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Abstract  
Background 
Epistatic interactions among genomic loci are expected to explain a large fraction of 

the heritability of complex diseases and phenotypic traits of living organisms. 

Although epistasis detection methods are continually being developed, the current 

state of the art is exhaustive search methods, which become infeasible when the 

number of analyzed loci is large. 

Results 
We develop a novel latent interaction-based selection method for polymorphic loci as 

the first stage of a two-stage epistasis detection approach. Given a continuous 

phenotype and a single-nucleotide polymorphism (SNP), we rank the SNPs according 

to their interaction potential. When tested on simulated datasets and compared to 

standard marginal association and exhaustive search methods, our procedure 

significantly outperforms main-effect heuristics, especially in the presence of linkage 

disequilibrium (LD), which is explicitly accounted for in our model. Applied to real 

human genotype data, we prioritized several SNP pairs as candidates for epistatic 

interactions that influence human working memory performance, some of which are 

known to be connected to this phenotype. 

Conclusions 
The proposed method improves two-stage epistasis detection. Its linear runtime and 

increased statistical power contribute to reducing the computational complexity and to 

addressing some of the statistical challenges associated with the genome-wide search 

for epistatic loci. 
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Background  
With the advent of high-throughput genotyping technologies, huge bodies of 

genotype data have become available, holding the promise of deciphering the 

complexity of heritable traits and diseases. Genome-wide association studies (GWAS) 

have had remarkable success in unravelling the genetics of several Mendelian traits 

[1]. However, most phenotypes, including many diseases, have complex genetic 

causes, and it remains a challenge to explain their heritability [2]. Epistasis is thought 

to be the main genetic mechanism to connect the genotypic variability to phenotypes, 

as it encodes the molecular interactions between genes or gene products. With the 

growing size of current GWASs detecting genome-wide epistasis is a challenging 

task, posing computational and statistical problems alike. 

The need for feasible epistasis detection tools has led in recent years to several 

methods being proposed for this task [3, 4]. The proposed epistasis search strategies 

generally fall into one of the following three categories: exhaustive, stochastic, or 

heuristic. Each type of method has its own advantages and disadvantages. Exhaustive 

methods are typically expected to perform most accurately, although correction for 

multiple testing often limits the statistical power. Indeed, comparison studies confirm 

their good performance, but also reveal a major drawback in runtime. For two-locus 

searches the exhaustive runtime is quadratic in the number of loci [5].  TEAM [6] and 

BOOST [7], two exhaustive search methods, have been found to exhibit the best 

epistasis detection power among five approaches compared, the remaining three being 

heuristic in nature [8]. 

The performance of stochastic methods is difficult to assess. They tend to find 

interesting results in GWAS data; yet, they often depend on main effects, as is the 

case for Random Forests [9]. Empirical comparison studies [10] have shown 
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stochastic methods, such as Random Forests, to be outperformed by exhaustive search 

methods like Multifactor Dimensionality Reduction [11]. In addition, heuristic 

methods, such as, for example, Logistic Regression [12], often perform similarly or 

better than stochastic methods [10]. Similar conclusions have been drawn when 

comparing the stochastic EpiMode method [13] to BOOST and to the heuristic 

SNPRuler method [14], among others [3]. 

Epistasis detection can be regarded as a feature selection task, where the final 

goal is to extract complex multivariate features, namely interacting loci, from a model 

relating genotype to phenotype. In practice, to reduce the burden of high 

dimensionality, marginally associated or additive SNPs are often pre-selected in a first 

step. The heuristic methods using such greedy strategies, including SNPHarvester 

[15] or Screen and Clean [16], will inevitably discard those interacting SNPs that 

display weak main effects or depart from the additive model. 

In the present study, we address the problem of bi-locus epistasis detection as 

a feature selection process. We introduce a novel method called Latent Interaction 

Modelling for Epistasis Detection (LIMEpi). While heuristic in nature, our approach 

departs from the additive or main effect-based (marginal) feature selection, 

accounting for potential nonlinear interactions. The method is formulated in the 

framework of structural equation modelling (SEM) [17, 18] and, in particular, 

moment structure analysis [19], using interactions with latent variables [20]. LIMEpi 

involves a latent variable regression for genotype-phenotype association and we 

derive analytical solutions for its parameter estimates. This achievement allows for 

ranking the SNPs in computation time linear in the number of SNPs, the same time 

complexity as for marginal association testing. With the analytical results at hand, we 
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perform power analyses and assess the effect of the model parameters on the 

performance of the method. 

We compare LIMEpi to the generic heuristic-marginal and exhaustive 

approaches, as reference points for the above described method classes, and present in 

detail the advantages and disadvantages across the parameter space. We find that the 

major advantage of our method resides in identifying epistatic SNPs with small or no 

main effects. As our analysis reveals, this situation can arise due to negative LD 

between the two causative SNPs. We investigate a continuous human working 

memory phenotype, as a case study, and use SNP array data to detect epistatic 

associations. LIMEpi, followed by an exhaustive search with the resulting candidate 

SNPs, prioritizes interactions between genes involved in the G-protein responses to 

neurotransmitters (PDE1A), neurodevelopment (RBFOX1), synaptosome (SNAP-25) 

and cell adhesion (NRXN1), among others, several with demonstrated function in 

working memory and related pathological conditions, such as schizophrenia. 

