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Abstract 

Mutations virtually always have pleiotropic effects, yet most genome-wide association studies 

(GWAS) analyze effects one trait at a time. In order to investigate the performance of a 

multivariate approach to GWAS, we simulated scenarios where variation in a d-dimensional 

phenotype space was caused by a known subset of SNPs.  Multivariate analyses of variance were 

then carried out on k traits, where k could be less than, greater than or equal to d.  Our results 

show that power is maximized and false discovery rate (FDR) minimized when the number of 

traits analyzed, k, matches the true dimensionality of the phenotype being analyzed, d.  When 

true dimensionality is high, the power of a single univariate analysis can be an order of 

magnitude less than the k=d case, even when the single trait with the largest genetic variance is 

chosen for analysis. When traits are added to a study in order of their independent genetic 

variation, the gains in power from increasing k up to d are much larger than the loss in power 

when k exceeds d.   Simulations that explicitly model linkage disequilibrium (LD) indicate that 

when SNPs in disequilibrium are subjected to multivariate analysis, the magnitude of the 

apparent effect induced onto null SNPs by SNPs carrying a true effect weakens as k approaches 

d, such that the rank of P-values among a set of correlated SNPs becomes an increasingly 

reliable predictor of true positives. Multivariate GWAS outperform univariate ones under a wide 

range of conditions, and should become the standard in studies of the inheritance of complex 

phenotypes.   
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Introduction 

The vast majority of genetic association studies focus on one trait at a time.  Even when more 

than one trait has been measured, separate analyses are usually conducted for each trait.  For 

example, van der Harst [1] characterized a human population for six related red blood cell 

phenotypes by testing for association in each phenotype independently. Even studies of 

transcriptome abundances that sample thousands of RNAs [2] usually analyze them individually. 

In other cases, the dimension of multivariate data is first reduced by principal components 

analysis, and scores on the trait combinations that define a PC are then analyzed independently 

[e.g., 3].  There is increasing interest in inferring joint effects on more than one trait to 

characterize pleiotropy [4-6], although in many cases this has been accomplished by reanalysis 

of the results of univariate analyses [e.g., 7,8,9].  Such analyses are actually biased against 

discovering pleiotropy, as the associations must meet strict univariate criteria for significance 

before being considered for testing [6].   

A truly multivariate analysis, where a single data set is analyzed simultaneously for the 

relationship between m genetic markers (e.g., single nucleotide polymorphisms, SNPs) and k 

traits, offers several advantages over such reanalyses of univariate associations.  First, it is 

efficient in the number of tests, as each SNP is subjected to a single analysis, rather than k 

analyses.  Second, multivariate tests are  more powerful than sets of univariate tests as they 

locate those directions of phenotype space that maximize phenotypic differences among 

predictors, regardless of their orientation relative to the phenotypic measurements.  Third, 

multivariate analyses estimate the direction of effects in phenotype space.  This enables 

quantitative interpretation of the sources of covariation among the measured variables. It also 

provides a quantitative basis for validation of results in later studies.   
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While a small number of such truly multivariate genome-wide analyses have been 

published [e.g., 10,11], the potential advantages of such analyses have received relatively little 

attention.  Statisticians have adapted a variety of multivariate statistical approaches to 

multivariate association studies [6,12,13], but with few exceptions [e.g., 14,15], most have 

tended to focus on problematic aspects of large data sets, such as dealing with missing values, 

generalizing to non-normally distributed data, or including mixtures of continuous and 

categorical phenotypes, than on the performance of simple multivariate analyses. 

The opportunity for such multivariate analyses is certain to grow for several reasons. First 

of all, there is recognition that understanding the genotype-phenotype map is an inherently 

multivariate problem.  The totality of genetic effects on the phenotype as a whole is what shapes 

its evolutionary, medical and economic significance.  This has led to increasing emphasis on 

phenomics, high-throughput acquisition of multivariate phenotypic data to complement our 

ability to measure genomes [16].  Second, there are now many efforts underway to generate and 

phenotypically characterize replicable sets of genotypes in a variety of model organisms [e.g., 

17,18,19], greatly increasing the number of datasets where a truly multivariate analysis can be 

undertaken.  Complementary efforts in humans aim to increase the comprehensiveness of 

phenotyping efforts [e.g., 20,21] and to increase the sizes of cohorts studied [e.g., 22]. 

Our purpose in this contribution is to explore the statistical properties of multivariate 

genome-wide association mapping through simulation when the true dimensionality of genetic 

effects is not known.  To understand our approach, we need to define our use of the term 

dimensionality.  Dimensionality is the number of independent aspects of the phenotype that are 

affected by genetic variation in the suite of traits measured. Independence is defined 

geometrically as orthogonal directions in the space of all measured traits.  For example, imagine 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2015. ; https://doi.org/10.1101/016592doi: bioRxiv preprint 

https://doi.org/10.1101/016592
http://creativecommons.org/licenses/by/4.0/


that the measured traits are the length and width of some morphological structure.  Clearly if 

genetic variation in the population affects only length or only width, then the true dimension of 

variation (d) is one.  Critically, if all genetic changes affected length and width in the same way – 

say changing length twice the amount that width is changed – d remains one, even though two 

traits are affected by each mutation.  When different genetic variants affect length and width in 

different ways, then the true dimension of variation is at least d=2.   While the true 

dimensionality can be less than the number of traits measured, we have to measure at least d 

traits to test the hypothesis that the dimensionality of variation is at least d.  Critically, length and 

width can be correlated, yet measuring both adds information that allows that second orthogonal 

dimension of variation to be assessed. In general, each of the d dimensions will be defined by 

some combination of the characteristics measured.   Our definition of dimensionality generalizes 

more conventional usages such as “correlated traits,” as it emphasizes conditionally independent 

directions of genetic variation, over specific measurements (such as length and width), which an 

investigator chooses to measure. 

