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Abstract1

1. There is a growing realization among community ecologists that interactions between2

species vary in space and time. Yet, our current numerical framework to analyze the3

structure of interactions, largely based on graph-theoretical approaches, is unsuited to4

this type of data. Since the variation of species interactions holds much information,5

there is a need to develop new metrics to exploit it.6

2. We present analytical expressions of key network metrics, using a probabilistic frame-7

work. Our approach is based on modeling each interaction as a Bernoulli event, and8

using basic calculus to express the expected value, and when mathematically tractable,9

its variance. We provide a free and open-source implementation of these measures.10

3. We show that our approach allows to overcome limitations of both neglecting the vari-11

ation of interactions (over-estimation of rare events) and using simulations (extremely12

high computational demand). We present a few case studies that highlight how these13

measures can be used.14

4. We conclude this contribution by discussing how the sampling and data representa-15

tion of ecological network can be adapted to better allow the application of a fully16

probabilistic numerical framework.17
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Introduction1

Ecological networks are an efficient way to represent biotic interactions between individuals,2

populations, or species. Historically, their study focused on describing their structure, with3

a particular attention on food webs (Dunne 2006) and plant-pollinator interactions (Jordano4

1987; Bascompte et al. 2003). The key result of this line of research was linking this structure5

to community or ecosystem-level properties such as stability (McCann 2014), coexistence (Bas-6

tolla et al. 2009; Haerter et al. 2014), or ecosystem functioning (Duffy 2002; Thébault & Loreau7

2003; Poisot 2012). To a large extent, the description of ecological networks resulted in the8

emergence of questions about how functions emerged from structure, and this stimulated the9

development of a rich methodological literature, defining a wide array of structural properties.10

Given a network as input, measures of network structure return a property based on one or11

several units from this network. Some of the properties are direct properties (they only require12

knowledge of the unit on which they are applied), whereas others are emergent (they require13

knowledge of, and describe, higher-order structures). For example, connectance, the realized14

proportion of potential interactions, is a direct property of a network. The degree of a node15

(how many interactions it is involved in) is a direct property of the node. The nestedness16

of a network (that is, the extent to which specialists and generalists overlap), on the other17

hand, is an emergent property that is not directly predictable from the degree of all nodes.18

Though the difference may appear to be semantics, establishing a difference between direct19

and emergent properties is important when interpreting their values; direct properties are20

conceptually equivalent to means, in that they tend to be the first moment of network units,21

whereas emergent properties are conceptually equivalent to variances or other higher-order22

moments.23

In the recent years, the interpretation of the properties of network structure (as indicators24

of the action of ecological or evolutionary processes) has been somewhat complicated by the25

observation that network structure varies through space and time. This happens because,26

contrary to a long-standing assumption of network studies, species from the same pool do27

not interact in a consistent way (Poisot et al. 2012). Empirical and theoretical studies suggest28

that the network is not the right unit to understand this variation; rather, network variation29
2
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is an emergent property of the response of ecological interactions to environmental factors1

and chance events (Poisot et al. 2014). Interactions can vary because of local mismatching in2

phenology (Olesen et al. 2011), populations fluctuations preventing the interaction (Canard et3

al. 2014), or a combination of both (Chamberlain et al. 2014; Olito & Fox 2014). For example,4

Olito & Fox (2014) show that accounting for neutral (population-size driven) and trait-based5

effects allows the prediction of the cumulative change in network structure, but not of the6

change at the level of individual interactions. In addition, Carstensen et al. (2014) show that7

within a meta-community, not all interactions are equally variable: some are highly consistent,8

whereas others are extremely rare. These empirical results all point to the fact that species9

interactions cannot always be adequately modeled as yes-no events; since it is well established10

that they do vary, it is necessary to represent them as probabilities. To the question of Do these11

two species interact?, we should substitute the question of How likely is it that they will interact?.12