Results  
Statistical model 

Although it is possible to accommodate more complicated epistasis models, 

we have chosen a simple instance of statistical epistasis [21] that allows for an 

analytical treatment. We consider the following relationship between the phenotype, 

y, an observed polymorphic locus, x, and a latent random variable, z, which we think 

of as an unknown SNP: 

 

y = β x z + ε        (1) 

where β is the interaction coefficient and ε is an additive random perturbation of the 

phenotype. The model in Equation (1) is equivalent to the multiplicative model for 

case-control studies [22], and the assumed causal associations involved are 
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summarized in the path diagram in Figure 1. LIMEpi estimates the parameter β (see 

Methods), which reflects the strength of the potential genetic interaction and tests 

whether the interaction is statistically significant. SNPs selected as capable of 

significant interactions are tested again in a second stage, this time against all 

genotyped SNPs, to identify their partners. 

Robustness to phenotypic noise 
One factor that obstructs the detection of phenotype-associated SNPs or 

epistatic pairs of SNPs is the random perturbation on the phenotype. This noise can 

have measurement or environmental sources, such as other genetic factors or 

environmental conditions. In our model, all these sources are lumped into the random 

variable ε, which is assumed to be independent of both predictor SNPs, x and z. To 

assess the robustness to noise of LIMEpi compared to marginal detection and 

exhaustive search, we used the parametric t-statistic obtained from the analytical 

treatment of the three approaches as described in the Methods section, given the 

model in Equation (1). We express the t-statistic as a function of the exogenous noise, 

and compare it to the detection thresholds for the significance levels (nominal α = 

0.05) Bonferroni corrected for 3,390 SNPs tested and for exhaustive pair-wise search, 

respectively (Figure 2A). The parameters we used for the analytical expression of the 

t-statistic were the following: the minor allele frequencies (MAFs) of the two 

causative SNPs were 0.2  and the LD between them was zero. The noise level is 

reported on the genetically meaningful scale of heritability in the broad sense [23], 

denoted H2, and computed as the variance of the interaction term divided by the 

variance of the phenotype. At a heritability of H2 = 0.02, the exhaustive approach 

performs above the significance threshold (Figure 2A). While both LIMEpi and the 

marginal association testing are below the significance threshold, LIMEpi has higher 
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statistical power (Figure 2A). As the heritability increases to about 0.06, all three 

methods are able to detect the interacting SNPs. 

We have controlled the family-wise error rate using Bonferroni correction in 

the analytical power analysis above; however, the actual SNP ranking performance 

may differ on actual data due to the overall LD structure and thus dependence of the 

statistical tests. To assess this performance, we analyzed the SNP rankings produced 

by the three methods on 100 simulated datasets. The phenotype was simulated using 

Equation (1), where the two SNPs were chosen from the datasets to closely match the 

above parametric settings (MAFs = 0.208 and LD = 0.0007). Gaussian noise was used 

to modulate the phenotype heritability. The AUC distributions from our ROC analysis 

confirm the expected best ranking performance of the exhaustive search (Figure 2B). 

When comparing LIMEpi to the marginal test, however, the latter shows higher 

ranking performance at both H2 = 0.02 and H2 = 0.04. To reconcile these seemingly 

contradicting results of our analysis, we also report the performance after running the 

second step of the epistasis detection (see Methods) using the candidate SNPs found 

significant in the first stage (nominal α = 0.05) and identifying their interaction 

partners in the dataset. The ranking of the SNPs found to actually interact with other 

SNPs (Figure 2C) in the second stage of testing confirms the predictions of the power 

analysis (Figure 2A). Here, LIMEpi has more statistical power. The main effect 

testing is unable to detect any SNPs at H2 = 0.02, while at H2 = 0.04 it fails in more 

than half of the 100 experiments (Figure 2C). LIMEpi, on the other hand, did select 

the epistatic SNPs in the first stage; therefore, the second stage ranking is fairly good. 

Statistical power depends on the MAFs of the interacting SNPs 
The variance of the interaction term in Equation (1) depends on the MAFs of 

the two interacting SNPs and so does, in turn, the heritability of the phenotype. We 

 - 7 - 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 17, 2015. ; https://doi.org/10.1101/016576doi: bioRxiv preprint 

https://doi.org/10.1101/016576


therefore expect a strong influence of the MAFs on the performance of epistasis 

detection.  