It is clear that multivariate analysis will be greatly superior when genetic variants can 

have any possible combination of effects on the phenotype  [14,15],  that is, when the 

dimensionality is as large as the number of measured phenotypes, and includes all possible 

direction in the space of measured phenotypes.  However, it is possible to measure more 

phenotypes than the true genetic dimensionality, and thus include phenotypic measurements that 

do not contribute independent information about genetic causation.   Consequently, we need to 

consider not just the benefits of measuring more traits when the true dimensionality is high, but 

also the costs of analyzing too many phenotypes when the true dimensionality is low.   We 

restrict our attention to the case of multivariate normal phenotype distributions that can be 
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analyzed by standard multivariate analyses of variance (MANOVA).  

We present results of two sets of simulations to address the properties of MANOVA of 

high dimensional data for association mapping.  Our first set of simulations examines the effect 

of trait dimensionality on statistical performance of single-locus tests for the ideal case where 

linkage (gametic) disequilibrium (LD) is absent.  This focuses attention on how multivariate 

analyses might be different from univariate ones.   Second, we explore the statistical 

consequences of LD by simulating phenotypic variation caused by one of a set of correlated 

SNPs.  Our findings display the widely reported statistical challenges posed by genome-wide 

analyses in general, but clearly demonstrate that increasing the number of phenotypes usually 

leads to an increase in statistical power.  

Simulation Methods 

The primary aim of these simulations is to create k-dimensional phenotypic data with known 

causal associations to a SNP data set.  We consider the simple case of a set of traits that follow a 

multivariate normal distribution, so that a standard multivariate analysis of variance is 

appropriate.  The parameters of our simulations were based on the properties of the Drosophila 

Genome Reference Panel [DGRP; 19], a set of inbred lines derived from a single outbred 

population of Drosophila melanogaster.  This population has been used for both published and 

ongoing association mapping efforts.  

Genotype information 

We used Freeze 1 genotype calls (ftp://ftp.hgsc.bcm.edu/DGRP/freeze1_July_2010/snp_calls/) 

for a subset of 164 DGRP lines as the basis for our simulations. Details of the SNP calling can be 

found in Mackay et al. (2012).   We used only calls of homozygous genotypes at sites with 
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exactly two alternative types.  All other calls were treated as missing data.  There were 2,489,796 

sequenced sites where the count of the minor allele was at least 3, and the number of non-

missing calls was at least 61. We further filtered these sites for local gametic (linkage) 

disequilibrium by calculating the correlation of genotypic identities between all sites within 20 

polymorphic sites along each chromosome.   For pairs of sites with r2 > 0.8, we dropped the site 

with the greater number of missing calls, and when these were the same, dropped the site with 

the lowest minor allele count.  In practice, every dropped site proved to be perfectly correlated 

(r2 = 1) with at least one included site.  After this site selection step, 1,541,611 sites remained.  

The median allele frequency was p=0.121, and the median number of lines scored at each SNP 

was 160. 

Simulating phenotypic effects in the absence of LD 

For the simulations constructed without LD, we generated m = 10,000 random arrays of allelic 

values whose minor allele counts (MAC) and number of lines with missing genotype data were 

sampled randomly from the Freeze 1 DGRP sites.  To ensure that LD was random, we randomly 

assigned SNP genotypes and missing values to lines. A subset of SNPs were randomly chosen to 

cause simulated effects, and thus contribute to the genetic variance among simulated genotypes.  

Following Storey and Tibishirani [23], we denote the fraction of loci that do not have an effect as 

π0, so that the total number of sites with a real effect is m1 = m (1- π0). 

The directions of SNP effects were based on the among-line variance-covariance matrix 

G, derived from the positions of 48 landmark and semi-landmark points on the wings of female 

specimens from 164 DGRP lines (N=3,635).  We defined our traits to be the first 59 non-null 

eigenvectors (the theoretical maximum number of independent traits in our data), resulting in a 

diagonal covariance matrix Ĝ .  Thus, our simulated multivariate traits have simple factor 
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structure, with each ordered dimension capturing a progressively smaller proportion of the total 

genetic variance. We assumed that a proportion u of the genetic effects captured in Ĝ  were not 

caused by any of the SNPs in our sample, while the remaining 1-u was.  For these simulations, 

we held u constant at 0.1.  We then partitioned Ĝ  into two orthogonal complementary 

subspaces, namely   ˆ1 u L G , which parameterizes the contribution due to known SNPs, and 

ˆu
res

L G , which models other genotypic effects.   