The current way of dealing with probabilistic interactions are either to ignore variability en-13

tirely or to generate random networks. Probabilistic metrics are a mathematically rigorous14

alternative to both. When ignoring the probabilistic nature of interactions (henceforth bi-15

nary networks), every non-zero element of the network is assumed to be 1. This leads to16

over-representation of some rare events, and increases the number of interactions. An alter-17

native is to consider only the interactions above a given threshold, which leads to an under-18

representation of rare events and decreases the effective number of interactions. Taken to-19

gether, these considerations highlight the need to amend our current methodology for the20

description of ecological networks, in order to give more importance to the variation of indi-21

vidual interactions. Because the methodological corpus available to describe ecological net-22

works had first been crafted at a time when it was assumed that interactions were invariants,23

it is unsuited to address the questions that probabilistic networks allow us to ask.24

In this paper, we show that several direct and emergent core properties of ecological networks25

(both bipartite and unipartite) can be re-formulated in a probabilistic context (Yeakel et al.26

2012; Poisot et al. 2014); we conclude by showing how this methodology can be applied to ex-27

ploit the information contained in the variability of networks, and to reduce the computational28

burden of current methods in network analysis. We also provide a free and open-source (MIT29
3
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license) implementation of this suite of measures in a library for the julia language, available1

at http://github.com/PoisotLab/ProbabilisticNetwork.jl.2

Suite of probabilistic network metrics3

Throughout this paper, we use the following notation. A is a matrix wherein Aij is P(ij),4

i.e. the probability that species i establishes an interaction with species j. If A represents a5

unipartite network (e.g. a food web), it is a square matrix and contains the probabilities of each6

species interacting with all others, including itself. If A represents a bipartite network (e.g. a7

pollination network), it will not necessarily be square. We call S the number of species, and R8

and C respectively the number of rows and columns. S = R = C in unipartite networks, and9

S = R + C in bipartite networks.10

Note that all of the measures defined below can be applied on a bipartite network that has11

been made unipartite; the unipartite transformation of a bipartite matrix A is the block matrix12

(1) B =

0(R,R) A

0(C,R) 0(C,C)

 ,

where 0(C,R) is a matrix of C rows and R columns (noted C × R) filled with 0s, etc. Note13

that for centrality to be relevant in bipartite networks, this matrix should be made symmetric:14

Bij = Bji.15

We will also assume that all interactions are independent (so that P(ij|kl) = P(ij)P(kl) for16

any species), and can be represented as a series of Bernoulli trials (so that 0 ≤ P(ij) ≤ 1). The17

latter condition allows us to derive estimates for the variance (var(X) = p(1− p)), and expected18

values (E(X) = p). We can therefore estimate the variance of most properties, using the fact19

that the variance of additive independent events is the sum of their individual variances, and20

that the variance of multiplicative independent events is21

(2) var(X1X2...Xn) = ∏
i

(
var(Xi) + [E(Xi)]

2
)
−∏

i
[E(Xi)]

2

4
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As a final note, all of the measures described below can be applied on the binary (0/1) versions1

of the networks and will give the exact value of the non-probabilistic measure. This property2

is particularly desirable as it allows our framework to be used on any network, whether they3

are represented in a probabilistic or binary way.4

Direct properties.5

Connectance and number of interactions. Connectance (or network density) is the proportion of6

possible interactions that are realized, defined as Co = L/(R×C), where L is the total number7

of interactions. As all interactions in a probabilistic network are assumed to be independent,8

the expected value of L, is9

(3) L̂ = ∑ Aij,

and Ĉo = L̂/(R × C). Likewise, the variance of the number of interactions is var(L̂) =10

∑(Aij(1− Aij)).11

Node degree. The degree distribution of a network is the distribution of the number of interac-12

tions established (number of successors) and received (number of predecessors) by each node.13

The expected degree of species i is14

(4) k̂i = ∑
j
(Aij + Aji)

The variance of the degree of each species is var(k̂i) = ∑j(Aij(1− Aij) + Aji(1− Aji)). Note15

also that as expected, ∑ k̂i = 2L̂.16

Generality and vulnerability. By simplification of the above, generality ĝi and vulnerability v̂i are17

given by, respectively, ∑j Aij and ∑j Aji, with their variances ∑j Aij(1− Aij) and ∑j Aji(1− Aji).18

emergent properties.19
5
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Path length. Networks can be used to describe indirect interactions between species through1

the use of paths. The existence of a path of length 2 between species i and j means that they2

are connected through at least one additional species k. In a probabilistic network, unless3

some elements are 0, all pairs of species i and j are connected through a path of length 1, with4

probability Aij. The expected number of paths of length k between species i and j is given by5