We investigated the epistatic SNP detection power of LIMEpi versus the 

exhaustive and marginal approaches as a function of the MAFs (Figure 3A). The 

analysis was performed considering a model with two independent causative SNPs 

(LD = 0) with equal MAFs. The phenotype noise was set to the magnitude that 

yielded a heritability of 0.02 at MAFs of 0.2, as in the previous subsection. The 

statistical power of each of the three methods under comparison increases as the 

MAFs of the epistatic SNPs to be detected increase. LIMEpi has higher statistical 

power than the marginal detection over the entire range of MAFs, although at MAFs 

of 0.2 both methods are below the detection threshold (Figure 3A). For MAFs above 

0.35, all three methods can detect interacting SNPs at the required significance level. 

Next, we analyzed the ranking performance of the three methods with respect to the 

MAFs on the 100 simulated datasets. To simulate the phenotypes we reused the two 

SNPs selected in the previous subsection (MAFs = 0.208 and LD = 0.0007) and then 

selected from the datasets two further SNPs with average MAFs of 0.5 and LD = 

0.001. With MAFs of 0.5 the heritability of the phenotype increased to H2 = 0.1 at the 

exogenous noise level considered in the power analysis above. At this high level of 

heritability all three methods yield a perfect ranking of the interacting SNPs in the 

first stage of testing (Figure 3B). At MAFs of 0.2 however, we have the scenario of 

low heritability (H2 = 0.02), where the marginal test shows higher ranking 

performance in the first stage (Figure 3B). We performed again the second stage of 

epistasis detection using the SNPs called in the first stage (nominal α = 0.05) by the 

three methods. At a MAF of 0.2 the AUC distributions obtained with LIMEpi show 

significantly improved ranking performance over the main effect heuristic, which 
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performs randomly at this MAF (Figure 3C). At a MAF of 0.5 all three methods rank 

the interacting SNPs accurately, as expected from the power analysis and the first 

stage of the procedure (Figure 3C). 

Strong negative LD implies pure epistasis 
The impact of the LD between the causative SNPs on the statistical power to 

detect epistasis has long been recognized [22]. Here we analyze the effect of the entire 

range of LD on the performance of LIMEpi in comparison to the generic exhaustive 

and main effect methods. It is a strength of our modelling approach that it 

parametrically accounts for LD, even though we model and test only one genotyped 

SNP at a time. 

We first investigated the expected effect of LD on the statistical power. The 

analysis was performed for a MAF of 0.5 to allow for the maximum range of LD 

(Figure 4A). The noise was kept at the same value as in the previous subsection, 

which yielded a heritability of H2 = 0.1 at LD = 0. Notably, the statistical power of 

LIMEpi is the same as that of the exhaustive search, while the marginal approach 

substantially drops in performance as LD approaches its lower bound (Figure 4A). To 

test whether the ranking performance is also consistent with this prediction, we 

applied LIMEpi to the simulated data, generating the phenotypes as follows. We 

searched the simulated datasets for SNPs with MAFs of approximately 0.5 and among 

those we selected the two SNPs with the largest negative correlation. The chosen pair 

had an LD of approximately −0.19. For the two selected SNPs, we simulated the 

phenotype using Equation (1). To assess the three methods’ performance for a 

different LD value, we reused the SNPs selected in the previous subsection (MAFs = 

0.5 and LD = 0.001). We compared the AUC distributions for the three methods at the 

two levels of LD and observed excellent performance of LIMEpi both in terms of the 
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true positive and false positive rate (Figure 4B). In contrast, the marginal detection 

method cannot cope with negative LD, since its underlying model does not account 

for LD in general. In practice however, zero or positive LD will allow marginal 

detection of interacting loci, as expected (Figure 4A) and observed on simulated data 

at LD = 0 (Figure 4B). The same conclusion can be drawn from the performance of 

the second stage of testing, where features selected in the first stage (nominal α = 

0.05) are ranked in all possible pairs within the dataset (Figure 4C). Here, the main 

effect heuristic performs no better than random SNP selection. The lack of main 

effects due to negative LD strongly connects LD to pure epistasis, which cannot be 

detected through plain marginal nor additive effect detection. 

Runtime analysis 
LIMEpi is based on a latent variable regression, which we solved analytically. 

For this reason, it has a linear time complexity in the number of loci, just like the 

marginal association testing procedure, which is performed here by linear regression 

of the phenotype on individual SNPs (see Methods). A major concern however, may 

be the computation time required for the second stage of testing. The second stage 

procedure chosen here exhausts all pairs-wise combinations between the SNPs from 

the selected set and all other SNPs. The second stage will therefore depend on the size 

of the feature set selected in the first stage. We performed an empirical analysis of the 

time complexity by investigating the number of SNPs selected by LIMEpi under 

various conditions. 

