
mentation is scalable enough to run it on any kinds of distributed heterogeneous
systems (clusters, Grid). Such improvement allowed us to significantly extend the
application range of the tool, which was confirmed by reconstructing genome-scale
dataset from DREAM2 Challenge 5 competition. We additionally tested BNFinder
performance and accuracy on synthetic and real biological data, which showed that
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BNFinder is competitive with the best-performing inference methods. We provide
the new BNFinder implementation freely for all interested researchers under a GNU
GPL license.

Availability and requirements
Project name: BNFinder
Project home page: https://github.com/sysbio-vo/bnfinder
Supplemental material: https://github.com/sysbio-vo/bnfinder/releases/tag/v2.2
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 2.4 or higher. Python 3 is not supported
License: GNU GPL Library version 2
Any restrictions to use by non-academics: None
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Figures

# Learns optimal parents set of size <= limit

def learn_parents(gene, data, parents, limit):

    parents_set_size = 1

    while acceptable_score(graph_score + data_score) and

            (parents_set_size <= limit):

        # Compute scores for all possible parents sets of parents_set_size

        for genes_subset in subsets(parents, parents_set_size):

            data_score = score_function(select_data_subset(genes_subset), gene)

            graph_score = score_function(genes_subset, gene)

        parents_set_size += 1

# Pool function argument denotes the number of processes to create

pool = multiprocessing.Pool(cores)

# Applying learn_parents() function to all the genes

results = pool.map(learn_parents, [(gene, data, regulators, limit) 

    for gene in genes])

Figure 1 Variable-wise algorithm python pseudocode.

Additional Files
Additional file 1 — BNFinder source code
BNFinder is written on python, so you will need python 2.4 or higher in order to run it.
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# Learns optimal parents set of size <= limit

def learn_parents(gene, data, parents, limit):

    parents_set_size = 1

    # Pool function argument denotes the number of processes to create

    inner_pool = multiprocessing.Pool(cores)

    while acceptable_score(graph_score + data_score) and

            (parents_set_size <= limit):

        # Compute scores for all possible parents sets of parents_set_size

        # in parallel

        data_score = inner_pool.map(score_function, 

            [select_data_subset(data, genes_subset), gene]

            for genes_subset in subsets(parents, parents_set_size))

        graph_score = inner_pool.map(score_function, [genes_subset, gene]

            for genes_subset in subsets(parents, parents_set_size))

        parents_set_size += 1

# Applying learn_parents() function to all the genes

results = map(learn_parents, [(gene, data, regulators, limit) 

    for gene in genes])

Figure 2 Set-wise algorithm python pseudocode.

# Learns optimal parents set of size <= limit

def learn_parents(gene, data, parents, limit):

    parents_set_size = 1

    # Pool function argument denotes the number of processes to create

    inner_pool = multiprocessing.Pool(cores/genes)

    while acceptable_score(graph_score + data_score) and

            (parents_set_size <= limit):

        # Compute scores for all possible parents sets of parents_set_size

        # in parallel

        data_score = inner_pool.map(score_function, 

            [select_data_subset(data, genes_subset), gene]

            for genes_subset in subsets(parents, parents_set_size))

        graph_score = inner_pool.map(score_function, [genes_subset, gene]

            for genes_subset in subsets(parents, parents_set_size))

        parents_set_size += 1

pool = multiprocessing.Pool(cores)

# Applying learn_parents() function to all the genes in parallel

results = pool.map(learn_parents, [(gene, data, regulators, limit) 

    for gene in genes])

Figure 3 Hybrid algorithm python pseudocode.
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Figure 4 Synthetic data testing. Comparing performance, speedup and efficiency of algorithms
on synthetic benchmark data: 20 variables x 2000 observations.
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Figure 5 Biological data testing. Comparing performance, speedup and efficiency of algorithms
on protein phosphorylation data: 11 variables x 1023 observations [13].
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Figure 6 Density plots comparison. Quality control of DREAM2 Challenge 5 data before quantile
normalization (left) and after (right).
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Figure 7 Synthetic data testing with different parents sets limit. Comparing efficiency of
set-wise and hybrid algorithms with parents sets limit 2 and 6.
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