(5)
ˆ

n(k)
ij =

(
Ak
)

ij
,

where Ak is the matrix multiplied by itself k times.6

It is possible to calculate the probability of having at least one path of length k between the7

two species: this can be done by calculating the probability of having no path of length k, then8

taking the running product of the resulting array of probabilities. For the example of length9

2, species i and j are connected through g with probability Aig Agj, and so this path does not10

exist with probability 1− Aig Agj. For any pair i, j, let m be the vector such as mg = Aig Agj11

for all g /∈ (i, j) (Mirchandani 1976). The probability of not having any path of length 2 is12

∏(1−m). Therefore, the probability of having a path of length 2 between i and j is13

(6) p̂(2)ij = 1−∏(1−m).

In most situations, one would be interested in knowing the probability of having a path of14

length 2 without having a path of length 1; this is simply expressed as (1− Aij) p̂(2)ij . One can,15

by the same logic, generate the expression for having at least one path of length 3:16

(7) p̂(3)ij = (1− Aij)(1− p̂(2)ij )
(
1−∏(1−m)

)
∏
x,y

(
(1− Aiy)(1− Axj)

)
,

where m is the vector of all Aix Axy Ayj for x /∈ (i, j), y 6= x. This gives the probability of having17

at least one path from i to j, passing through any pair of nodes x and y, without having any18
6
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shorter path. In theory, this approach can be generalized up to an arbitrary path length, but it1

becomes rapidly untractable.2

Unipartite projection of bipartite networks. The unipartite projection of a bipartite network is3

obtained by linking any two nodes of one mode that are connected through at least one node4

of the other mode; for example, to plants are connected if they share at least one pollinator. It is5

readily obtained using the formula in the Path length section. This yields either the probability6

of an edge in the unipartite projection (of the upper or lower nodes), or if using the matrix7

multiplication, the expected number of such nodes.8

Nestedness. Nestedness is an important measure of (bipartite) network structure that tells the9

extent to which the interactions of specialists and generalists overlap. We use the formula10

for nestedness proposed by Bastolla et al. (2009). They define nestedness for each margin of11

the matrix, as η(R) and η(C) for, respectively, rows and columns. As per Almeida-Neto et al.12

(2008), we define a global statistic for nestedness as η = (η(R) + η(C))/2.13

Nestedness, in a probabilistic network, is defined as14

(8) ˆη(R) = ∑
i<j

∑k Aik Ajk

min(gi, gj)
,

where gi is the expected generality of species i. The reciprocal holds for η(C) when using vi15

(the vulnerability) instead of gi.16

The values returned are within [0; 1], with η = 1 indicating complete nestedness.17

Modularity. Modularity represents the extent to which networks are compartmentalized, i.e.18

the tendency for subsets of species to be strongly connected together, while they are weakly19

connected to the rest of the network (Stouffer & Bascompte 2011). Modularity is measured as20

the proportion of interactions between nodes of an arbitrary number of modules, as opposed21

to the random expectation. Assuming a vector s which, for each node in the network, holds22

the value of the module it belongs to (an integer in [1, c]), Newman (2004) proposed a general23

measure of modularity, which is24
7
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Q =
c

∑
m=1

(
emm − a2

m

)
, where c is the number of modules,1

emm = ∑
ij

Aij

2c
δ(si, sj)

, and2

am = ∑
n

emn

,3

with δ being Kronecker’s function, returning 1 if its arguments are equal, and 0 otherwise.4

This formula can be directly applied to probabilistic networks.5

Centrality. Although node degree is a rough first order estimate of centrality, other measures6

are often needed. We derive the expected value of centrality according to Katz (1953). This7

measures generalizes to directed acyclic graphs (whereas other do not). For example, although8

eigenvector centrality is often used in ecology, it cannot be measured on probabilistic graphs.9

Eigenvector centrality requires the matrix’s largest eigenvalues to be real, which is not the case10

for all probabilistic matrices. The measure proposed by Katz is a useful replacement, because11

it accounts for the paths of all length between two species instead of focusing on the shortest12

path.13

As described above, the expected number of paths of length k between i and j is (Ak)ij. Based14

on this, the expected centrality of species i is15

(9) Ci =
n

∑
j=1

∞

∑
k=1

αk(Ak)ji.