First, we inspected how the overall LD in the datasets will influence the 

number of interaction candidates, since due to correlation we expect an increase of 

false positives. We used two samples of size 100 datasets each from the population of 

simulated genotype data taken at generations 500 and 750, respectively (see 
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Methods). In generation 500, we observed a larger overall LD (average r2=0.034 

compared to average r2=0.017 at generation 750) because the population size is much 

smaller at this time point. Since the exogenous noise, the MAFs of and the LD 

between the causal SNPs are parameters that influence the performance of LIMEpi, 

we simulated the several phenotypes to reflect the changes in these parameters. A 

two-fold increase of the overall LD  produced an increase of the average number of 

selected SNPs by approximately two-fold in the worst-case scenario (MAFs = 0.5 and 

LD = 0.001) (Figure 5A). 

Next, we investigated how the time complexity in the second stage scales with 

the dimensionality of the genotype dataset. For this purpose, we used a second whole-

genome simulation of 500,000 loci (261,858 loci after quality control). We compared 

our feature selection method on ten datasets sampled from this population at 

generation 750 to the results obtained on the smaller scale data from the previous 

simulation at the same generation (3,395 loci after quality control). A 77-fold increase 

in dimensionality produced an average seven-fold increase of the second-stage 

computational complexity in the worst-case scenario (MAFs = 0.5 and LD = 0.001) 

(Figure 5B). 

Epistatic SNP candidate pairs involved in human working memory 
Working memory, i.e., the ability to keep transitory information active and 

available for short-term manipulation and referencing during complex interactions 

with the environment, is a complex behavioural trait. Working memory performance 

is highly heritable and a number of genetic factors have been identified to contribute 

to its phenotypic variability [24]. These findings suggest new means of understanding 

and diagnosing closely related pathological conditions, such as schizophrenia [25].  
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A sample of 1947 young healthy Swiss individuals was assessed for working memory 

performance using an n-back task. All subjects were individually genotyped using the 

Affymetrix Human SNP array 6.0. The genotype dataset was filtered (MAF ≥ 0.1; 

HWE pFisher ≥ 0.01; call rate ≥ 95%) to obtain a set of 541,802 SNPs for further 

analysis.  

We applied LIMEpi to the genotype dataset in a hypothesis-free fashion, using 

working memory as a continuous phenotype. We selected 132 candidate SNPs that 

passed the experiment-wide significance threshold (nominal α = 0.05, αBonferroni = 

9.23·10−8). Subsequently, the second stage of testing was employed in order to 

identify actual interaction partners for these selected candidate SNPs within the 

dataset. We found 65 statistically significant pair-wise interactions (αBonferroni = 

6.99·10−10). Out of these, 18 pairs had both interacting SNPs located in gene coding 

regions (Table S1). Among the 18 pairs are those involving PLCH1, a member of the 

eta family of the phosphoinositide-specific phospholipase C (PLC), and PDE1A, a 

Ca2+/Calmodulin-dependent phosphodiesterase (PDE). Both PLCs and PDEs are 

strongly implicated in the molecular mechanisms of working memory, such as the G-

protein-coupled responses to neurotransmitters, which lead to Ca2+ release as the 

inositol trisphosphate concentration increases [26, 27], or cAMP/cGMP signaling in 

dopaminergic, cholinergic and serotonergic neurotransmission [28, 29]. Further 

significant interaction candidates include the zinc-dependent aminopeptidase LNPEP 

together with the xylosyltransferase GXYLT1, neurexin NRXN1, a cell adhesion 

molecule and receptor associated with schizophrenia [30] or RBFOX1, which 

regulates human neuronal development [31]. The SNP pairs for which only one locus 

resided in a gene coding region involved, among others, the synaptosomal-associated 
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protein 25 (SNAP-25) and the proline rich membrane anchor 1 (PRIMA1), which 

anchors acetylcholinesterase at neural cell membranes. 

The p-values reported in Table S1, show that none of the selected SNP 

interactions would have been found in an exhaustive interaction search with αBonferroni 

= 3.40·10−13. Among all the 65 statistically significant interactions, none were found 

significant with the Bonferroni correction corresponding to an exhaustive procedure. 

The smallest p-value observed was 1.14·10−11. We also performed a marginal 

association test between the phenotype and the individual SNPs. The smallest p-value 

observed was 2.43·10−8 and corresponded to SNP rs17628359 in LNPEP (encoding 

leucyl/cystinyl aminopeptidase), also identified by our proposed method. According 

to the marginal association test, no further SNPs were detected. The main effect-based 

heuristic would have been unable to declare further SNPs as significant, unless some 

arbitrarily higher significance threshold was used. 