To generate SNP effects, we randomly sampled m1 multivariate normal effect vectors, Sj 

with mean vector 0 and covariance parameter matrix L.  We then normalized the Sj vectors and 

assigned each a magnitude gj, sampled from an exponential distribution with mean 1.   The total 

effects of all SNPs in line i is then 
ij j jj

a g S , where aij denotes the allele for genotype i at 

locus j, valued 0 if it corresponds to the major allele and 1 if it equals the minor allele.  For the 

purposes of computing genotype means, we imputed missing alleles a random value (0 or 1). To 

maintain comparability across simulations, we scaled the effect size parameter g so that the trace 

of the simulated covariance matrix matched the trace of L, using, 

 
 

 
tr

tr cov
j j

ij j jj i

g g
a g S

 
 
  

L
  [1] 

where tr and cov denote the trace and covariance matrix operators.  Constraining simulated 

covariance matrices to account for a constant variance holds the proportion of variation 

accounted for by all SNPs constant, regardless of the number of sites causing that variation.  This 

means that the proportion of variance explained by each SNP is larger in simulations with fewer 

causal SNPs.  We ran simulations based on high- and low-power scenarios, assuming, 

respectively, m1 =100 (π0 = 0.99) and m1 = 3000 (π0 = 0.70) causal SNPs. Figures S1 and S2 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2015. ; https://doi.org/10.1101/016592doi: bioRxiv preprint 

https://doi.org/10.1101/016592
http://creativecommons.org/licenses/by/4.0/


show, respectively, typical distributions of effect sizes and per SNP explained variance simulated 

under these power scenarios. 

 To generate unexplained genetic differences among lines, we randomly sampled a 

vector, Ui, from a multivariate normal distribution with mean vector 0 and covariance matrix Lres 

for each of the N inbred genotypes.  We drew samples of Ui  repeatedly until we obtained a set 

where the covariance matrix of these effects, U, satisfied tr(Lres)-tr(U) < ε. We set ε=10-6.  

The mean phenotype of the ith line, Yi, is the sum of all these genetic effects 

 i i ij j jj
Y U a g S   , i = 1,…,N; j = 1, …, m1 [2] 

Finally, we simulated samples of n = 40 individuals within genotypes by drawing random 

vectors from a multivariate normal distribution with mean iY  and covariance matrix E computed 

by subtracting G from the pooled within-line covariance matrix (P).  The structure of the L and 

E matrices parameterized from DGRP data have the relatively even eigenvalue distributions 

expected for morphometric data [16].  The maximum eigenvalues of L and E are 1.18 and 0.33, 

respectively, and the slopes from regressing logarithm of eigenvalues on d are βL = -0.07 and βE 

= -0.05. Each successive eigenvalue is on average 85% of the previous eigenvalue for the 

among-line variation, and 89% of the previous eigenvalue in the unexplained matrix. 

Consequently, genetic variation drops more sharply at higher dimensions than unexplained 

variation does, resulting in a steady decline of heritability (h2) with dimensionality (see Fig. S4). 

Simulating phenotypic effects with disequilibrium 

To include the effect of LD in simulations, we designed a sampling scheme that would allow us 

to isolate the biasing impact of correlations among SNPs on the probability that a null SNP is 

declared significant (i.e., false positives) by virtue of its correlation to a true SNP, whether the 
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latter is declared significant (i.e., true positive) or not (i.e., false negative). To generate correlated 

SNPs, we drew samples of SNP genotypes directly from the filtered Freeze 1 DGRP sequences.  

To ensure an even representation of allelic frequencies, we ranked all sites by their minor allele 

frequency (MAF), and then sampled focal SNPs from within each MAF decile at random.  We 

identified all SNPs genome-wide whose gametic correlation with each focal SNP satisfies r > 

0.5, and denote the resulting set as a “SNP family.” We retained for analysis 100 families with at 

least two members (the focal SNP and at least one other) from each MAF decile.  The mean and 

median number of SNPs/family was 169 and 14 respectively.  In cases where the focal SNP was 

correlated at r > 0.5 with more than 100 SNPs (31% of all focal SNPs), we retained a random 

sample of 100 correlated SNPs.   

To isolate the impact of LD in the presence of an effect, we carried out paired simulations 

where either the focal SNP in a family was assigned a phenotypic effect, or none of the SNPs in 

the family had phenotypic effects. In these simulations each effect explains 1% of the among-

line variance, with the remainder left unexplained (u = 0.99). Simulations were otherwise 

performed as described in the absence of LD.  This allowed us to precisely quantify the statistical 

impact of a genetic effect in a sample of correlated SNPs.  

Dimensionality 

True dimensionality, d, is the number of dimensions of the space in which genetic effects on the 

phenotype arise.  We wanted to explore the implications of the number of measurements 

analyzed, k, in relation to d.  Our diagonal covariance parameter matrix Ĝ  spans the entire 59-

dimensional space of possible genetic variation. To generate a d-dimensional parameter 

covariance matrix ˆ
dG , we simply set the bottom 59-d diagonal elements of Ĝ  to 0.  Thus, the d-
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dimensional subspace retained is always the subspace that contains the most phenotypic 

variance.  This procedure is conservative with respect to the usefulness of a multivariate 

approach, because the first dimension always captures more of the genetic variance than any 

other dimension, and our univariate analyses are of this one most informative trait.  Finally, to 

avoid confounding differences in dimensionality and total variance across simulations, the total 

variance captured in the first d dimensions is rescaled to match the trace of Ĝ , by multiplying 

each element of ˆ
dG  by    ˆ ˆtr tr dG G . Note that phenotypic data are in all cases measured in 

the original 59-dimensional space, where the bottom 59-d dimensions contain non-genetic 

residual variation, as described by E. 