The parameter α ∈ [0; 1] regulates how important long paths are. When α = 0, only first-order16

paths are accounted for (and the centrality is equal to generality). %DG: to the degree or17
8
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generality? When α = 1, paths of all length are equally important. As Ci is sensitive to the1

size of the matrix, we suggest normalizing by C = ∑ C, so that2

(10) Ci =
Ci

C
.

This results in the expected relative centrality of each node in the probabilistic network.3

Species with no outgoing links. Estimating the number of species with no outgoing links (succes-4

sors) can be useful when predicting whether, e.g., predators will go extinct. A species has no5

successors if it manages not to establish any outgoing interaction, which for species i happens6

with probability7

(11) ∏
j
(1− Aij).

The number of expected such species is therefore the sum of the above across all species:8

(12) P̂P = ∑
i

(
∏

j
(1− Aij)

)
.

and its variance is9

(13) var(P̂P) = ∑
i

(
∏

j
(1− A2

ij)−∏
j
(1− Aij)

2

)

Note that in a non-probabilistic context, species with no outgoing links would be considered10

primary producers. This is not the case here: if interactions are probabilistic events, then e.g.11

a top predator may have no preys, which do not mean it will not become a primary producer.12

For this reason, the trophic position of the species may better be measured on the binary13

version of the matrix.14
9
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Species with no incoming links. Using the same approach as for the number of species with no1

outgoing links, the expected number of species with no incoming links is therefore2

(14) T̂P = ∑
i

(
∏
j 6=i

(1− Aji)

)

Note that we exclude self-interactions, as top-predators can, and often do, engage in cannibal-3

ism.4

Number of species with no interactions. Predicting the number of species with no interactions5

(or whether any species will have at least one interaction) is useful when predicting whether6

species will be able to integrate into an existing network, for example. Note that from a7

methodological point of view, this can be a helpful a priori measure to determine whether null8

models of networks will have a lot of species with no interactions, and so will require intensive9

sampling.10

A species has no interactions with probability11

(15) ∏
j 6=i

(1− Aij)(1− Aji)

As for the above, the expected number of species with no interactions (free species) is the sum12

of this quantity across all i:13

(16) F̂S = ∑
i

∏
j 6=i

(1− Aij)(1− Aji)

The variance of the number of species with no interactions is14

(17) var(F̂S) = ∑
i

(
Aij(1− Aij)Aji(1− Aji) + Aij(1− Aij)A2

ji + Aji(1− Aji)A2
ij

)
10
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Self-loops. Self-loops (the existence of an interaction of a species onto itself) is only meaningful1

in unipartite networks. The expected proportion of species with self-loops is very simply2

defined as Tr(A), that is, the sum of all diagonal elements. The variance is Tr(A � (1− A)),3

where � is the element-wise product operation.4

Motifs. Motifs are sets of pre-determined interactions between a fixed number of species (Milo5

et al. 2002; Stouffer et al. 2007), such as for example one predator sharing two preys. As6

there are an arbitrarily large number of motifs, we will illustrate the approach with only two7

examples.8

The probability that three species form an apparent competition motif (one predator, two prey)9

where i is the predator, j and k are the prey, is10

(18) P(i, j, k ∈ app. comp) = Aij(1− Aji)Aik(1− Aki)(1− Ajk)(1− Akj)

Similarly, the probability that these three species form an omnivory motif, in which i and j11

consume k and i consumes j, is12

(19) P(i, j, k ∈ omniv.) = Aij(1− Aji)Aik(1− Aki)Ajk(1− Akj)

The probability of the number of any motif m with three species in a network is given by13

(20) N̂m = ∑
i

∑
j 6=i

∑
k 6=j

P(i, j, k ∈ m)