Discussion  
Latent variable models have been widely used to account for unobserved 

factors in biological systems and they have been shown to increase detection power in 

eQTL studies [32]. Here, we have introduced a novel latent interaction modelling 

approach, LIMEpi, to select candidate SNPs for epistasis analysis by assuming a 

latent SNP, which could modulate the association of an observed genotyped SNP with 

the phenotype. Through latent variable regression analysis we introduced and 

estimated a parameter, which accounts for the LD between the two potentially 

interacting genetic markers. Importantly, it has been reported in the population 

genetics literature that LD can be generated by epistasis and that multiplicative 

epistasis will maintain LD in a population [33]. Furthermore, recent studies indicate 

that LD can be used as a criterion for epistatic loci detection in case-control studies 

 - 13 - 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 17, 2015. ; https://doi.org/10.1101/016576doi: bioRxiv preprint 

https://doi.org/10.1101/016576


[34, 35]. Our method is applicable to both quantitative phenotypes, as exemplified in 

this paper, and to case-control designs using link functions [36]. Through careful 

analysis of the effect of LD on the statistical power to detect epistatic interactions, all 

in the context of our specific phenotype model and allele coding, we confirmed the 

tight connection between epistasis and LD. In fact, LD may be a hallmark of pure 

epistasis, since the total absence of marginal effects occurs only at extreme negative 

LD (Figure 4). 

Our analysis has also shown the advantages and limitations of the method 

when the genetic heritability of the phenotype varies as a function of the phenotypic 

noise and of the MAFs of the genetic factors involved. The latent interaction approach 

was shown to have improved statistical power over the marginal association 

procedure. Moreover, when LD approaches its lower bound, the latent interaction 

scheme may even outperform state-of-the-art exhaustive search methods due to the 

more conservative Bonferroni correction required for the latter. The proposed first-

stage SNP prioritization method scales linearly with the number of SNPs and, in 

practice, the runtime is comparable to that of marginal association detection, due to 

our analytical solution of the latent variable regression. The efficiency of this first 

stage of the two-stage testing will also lead to a significant time complexity reduction 

in the second stage of epistasis detection. In our genome-wide simulation study we 

noted an over 2,000-fold reduction in runtime compared to the exhaustive approach. 

For the real experimental data, we witnessed a similar reduction of the second-stage 

computational complexity. 

We endeavoured to test the proposed method on an instance of real human 

data. The latent interaction modelling procedure (first stage) took around 20 minutes 

on a single 2.2 GHz processor core for a dataset of 1947 individuals and genotypic 
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observations at 541,802 loci. The proposed first-stage feature selection is fast, suitable 

for large GWAS data, and hence contributes to solving the computational difficulties 

associated with genome-wide epistasis detection. We performed an exhaustive search 

with the candidate SNPs against the entire set of markers (second stage). At both 

stages we find reasonable amounts of statistically significant results, showing that we 

are able to overcome some of the statistical difficulties due to the high dimensionality 

of the data.  

Specifically, we have found a likely interaction between a member of the PLC 

and a member of the PDE1 enzyme families. PDE1A has a higher affinity for the 

cGMP over cAMP. cGMP activates protein kinase G (PKG) which, in turn, has been 

shown to phosphorylate and regulate certain classes of G-protein-activated PLC (i.e., 

beta) [37]. The eta family of PLCs is the most recently discovered and studies suggest 

that at least some of its variants are G-protein-regulated [38]. Two other genes, 

namely LNPEP and GXYLT1, were also found to statistically interact. While none of 

them has been already associated with working memory, they both interact with 

HLA-B, the major histocompatibility complex, class I (MHCI), B protein [39-41]. 

Interestingly, MHCI has a role in synaptic remodelling and plasticity [42]. Since our 

study on the genetic background of the human working memory is ongoing, we 

expect future results with higher sample size to shed a clearer picture on the 

physiology and heritability of the complex cognitive trait of human working memory. 

Conclusions  
We proposed a novel selection method for polymorphic loci, called LIMEpi, 

as the first stage of two-stage epistasis detection. We tested the method on simulated 

and real data and found that its linear runtime and improved statistical power 

contribute to reducing the computational complexity and to addressing some of the 
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statistical challenges associated with the large-scale search for epistatic loci. We 

believe that our work will open up new possibilities in the analysis of epistatic 

interactions. These possibilities include, for example, the incorporation of additional 

latent interacting SNPs to target multiway interactions and extensions of the 

underlying model to more complex genotype-phenotype relationships [43, 44], 

although they may not allow analytical treatment anymore.  

Methods 
Latent variable regression 

We denote the MAFs of the genotyped SNP x and the latent SNP z by q and p, 

respectively. The LD between x and z is defined as the deviation from random 

segregation of the alleles within the haplotypes [45], such that the expected haplotype 

frequencies are: 

 

h00 = 1− p( )1− q( )+ D

h01 = 1− p( )q − D

h10 = p 1− q( )− D
h11 = pq + D

      (2) 

where hab denotes the frequency of haplotype ab (a, b ∈ {0, 1}), where a is the allele 

status at the first locus (with genotype x) and b the allele status at the second locus 

(with genotype z). Assuming random mating of the two-locus haplotypes, we impose 

the Hardy-Weinberg Equilibrium (HWE) condition on the frequencies of the resulting 

two-locus genotypes. The joint probability of any two genotypes can be parameterized 

for all nine possible combinations so that the expected value of the product xz (x, z ∈ 

{0, 1, 2}) can be expressed parametrically in terms of p, q and D. D is a measure of 

LD, which also quantifies the covariance between the two individual SNPs with 

expected values E(x) = 2q and E(z) = 2p. From hab ≥ 0 in Equations (2) the following 

constraints apply to D: 
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D ≥ − 1− p( )1− q( )
D ≥ −pq
D ≤ 1− p( )q
D ≤ p 1− q( )

       (3) 

We analyze the model in Equation (1) as a structural equation model [19, 20] with 

three latent variables: z, xz and ε (Figure 1).  