Analysis 

We used MANOVA (for k > 1 simulations) and ANOVA (for k = 1 simulations) to test for 

genomic associations, with SNP genotype as the sole predictor variable and k (= 1, 2, 5, 10, 20, 

30, 40, 50, and 59) shape traits as response variables.  MANOVA P-values were calculated using 

a chi-square approximation of Wilk’s Lambda, whereas F-ratios were used for ANOVAs. We 

also ran an additional set of simulations for the case where d=59 based on k univariate tests. In 

these tests, a SNP was declared significant if any of the k  P-values were less than the critical 

value. Critical values for these simulations were Bonferroni-adjusted as α* = α/k. 

For each combination of the parameters k, d, and π0, we generated 100 replicate samples 

of m1 effect SNPs. To generate Type I error and FDR estimates, we drew a random sample of m-

m1 P-values for each replicate set of effect SNPs from a pool of ~106 P-values computed from 

null SNPs in preliminary simulations. This simplifying procedure is based on the well-known 

expectation that P-values from null SNPs follow a uniform distribution (e.g., Hung et al., 1997), 
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and it allowed us to increase replication of the simulation study while minimizing computer run 

times. We validated our results by running two fully sampled replicates where m = 10,000 SNPs 

were simulated at both power scenarios using all k and d combinations shown here. 

Simulations of SNP and phenotypic data were carried out in Matlab r2010b [24].  

Simulated data were analyzed using SAS/STAT PROC GLM software, Version 9.2 of the SAS 

System for Windows and Unix. A software package to carry out these simulations has been made 

publicly available at http://bio.fsu.edu [Note to editor: URL is temporary; software will be made 

available upon publication]. Code is available upon request from the corresponding author. 

Results 

Independent SNPs 

The simulations are constructed so that we know which predictor SNPs are assigned effects, 

which we term “effect SNPs,” and the “null SNPs” that do not have effects. Once our simulated 

data have been subjected to statistical testing, the m SNPs are categorized into four groups as 

shown in Table 1.  This allows us to understand the relationship between the parameters of the 

simulations and tests and the following measures: Power, or true positive rate 

(TPR=TP/[TP+FN]), is the proportion of effect SNPs that are declared significant. False positive 

rate (FPR=FP/[FP+TN]) is the proportion of null SNPs that are declared to be significant. False 

discovery rate (FDR=FP/[TP+FP]) is the proportion of SNPs judged significant that are null. If 

the assumptions of the statistical test are met, Type I error is equal to the critical P-value, α. Type 

II error, β, is determined by properties of the data and the choice of α. Type I and Type II error 

rates determine power, FPR and FDR.  

The independent SNP simulations are constructed to match the assumptions of our 
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statistical tests.  We tested for departures from the expected uniform distribution of P-values 

computed from null SNPs, and verified that the FPR matched expected Type I error rates in the 

absence of true effects.  In all cases, results conformed to the null expectation.  

Power and FDR 

The first set of simulations is directed at understanding the relationship between power, the 

number of dimensions that have genetic effects (d), and the number of orthogonal measurements 

analyzed (k).  In each replicate, we sampled m=10,000 independent SNPs, and assigned 

phenotypic effects to m1 = m(1-π0) of these as described in the Methods.  The m1 SNPs were 

assigned effects sufficient to explain 90% of the genetic variation observed in our experiments 

(i.e., u = 0.1).   We simulated data for nine different values of d; each of these sets was then 

analyzed at the same nine values of k.  Each (d, k) combination was replicated 100 times.  We 

show results for a high-power case where 100 of the SNPs cause the genetic variance in 

phenotype (π0=0.99), and a low-power case where 3,000 of the SNPs cause the genetic variance 

in phenotype (π0=0.70). 

Figures 1 and 2 show power and FDR for a variety of α values for the high and low 

power simulations. Power is, as expected, strongly influenced by 1-π0, the proportion of SNPs 

with phenotypic effects. Power is much higher overall when the genetic variance can be 

explained by a smaller number of SNPs of large effect.  Similarly, power can be increased by 

relaxing α, although this has the expected [25] and detrimental effect of making the probability 

that a SNP is judged significant essentially random, so that FDR approaches π0.   The underlying 

exponential distribution of effect sizes simulated is a challenging one for GWAS, as the mode of 

effect size will be close to 0.  When k and d are both high, power can be impressively high, given 

this distribution of effect sizes.  
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The key results relevant to whether a multivariate approach to GWAS is beneficial are in 

the pattern of power and FDR at different dimensionalities (d) and numbers of traits (k).  Despite 

the obvious wide differences that varying power and α have, the pattern of effects of d and k are 

similar across the range of parameter values.  These  patterns are shown most clearly in Figure 3, 

which gives a more detailed look at power and FDR for the high-power case at α = 10-4.  First, 

note that when k is low, power is always low and FDR is always high.  This is most evident in 

the univariate case, utilized in almost all previous association studies.  When d is low, 

performance is also poor, regardless of k.  Second, power increases and FDR decreases with k 

when k<d.  Power is maximized and FDR minimized when the true and tested dimensionalities 

match, that is when k=d.  Third, power decreases and FDR increases modestly when k>d, 

showing a diminishing rate of change as k increases.  At k<d, increasing k places the true effects 

against a smaller background of error variance in the direction of the effect.  When k>d, 

increasing k increases the error variance, while leaving the signal of the true effects unchanged.  