It is indeed possible to have an expression of the variance of this value, or of the variance of14

any three species forming a given motif, but their expressions become rapidly untractable and15

are better computed than written.16

11
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Network comparison. The dissimilarity of a pair of (ecological) networks can be measured1

using the framework set forth by Koleff et al. (2003). Measures of β-diversity compute the2

dissimilarity between two networks based on the cardinality of three sets, a, c, and b, which3

are respectively the shared items, items unique to superset (network) 1, and items unique to4

superset 2 (the identity of which network is 1 or 2 matters for asymmetric measures). Supersets5

can be the species within each network, or the interactions between species. Following Poisot6

et al. (2012), the dissimilarity of two networks can be measured as either βWN (all interactions),7

or βOS (interactions involving only common species), with βOS ≤ βWN.8

Within our framework, these measures can be applied to probabilistic networks. The expected9

values of ā, c̄, and b̄ are, respectively, ∑ A1 �A2, ∑ A1 � (1−A2), and ∑(1−A1) �A2. Whether10

βOS or βWN is measured requires to alter the matrices A1 and A2. To measure βOS, one must11

remove all unique species; to measure βWN, one must expand the two matrices so that they12

have the same species at the same place, and give a weight of 0 to the added interactions.13

Applications14

In this section, we contrast the use of probabilistic measures to the current approaches of either15

using binary networks, or working with null models through simulations. When generating16

random networks, what we call Bernoulli trials from here on, a binary network is generated by17

doing a Bernoulli trial with probability Aij, for each element of the matrix. This is problematic18

because higher order structures involving rare events will be under-represented in the sample,19

and because most naive approaches are likely to generate free species, especially in sparsely20

connected networks frequently encountered in ecology (Milo et al. 2003; Poisot & Gravel 2014)21

– on the other hand, non-naive approaches break the assumption of independence between22

interactions.23

Comparison of probabilistic networks. In this sub-section, we apply the above measures to24

a bacteria–phage interaction network. Poullain et al. (2008) have measured the probability25

that 24 phages can infect 24 strains of bacteria of the Pseudomonas fluorescens species (group26

SBW25). Each probability has been observed though independent infection assays, and can27

take values of 0, 0.5 (interaction is variable), and 1.0.28
12
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Measuring the structure of the Binary, Bernoulli trials, and Probabilistic network gives the1

following result:2

Measure Binary Bernoulli trials Probabilistic

links 336 221.58± 57.57 221.52± 57.25

η 0.73 0.528 0.512

η(R) 0.72 0.525 0.507

η(C) 0.75 0.531 0.518

As these results show, transforming the probabilistic matrix into a binary one (i) overestimates3

nestedness by ≈ 0.2, and (ii) overestimates the number of links by 115. For the number of links,4

both the probabilistic measures and the average and variance of 104 Bernoulli trials were in5

strong agreement (they differ only by the second decimal place).6

Using Bernoulli trials had the effect of slightly over-estimating nestedness. The overestimation7

is statistically significant from a purely frequentist point of view, but significance testing is8

rather meaningless when the number of replicates is this large and can be increased arbitrarily;9

what is important is that the relative value of the error is small enough that Bernoulli trials are10

able to adequately reproduce the probabilistic structure of the network. It is not unexpected11

that Bernoulli trials are this close to the analytical expression of the measures; due to the12

experimental design of the Poullain et al. (2008) study, probabilities of interactions are bound13

to be high, and so variance is minimal (most elements of A have a value of either 0 or 1,14

and so their individual variance is 0 – though their confidence interval varies as a function of15

the number of observations from which the probability is derived). Still, despite overall low16

variance, the binary approach severely mis-represents the structure of the network.17

Null-model based hypothesis testing. In this section, we analyse 59 pollination networks18

from the literature using two usual null models of network structure, and two models with19

intermediate constraints. These data cover a wide range a situations, from small to large,20

and from densely to sparsely connected networks. They provide a good demonstration of the21
13
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performance of probabilistic metrics. Data come from the InteractionWeb Database, and were1

queried on Nov. 2014.2

We use the following null models. First (Type I, Fortuna & Bascompte (2006)), any interaction3

between plant and animals happens with the fixed probability P = Co. This model controls for4

connectance, but removes the effect of degree distribution. Second, (Type II, Bascompte et al.5

(2003)), the probability of an interaction between animal i and plant j is (ki/R + k j/C)/2,6

the average of the richness-standardized degree of both species. In addition, we use the7

models called Type III in and out (Poisot et al. 2013), that use the row-wise and column-wise8

probability of an interaction respectively, as a way to understand the impact of the degree9

distribution of upper and lower level species.10

Note that these null models will take a binary network, and through some rules turn it into11

a probabilistic one. Typically, this probabilistic network is used as a template to generate12