The four model parameters are β, p, D, and σε2, where σε2 stands for the 

variance of ε. This structural equation model is non-standard, involving discrete and 

continuous distributions and an interaction effect. Inspired by [19], we use higher 

order moments as indicators of the latent interaction effect, to render the model 

identified. To estimate the model parameters, we apply constrained optimization to 

the weighted least-square cost function, as in an asymptotically distribution-free 

estimation [17, 46]. To shorten the runtime required by the numerical minimization 

procedure, we fixed p to 0.5, the value that confers maximum entropy to the latent 

variable z. Then the optimization problem becomes analytically tractable with 

parameters β, D, and σε2. 

There is no obvious optimal strategy to select the central moments for 

estimation. The main criteria are the identification of the model and the non-

redundancy of the moments [17, 19]. Aiming for simplicity, we chose the following 

lowest order moments that rendered the model identified  

 

m1 = E x − E x( )[ ] y − E y( )[ ]{ }
m2 = E x − E x( )[ ]2

y − E y( )[ ]{ }
m3 = E y − E y( )[ ]2   

   

     (4) 

We use a saturated system of equations, such that the SEM problem can be 

regarded as a latent variable regression. The first moment, m1, is the covariance 
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between x and y, and the third, m3, is the variance of y. These two moments are 

typically used in standard linear regression. Since we are using only the variance of ε 

here, we make no additional assumptions on the nature of the noise, except that it is 

independent of the predictor variables. Additionally, σε2 can be estimated from the 

expression for m3 in Equations (4) in a second step, once the parameters β and D have 

been estimated. Therefore, in the first step, we have a constrained system of equations 

involving only β and D. The constrains on D become box constrains, and the 

optimization problem to solve is 

 

Minimize
β ,D

ˆ m − m β,D( )[ ]W−1 ˆ m − m β,D( )[ ]T

suβject to 
D ≥ −pq
D ≤ q 1− p( )

 
 
 

    (5) 

The weighted least-squares cost function in (5) involves the difference 

between the first two parametric moments in Equations (4) in the two-dimensional 

vector m(β,D) = (m1, m2) and their sample estimates denoted by the vector 

 

ˆ m  of the 

same dimension. The weight matrix W is the sample estimate of the asymptotic 

covariance matrix of 

 

ˆ m  [17].  To solve the optimization problem (5), we used the 

Karush-Kuhn-Tucker optimality conditions [47] and solved the resulting system of 

quadratic equations analytically, using Wolfram Mathematica 8. The unconstrained 

solution is 

 

ˆ D =
2p ˆ m 2 − ˆ m 1 + 2q ˆ m 1( ) q2 − q( )

ˆ m 2 − ˆ m 1 + 2q2 ˆ m 1

ˆ β =
ˆ m 1 − ˆ m 2 − 2q2 ˆ m 1( )

8p q2 − q( )2

     (6) 

If the unconstrained solution is not feasible, two additional constrained 

solutions are evaluated at the boundaries of D and the one yielding the smallest cost 

solves the minimization problem (5). The analytical results were implemented in the 
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R statistical software environment [48] and we developed the R package LIMEpi, to 

estimate the model parameters and to assess their statistical significance (see below). 

Marginal and exhaustive methods 
The exhaustive analysis was performed in the form of a linear regressions 

using the same model as in Equation (1), but where both variables x and z are actual 

genotyped SNPs. For marginal association we used the linear model 

 

y = βx +ε         (7) 

where x represents a single SNP. 

Statistical and power analysis 
The statistical significance of an interaction or association was tested using the 

one-sample t-test of the null hypothesis that the interaction coefficient estimate is 

zero. To obtain standard error estimates for the parameter of interest we used White’s 

robust standard error [49], 

 

σβ
2 =

1
n

var xzε( )
var xz( )2        (8) 

For the marginal regression models xz becomes the respective predictor 

variable, x. The sample size is denoted by n. The t-statistic and the degrees of freedom 

are then given by t = β/σβ and df = n − 1, respectively. For the power analysis, we 

took a model-based approach. We consider the true phenotype model to have the 

fixed parameters β = 1, p, q, D and σε2. We assume that the exhaustive method will 

yield precise estimates 

 

ˆ β = β and 

 

ˆ σ ε
2 = σε

2 since both SNPs are available. For LIMEpi 

and the marginal approach we consider that only one SNP with MAF q is available. 