Clearly, when the underlying genetics is multivariate, a multivariate analysis is superior to a 

univariate analysis.   

The asymmetry around k=d is likely due to our choice of variance-ordered principal 

components scores as traits, so that trait i is always more variable than trait i+1. In other words, 

we always choose the most informative k traits to measure.   Thus patterns shown in Figs. 1-3 

should hold when trait sampling is based on preliminary data that identify those aspects of the 

phenotype that are most informative, rather than a random subset of possible traits.  If we had not 

chosen to treat principal component eigenvectors as traits, the variance explained by adding one 

more trait would have a far greater random component, although the expected gain (or loss) will 

be the same.  In some cases the k+1th random trait would explain more conditionally 
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independent variation than the average of the first k random traits, but in other cases, it will 

explain less. Our results reflect the average gain over adding all possible k+1th traits that define a 

particular phenotype space.    

When confronted with a multivariate data set with k variables, a common response is to 

perform k univariate analyses.  In Figure 4 we compare the SNP-wise power and FDR from such 

multiple univariate analyses to the corresponding k-variate multivariate analyses using the d=59, 

high-power simulations whose results are shown in Figures 1 and 3. To perform the multiple 

univariate analysis, we calculated the probability that a SNP was declared significant in any of 

the k univariate tests after applying a Bonferroni correction to α.   The power of the multiple 

univariate analysis relative to the corresponding multivariate analysis decreases as k increases.  

Similarly the relative FDR increases. On the other hand, the k univariate analyses are far more 

effective than a single univariate analysis at detecting SNP effects.  For example, examination of 

Fig. 3A shows that at α = 10-4 a 59-dimensional multivariate analysis is about 10 times more 

powerful than a single univariate analysis, whereas Fig. 4A (circles) shows that the same analysis 

is only 2.2 times as powerful as 59 univariate analyses.  Similarly, the lower P-value used in the 

multiple-univariate analyses is effective at controlling the FDR rate relative to single univariate 

tests. 

Additional simulations show that the uniformly low power for univariate analyses in our 

simulations can be partially rescued by increasing the number of lines included in the study. For 

example, for the high-power scenario described here (π0 = 0.99), using α = 10-4, a five-fold 

increase in sample size from N = 164 to 820 results in a five-fold increase in average power from 

2.3% to 10.5% for the univariate case (k = 1) when d = 59, whereas for the corresponding k = d = 

59 case, average power increases from 41.8% to 69.8%.  Power also increases modestly when 
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SNP effect sizes are more homogeneously distributed than they are under the exponential 

distribution, or when the number of causal SNPs is even smaller (results not shown). 

Simulations of correlated SNPs 

The above simulations were constructed to ensure that the SNP genotypes are independent, that 

is that there is no LD.   This is clearly unrealistic, as any genome-wide association study will 

include closely linked SNPs that may be in LD, as well as distant sites that happen to be 

correlated in the finite sample of genotypes scored. Consequently, we conducted an additional 

set of simulations focused on the effects of LD on power and FDR.  As described in Methods, we 

used a real data set, the Drosophila Genome Reference Panel [19], to provide an example of LD 

in a real population to structure our simulations.  From these data, we identified all SNPs 

correlated with a focal SNP, which we call a SNP family. We simulated effects for focal SNPs in 

1,000 SNP families, 100 families drawn from each MAF decile that had at least one correlated 

SNP.  The mean and median number of SNPs/family was 169 and 14, respectively. 

 Interpretation of results in the presence of LD is more complex than the ideal case, and 

depends on the purpose of the analysis.  If the goal is to confirm that some genetic variation 

affects the phenotype, then any significant SNPs in a family with a true positive SNP is helpful.  

We refer to such correlated SNPs as family-positives.  We would ideally like to identify 

individual SNPs that cause phenotypic variation (QTNs), so that, for example, the nature of 

regions with effects can be studied.  In this case, we seek the true-positive causal SNP. 

Figure 5 shows the relevant results for the case of d=59, k=59.  Regardless of the P-value 

cutoff, the number of family-positive SNPs per true positive SNP (upward pointing triangles) 

remains on average above 1.  Note that even when the focal SNP with the simulated effect is not 

significant (downward pointing triangles in Fig. 4), there are frequently (but not always) 
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correlated family-positive SNPs. This suggests that in the presence of even the modest 

disequilibrium present in the DGRP, the SNP-wise false discovery rate will be high.   Note that 

the SNP-wise false positive rate in the absence of a simulated effect was always higher than the 

nominal value due to the large number of SNPs in the average family.  For the effect size 

simulated, power remains good over the entire range of P-values.  

We investigated how the family-positive rate changes with the magnitude of LD.    Figure 

6a shows the probability that a null SNP is significant when the focal SNP is correctly judged 

significant, as a function of gametic correlation (r) with the focal SNP.  The family-positive rate 

per SNP declines rapidly as r decreases.  On the other hand, Fig. 6b shows that this decrease in 

probability of a family-positive per SNP is countered by the much larger number of SNPs with 

weaker correlations (Fig. 6c).  When less conservative values for α are used, the number of 

family-positives correlated with each focal SNP continues to rise as lower r bins are considered.  