We express the moment estimates,

 

ˆ m  (Equations (4)) in terms of the true model 

parameters: 
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ˆ m 1 = 2 D + 2p q − q2( )[ ]
ˆ m 2 = D 2 − 4q2( )+ p 8q3 −12q2 + 4q( )
ˆ m 3 = D q 4 − 8p( )+ 4 p + 2[ ]+ q2 4 p −12p2( )+ q 4 p2 + 4 p( )+σε

2

 (9) 

LIMEpi yields the estimates 

 

ˆ β  and 

 

ˆ D  from Equations (6) and the corresponding 

 

ˆ σ ε
2. 

Linear regression on x, for the marginal approach, yields 

 

ˆ β = ˆ m 1 /(2q − 2q2)  and the 

corresponding 

 

ˆ σ ε
2. The estimates from each of the three methods are then used to 

compute the standard errors (Equation (8)) and t-statistics. We study the behaviour of 

the t-statistic as the parameters of the true model, p, q, D and σε2 vary. 

Two-stage detection of epistatic SNP pairs 
To identify epistatic SNP pairs with respect to a phenotype in a dataset of L 

genomic loci, we employ a modified Either Significant Two-Stage Strategy [51]. In 

summary, in the first stage, we apply our latent variable regression and obtain a set of 

α1 single SNPs with statistically significant potential to interact (nominal α = 0.05). In 

the second stage, we test each SNP selected in the first stage against all other loci 

within the dataset. To assess the statistical significance of the pair-wise association of 

SNPs with the phenotype, we compute the standard error of the regression coefficient 

estimates, as in Equation (8), and evaluate the t-statistic by computing the p-value. 

Because the second stage of testing is not independent of the first stage of feature 

selection, we compute conditional p-values for SNP pairs. We consider 

simultaneously both the latent interaction model and the interaction model with two 

true SNPs. 

 

y = ˆ β L x1z +ε L

y = ˆ β x1x2 +ε
        (10) 

where y is the phenotype, x1 and x2 are two observed SNPs from the dataset, z is a 

latent SNP, 

 

ˆ β L  and  

 

ˆ β  are estimates of the interaction strengths of the latent and the 
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two-SNP interaction, respectively, and similarly, εL and ε are noise variables. We 

assume that the interaction coefficients βL and β follow a bivariate normal 

distribution: 

 

βL

β
 

 
 

 

 
 ~ N

ˆ β L
ˆ β 

 

 
 

 

 
 ,

σ L
2 ρσ Lσ

ρσLσ σ 2

 

 
 

 

 
 

 

 
  

 

 
       (11) 

where ρ is the correlation between the two interaction coefficients and σL and σ 

represent their standard deviations, estimated from Equation (8). Using normal theory, 

we find the conditional distribution: 

 

β βL = ˆ β L( )~ N ˆ β , 1− ρ2( )σ 2( )     (12) 

The distribution (12) is of interest, since, given the mean and variance of 

 

ˆ β , 

we can evaluate a new t-statistic 

 

t =
ˆ β 

1− ρ2( )σ 2         (13) 

In order to do so, we will first estimate the expression (1−ρ2) from the distribution of 

 

βL β = ˆ β , by assuming that 

 

ˆ β x1x2 = ˆ β L x1z +εL
'        (14) 

and by performing the latent variable regression (Equations (6)) on Equation (14) and 

then estimating the standard error using Equation (8). The assumption of Equation 

(14) is that only the genetic variance of the phenotype is explained by the latent 

interaction. With the new t-statistic in Equation (13) we are able to compute the p-

value for the interaction of two SNPs, given that one of the SNPs had a significant 

interaction with a latent partner in the first stage of the procedure. We finally apply 

Bonferroni correction for the number of tests performed [51]. 
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Receiver operating characteristic (ROC) analysis 
With the ROC analysis we are evaluating the performance of feature (SNP) 

classification. By fixing a threshold on the p-value, each method will classify the 

SNPs as either selected or not. The positive set consists of the two SNPs actually 

generating the phenotype. True positive and false positive rates were computed at a 

range of significance thresholds (t-test p-values) between zero and one. The area 

under the curve was computed using trapezoidal approximations. The analysis was 

performed in R. 

Dataset simulation 
For genetic simulations, we used GenomeSIMLA [52]. We first simulated a 

population of genotypes based on human chromosome 22 as follows. For the 6,031 

chromosome-22 SNPs found on the Affymetrix SNP Array 500K, we initialized a 

halplotype pool using the MAF values available on GenomeSIMLA’s website 

(http://ritchielab.psu.edu/ritchielab/software/genomesimla-downloads/). The initial 

population underwent random mating, genetic drift and recombination across 1,000 

subsequent generations. The recombination frequencies were estimated by mapping 

the physical distances between the SNPs to genetic distances. The population growth 

was controlled using a logistic growth model. While the population is small, LD will 

develop and as the population grows larger the LD will diminish [52]. We sampled 

our datasets at two generations. For the comparison of LIMEpi to the exhaustive and 

marginal methods we sampled 100 datasets at generation 750. To study the effect of 

the overall LD in the sample on the second-stage time complexity, we sampled 

another 100 datasets at generation 500, where the population size was much smaller. 