Even when conservative P-values are adopted, the advantage suggested in Fig. 6a is much 

reduced.  Note that sites perfectly correlated with the focal SNP can still yield different test 

statistics than the focal SNP due to missing genotypic assignments.    

The above approaches for maximizing the true positive rate are based solely on 

significance testing.  As an alternative, we explored using the rank of P-values within a SNP LD 

family to maximize true positives.  For full-rank analyses, the focal (i.e., effect) SNP had the 

lowest P-value in 77% of the families; in 86% the focal SNP had one of the two lowest P-values.   

Figure 7a shows the proportion of all families for which the focal SNP in fact has the best P-

value among all members of its family as a function of k.   The probability that this fortunate 

situation occurs increases markedly with k to nearly 80% at the full dimensionality simulated.  

The situation is even more favorable if just the families with significant SNPs are included in the 
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analysis. 

Analysis of the DGRP data shows that a much larger number of SNPs are highly 

correlated with rare minor alleles compared with common minor alleles. We therefore expected 

that the sites with low allele frequencies would be much less likely to have the focal effect SNP 

with the lowest P-value.  Figure 7b shows that this is indeed the case.  For these parameter 

values, causal SNPs are very likely to be correctly identified with high-dimensional analyses in 

families with allele frequencies over 0.07.    

More generally, the results in Fig. 7 are driven by greater dissimilarity between the 

distributions of P-values for correlated effect and null SNPs at increasing k (Fig. 7c).  Both 

distributions become increasingly biased toward lower P-values as k approaches d, but P-values 

of effect SNPs are improved more than those of null SNPs.  This discrepancy is likely a general 

outcome of increasing statistical power. 

These results indicate that when power, effect size and minor allele frequency are large 

enough, it can be effective to test all SNPs for statistical significance, and then compare those 

results within LD families.  For cases where there is likely to be lower power than we have 

simulated, the probability that the most extreme P-value correspond to effect SNPs will certainly 

be lower than in our simulations.  However, retention of a sample of the SNPs with the best P-

values within their families would remain an effective strategy for winnowing sites to validate.  

Discussion  

Our simulation results have shown several advantages of multivariate analyses for association 

studies that are likely to be general. Power generally rises and false discovery rate falls with the 

number of phenotypes that are measured. In addition, the ability to discriminate between true 
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positives and positives caused by linkage disequilibrium with a causal SNP also increases with 

the number of traits measured.  We also show that association analyses that explicitly take into 

account the SNPs that are highly correlated with significant SNPs will be superior to those that 

do not.  

Despite the fact that we based our simulations on the allele frequency and linkage 

disequilibrium (LD) distributions in a specific data set, the Drosophila Genome Reference Panel 

(Mackay et al. 2012), our results address general features of multivariate analyses.  The 

distribution of allele frequencies in the DGRP is a typical U-shaped distribution.  Mackay et al. 

(2012) showed that the influence of LD in the DGRP was less than in other metazoan 

populations, but substantial LD is found even in this population, as our unpublished analyses 

show.  By focusing our LD simulations on SNPs that are in LD with other SNPs, we capture the 

effects of LD with respect to a focal SNP, which will be similar in any population.     

Our first major result is that power in GWAS increases dramatically with the number of 

measured traits (k), up until the number of traits measured captures the true dimensionality of the 

phenotype, k=d.  Similarly, false discovery rate falls under the same assumptions.  These 

qualitative results hold over a wide range of power, and choice of significance thresholds, as 

shown in Figs. 1-3.  The gains can be very dramatic: for example, in the case of maximum true 

dimensionality in Fig. 3, power increases by more than 10-fold when the number of traits 

increases from one to the maximum number of traits, while the false discovery rate falls by 3-

fold. The likely cause of this is that the directions of simulated effects are most distinct in the 

space that they actually reside in.  Effects that are in very different directions in a high-

dimensional space will often have very similar effects in a low-dimensional subspace.  On the 

other hand, increasing the number of measured traits k above true dimensionality d, simply adds 
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error due to non-genetic effects without adding new information. Consequently, when the 

number of measured traits exceeds true dimensionality, power falls and the false discovery rate 

increases.  However, the rate of gain for measuring an additional trait is greater below the correct 

dimensionality than the rate of loss above the correct dimensionality.  For example, for the 

parameters in Fig. 3, if the true dimensionality is 20, increasing the measured traits from 1 to 20 

increases power by a factor of 8, while measuring an extra 39 traits, to k=59, decreases power by 

only one-fourth.  

Another aspect of our results that requires some comment is the correlation between 

power and true dimensionality (d) when the number of traits analyzed (k) is also allowed to 

increase.  This is equivalent to moving up the diagonal of Figures 1 and 2.   Our simulation 

algorithm holds the total amount of genetic variation across all d dimensions constant, so that in 

the d=1 case all genetic variation is concentrated along just one vector.  The gain in power with d 

is best explained by the spreading of effect vectors into higher dimensional spaces, so that their 

directions become increasingly distinct.  At d=1, all the genetic variation that is not explained by 

the focal SNP is part of the error variation against which that effect must be detected.  In higher 

dimensions, only SNPs whose effects are in similar directions to that of the focal SNP contribute 

to the background unexplained variation.  For a particular experimental population, d is not 

under the control of the experimenter, who can only choose k. 

Although our results may be new to some within the community doing GWAS, they are 

largely expected based on straightforward geometric and statistical arguments.  Multivariate 

methods take advantage of the entire space of possible effects for testing.  If we measure k traits, 

we could do k univariate tests, which will be successful at detecting effects that are large in the 

direction of each measured trait.  However, if a genetic effect of the same relative magnitude is 
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spread over a large proportion of the measured traits, it may be undetectable to univariate 

analyses, but a multivariate analysis will be just as likely to detect it as if the entire effect were 

on a single trait.  When we do not measure all the trait effects that a SNP produces we are 

measuring projections of true genetic effects, and these can be very misleading.  

It is important to realize that we have examined the average power over all the SNPs that 

explain our simulated genetic effects.  O’Reilly et al. (2012) performed a complementary set of 

simulations to ours, in which they considered the power to detect individual SNP effects against 

varying backgrounds of more or less correlated residual variation.  As in our simulations, they 

found that the power of a multivariate approach was generally much greater than univariate 

analyses, but that there were particular orientations of SNP effects relative to the residual 

variation where univariate analyses performed slightly better than a multivariate one.  Such cases 

undoubtedly occur in our simulations for individual SNPs whose orientations are, for example, 

exactly in the same direction as a measured trait (or an eigenvector).  However, we sampled SNP 

effects randomly from throughout the multivariate space simulated, and our results reflect the 

average power to detect the entire set of SNPs, not individual cases.   

We have also shown that increasing the number of dimensions analyzed can greatly aid in 

distinguishing true positives and SNPs that are significant because of linkage (gametic-phase) 

disequilibrium (LD,  Fig. 7) with a causal SNP.  Presumably the mechanism that produces this 

effect is similar to those that increase power and reduce FDR in the absence of LD– more 

information is added with every trait measured.  SNPs with no real effects may happen to 

diverge from the null in any one dimension, but are increasingly unlikely to do so when averaged 

over all dimensions.  

The asymmetry in the disadvantages of measuring too many vs. too few traits depends on 
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some important but biologically and operationally justifiable assumptions about the nature of the 

traits measured.  We have defined traits based on a principal components rotation of the genetic 

variance-covariance matrix.  This defines our trait 1 as the combination of the measured 

phenotypes with the most genetic variation, trait 2 as the combination with the second most 

variation, etc.  This mimics experiments in which the full set of traits is measured before 

analysis, so that intelligent decisions can be made about which combinations of traits are most 

informative. This is a common approach to the analysis of multivariate data sets [e.g., 3], that 

ensures both that no two variables explain the same variance (i.e., variables are conditionally 

independent), and that variables, when considered jointly, account for the entire variance in the 

data.  The use of a principal components definition of traits explains the asymmetry noted above.  

In making the transition from measuring k traits vs. k+1 informative traits, we have always 

chosen to add the most informative trait.  Similarly, when going beyond the true dimensionality, 

the d+1th contributes less variation than the dth trait, so less misleading error variance is 

contributed with each extra trait.   

This situation may be rather different when considering whether to measure and analyze 

an additional trait whose variational properties are not known.  Here, one can imagine different 

outcomes.  For morphological traits, the majority of variation is frequently in overall size, so 

measuring any one part of the body is likely to capture a great deal of size variation. In this case 

the first trait measured is likely to capture more variation than the second, just as with the 

principal components approach.  On the other hand, if mixtures of different types of traits are 

studied, for example life history, physiological and behavioral traits, it is very possible that the 

first trait measured will be less informative than a subsequent trait.  Given these considerations, 

we recommend that wherever possible a preliminary assessment of the true genetic 
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dimensionality of the suite of traits under study be undertaken prior to an association study.  

Several approaches have been utilized to estimate trait dimensionality [26-30], but their 

implementation in genomic analysis must become widespread if we are to assess the true 

statistical power of GWAS. Ultimately, the decision whether to include an additional trait in an 

analysis depends on the amount of new genetic variation brought by the trait, which can be 

estimated as its heritability after partialling out the effect of all other measured traits. PCA and 

other eigendecomposition methods are computationally inexpensive procedures to generate sets 

of conditionally independent traits.  Multiple regression of new on previously measured traits can 

help determine whether additional phenotypes significantly expand the dimensionality of a data 

set. 

A major challenge to all real genome-wide association studies is the presence of linkage 

disequilibrium, LD.  When the genotypes at different SNPs are correlated, a significant 

association at one will predict that a significant association will be found for the other.  When we 

simulated such cases, we found that, as expected, SNPs with real effects tended to have lower P-

values than those without effects.  The key result however, is that the tendency of P-values to 

distinguish true from LD-correlated effects was greatly enhanced by increasing the 

dimensionality of the analysis.  This may be a general side-effect of the increasing statistical 

power [31,32], which suggests an avenue to seek high-power conditions that ensure robustness 

of GWAS to the violations of the assumption of independence among tested SNPs. 