To study the second-stage runtime as a function of the dimensionality of the dataset, 

we performed another independent simulation based on the entire Affymetrix SNP 

Array 500K. Within the limits of our computational resources, we grew a smaller 
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population and sampled ten datasets at generation 750. The datasets from the above 

simulations underwent quality control, where we removed fixed alleles and alleles 

that switched from minor to major across generations. This filtering resulted in 3,395 

SNPs for the chromosome 22 datasets and 261,858 SNPs for the whole-genome 

datasets. For each dataset above, we sampled 2,000 individuals from the pool. 

Phenotypes were simulated with various model parameter settings, but with fixed 

interaction coefficient β = 1.  

Working memory experiments and data 
A total of 1,947 healthy young subjects (1,243 females, 704 males; mean age: 

22.48 y; median age, 22 y; range, 18–35 y) were included in the study. The ethics 

committee of the Canton of Basel approved the experiments. Written informed 

consent was obtained from all subjects before participation. 
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Figures 
Figure 1  - Path diagram of the model 
Observed and latent variables in Equation 1 are depicted as squares and circles, 

respectively. Measured variables are the phenotype, y and the genotyped SNP, x. 

Latent variables are the latent SNP, z, the interaction variable, xz and the exogenous 

noise, ε. Single-headed arrows represent causal linear relationships and double-

headed arrows represent variances. Parameters q and p represent the MAFs of x and z, 

respectively. σγ
2 denotes the variance of the variable γ. 
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Figure 2  - Performance as a function of heritability 
Comparison of LIMEpi against the marginal and exhaustive methods at MAF=0.2, 

LD ≈ 0, 2,000 individuals, and 3,395 loci. A. Statistical power analysis through the t-

statistic as a function of the heritability. Heritability increases with decreasing the 

exogenous noise variance. The Bonferroni corrected significance thresholds are 

shown for 3,395 loci and for 5,761,315 pairs of loci. B. Smoothed AUC histograms 

for the three methods in the first stage of the feature selection over 100 simulated 

experiments. The first-stage SNP ranking experiments are performed at two levels of 

heritability. C. Smoothed AUC histograms for the second stage of testing, given the 

first-stage features selected by the three methods under comparison in B. 
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Figure 3  - Performance as a function of the MAFs 
Comparison of LIMEpi against the marginal and exhaustive methods at a noise level 

conferring heritability 0.02 at MAF=0.2, LD ≈ 0, 2,000 individuals, and 3,395 loci. A. 

Statistical power analysis through the t-statistic as a function of the MAFs of the 

causal SNPs. The statistical power increases with the heritability, which increases 

with the MAFs. The Bonferroni corrected significance thresholds are shown for 3,395 

loci and for 5,761,315 pairs of loci. B. Smoothed AUC histograms for the three 

methods used as the first stage of the epistasis detection over 100 simulated 

experiments. The first-stage SNP ranking experiments are performed using two 

phenotypes simulated using two pairs of SNPs with MAFs 0.2 and 0.5, respectively. 

C. Smoothed AUC histograms for the second-stage of testing, given the first-stage 

features selected by the three methods under comparison in B. 
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Figure 4  - Performance as a function of LD 
Comparison of LIMEpi against the marginal and exhaustive methods at MAFs 0.5 

and a noise level conferring heritability 0.02 at MAFs 0.2 (LD = 0), 2,000 individuals, 

and 3,395 loci. A. Statistical power analysis through the t-statistic as a function of the 

LD between the causal SNPs. The statistical power increases with the LD. As the LD 

becomes negative, the marginal method will fail to pass the threshold. The curves for 

the exhaustive method and LIMEpi overlap. The Bonferroni corrected significance 

thresholds are shown for 3,395 loci and for 5,761,315 pairs of loci. B. Smoothed AUC 

histograms for the three methods used as the first stage of the epistasis detection over 

100 simulated experiments. The first-stage SNP ranking experiments are performed 

using two phenotypes simulated using two pairs of SNPs at LD 0 and -0.19, 

respectively. C. Smoothed AUC histograms for the second stage of testing, given the 

first-stage features selected by the three methods under comparison in B. 
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Figure 5  - Computational complexity of the second stage 
A. Distributions of the numbers of features LIMEpi identifies in the first stage at two 

overall LD levels within the simulated datasets. The overall LD decreases with the 

generation at which the sample was taken. To investigate how the complexity is 

affected by the parameters of the phenotype and causal SNPs (H2, MAFs and LD), we 

analyzed separately four scenarios where these parameters vary. B. Comparison 

between the numbers of features LIMEpi identifies in the first stage as the 

dimensionality of the simulated datasets increases. The complexity is inspected for 

different parameters as in A. The boxplots indicate the median, lower, and upper 

quartiles and the extreme values within one and a half inter-quartile ranges of the 

distributions of the number of selected SNPs. 
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