We caution that the actual power and false discovery rates we find in our simulations are 

dependent on a large number of assumptions built into our simulations. Heritability of the traits 

considered here (Fig. S4), which determines the upper boundaries of wing shape dimensionality, 

determines the precise extent whereby matching sampling (k) and true (d) dimension translates 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2015. ; https://doi.org/10.1101/016592doi: bioRxiv preprint 

https://doi.org/10.1101/016592
http://creativecommons.org/licenses/by/4.0/


into a power increase. Highly integrated phenotypes where a few dimensions explain most of the 

genetic variance will see a diminished advantage in adding new traits relative to our study, 

whereas complex phenotypes comprising traits from multiple systems could see even stronger 

gains in power at higher dimensions. No general conclusions can be drawn from the numerical 

values in our results.  What we believe can be generalized from our results are these overall 

trends: given the high dimensionality of most, if not all, phenotypes, measuring and analyzing 

more traits is better than measuring fewer. 

Conclusions 

Despite the statistical advantages to multivariate analyses that we have demonstrated, the 

decision to embark on such a study depends on the nature of the question under study, and the 

costs of doing so.  In many cases, the principal drawback of doing a multivariate association 

study is the cost involved in measuring more traits, which is compounded by the costs of dealing 

with additional factors such as population structure [e.g., 33] and cross-tissue variance [34,35] in 

a multivariate context.  Multivariate studies will be greatly facilitated by the development of 

high-throughput phenomic techniques [16,36]. 

Traditional power analysis focuses on magnitudes of effects and sample sizes, but our 

results strongly suggest that the number of traits analyzed in relation to the true dimensionality 

also greatly affects the expected power of a GWAS.  We recommend that explicit analyses of 

phenotypic dimensionality be undertaken as part of the designing a GWAS, so that an informed 

balance between the number of traits and the number of genotypes to assess can be achieved. 

This is likely to be especially critical in genomic studies like eQTL analyses of transcript 

abundances [37,38], where the cost of generating and sequencing additional genotypes far 
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exceeds those of acquiring nearly complete phenotypic information. 

It is clear that the true dimensionality of complex phenotypes is generally larger than one 

[16].  Consequently, we recommend that multivariate approaches be adopted much more widely.  

This will result in gains in power and decreases in false discovery rates, particularly in the 

presence of linkage disequilibrium. We can also anticipate that when the directions of effects are 

included in the interpretation of SNP effects, multivariate approaches will increase the 

interpretability of the mechanisms of genetic effects, and the complexity of the pathways by 

which they do so.  All these factors suggest that identification of causal variation will become 

easier as truly phenomic approaches to GWAS become more widespread.  
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Figure captions 

Figure 1. Power (a) and FDR (b) simulated as a function of dimensionality (d) and number 

of tested dimensions (k) for the high-power scenario. 

Figure 2. Power (a) and FDR (b) simulated as a function of dimensionality (d) and number 

of tested dimensions (k) for the low-power scenario. 

Figure 3. Effect of number of tested traits (k) on (a) power and (b) FDR for various 

dimensionalities (α=10-4). Data correspond to the high-power simulations (π0=0.99) shown in 

Figure 1. 

Figure 4. Power (a) and FDR (b) of k univariate tests relative to a single k-dimensional 

multivariate test. 
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Figure 5.  Base-10 logs of mean counts of family-positives per family of correlated (r > 0.5) 

SNPs as a function of the significance cutoff α.  This shows the bias of P-value distributions 

for SNPs in LD with a SNP that carries an effect.  We contrast cases where the effect SNP 

reaches significance (true positive; upward-pointing triangles) with those where the effect SNP is 

non-significant (false negative, downward pointing triangles).  Also shown is the case where no 

SNP in the family has an effect (circles: all significant SNPs are false positives).  Open squares 

denote power to detect true effects (i.e., true positive rate).  No family positives in true-effect 

families were observed at P<10-6. 

Figure 6. Family positives as a function of gametic correlation. (a)  Probability that a null 

SNP correlated with a true positive SNP tests positive for sites binned by gametic correlation (r), 

for five different choices for α. The rightmost bin consists solely of SNPs perfectly correlated 

with the focal SNP.  (b) The mean number of family positives in each r bin in families with a 

true positive.  (c) The percentage of SNPs in each r bin. Probabilities and ratios plotted in log10 

scale. 

Figure 7. Percentage of families where the focal SNP has the best P-value, as a function of 

tested dimension. (a) Results for all SNPs (filled circles) and just those families where at least 

one SNP is significant at P<10-5 (open circles).  (b) Results for 5 representative deciles of focal 

allele frequencies (p). The above results clearly show that relying only on statistical testing in the 

presence of LD will produce high family-discovery rates. (c) Distribution of logs of inverse 

significant P-values (α=10-5) for effect and null SNPs as a function of the number of measured 

traits, pooled over families. Boxes: IQR and median; whiskers: non-outlier range. 
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Tables 

Table 1. Number of test outcomes categorized according to the presence of a true effect and 

the outcome of the test.  

 Test result 

SNP Significant Non-significant Total 

Effect TP= m(1-π0)(1- β) FN= m(1-π0) β TP+FN= m(1-π0) 

Null FP= m π0 α TN= m π0 (1-α) FP+TN= m π0 

TN: true negative count, FP: false positives, FN: false negatives, TN: true negatives, π0: 

proportion of tests for which the null hypothesis of absence of effect is true, α and β: Type I and 

II error, respectively, m: total count of tested hypotheses. 
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