Bernoulli trials and measure some of their properties, the distribution of which is compared13

to the empirical network. This approach is computationally inefficient (Poisot & Gravel 2014),14

especially using naive models (Milo et al. 2003), and as we show in the previous section, can15

yield biased estimates of the true average of nestedness (and presumably other properties).16

We measured the nestedness of the 59 (binary) networks, then generated the random networks17

under the four null models, and calculated the expected nestedness using the probabilistic18

measure. For each null model i, the difference ∆(i)
N in nestedness N is expressed as ∆(i)

N =19

N −N (i)(N), where N (i)(N) is the nestedness of null model i. Our results are presented in20

Figure 1.21

There are two striking results. First, empirical data are consistently more nested than the null22

expectation, as evidenced by the fact that all ∆N values are strictly positive. Second, this23

underestimation is linear between null models I and II (in that it does not depends on how24

nested the empirical network is), although null model II is always closer to the nestedness of25

the empirical network (which makes sense, since null model II incorporates the higher order26

constraint of respecting the degree distribution of both levels). That the nestedness of the null27
14
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model probability matrix is so strongly determined by the nestedness of the empirical net-1

works calls for a closer evaluation of how the results of null models are interpreted (especially2

since Bernoulli simulations revealed a very low variance in the simulated nestedness).3

There is a strong, and previously unaccounted for, circularity in this approach: empirical4

networks are compared to a null model which, as we show, has a systematic bias and a low5

variance (in simulations), meaning that differences in nestedness that are small (thus poten-6

tially ecologically irrelevant) have a good chance of being reported as significant. Interestingly,7

models III in and III out made overall fewer mistakes at estimating nestedness – resp. 0.1298

and 0.123, compared to resp. 0.219 and 0.156 for model I and II. Although the error is overall9

sensitive to model type (Kruskal-Wallis χ2 = 35.80, d.f. = 3, p ≤ 10−4), the three pairs of10

models that where significantly different after controlling for multiple comparisons are I and11

II, I and III in, and I and III out (model II is not different from either models III in or out).12

In short, this analysis reveals that (i) the null expectation of a network property under ran-13

domization scenarios can be obtained through the analysis of the probabilistic matrix, instead14

of the analysis of simulated Bernoulli networks; (ii) Different models have different systematic15

biases, with models of the type III performing overall better for nestedness than any other16
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Figure 1. Results of the null model analysis of 59 plant-pollination networks.
A. There is a consistent tendency for (i) both models I and II to estimate less
nestedness than in the empirical network, although null model II yields more
accurate estimates. B. Models III in and III out also estimate less nestedness than
the empirical network, but neither has a systematic bias.
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models. This can be explained by the fact that nestedness of a network, as expressed by Bas-1

tolla et al. (2009), is the average of a row-wise and column-wise nestedness. These depend on2

the species degree, and as such should be well predicted by models III.3

Implications for data collection4

We developed and presented a set of measures to quantify the expected network structure,5

using the probability that each interaction is observed or happens, in a way that do not require6

time-consuming simulations. Our framework is set up in such a way that the probabilities7

of interactions are considered to be independent. Estimating interaction probabilities based8

on species abundances (Olito & Fox 2014; Canard et al. 2014) do not, for example, yield9

independent probabilities: changing the abundance of one species changes all probabilities10

in the network. They are not Bernoulli events either, as the sum of all probabilities derived11

this way sums to unity. On the other hand, “cafeteria experiments” give truly independent12

probabilities of interactions; even a simple criteria, such as the frequency of interactions when13

the two species are put together, is a way of estimating probability. Using the approach outline14

by Poisot et al. (2014), both sources of information (species abundance and the outcome15

of experiments) can be combined to estimate the probability that interactions will happen16

in empirical communities. This effort requires improved communications between scientists17

collecting data and scientists developing methodology to analyze them.18

Another way to obtain approximation of the probability of interactions is to use spatially19

replicated sampling. Some studies (Tylianakis et al. 2007; Olito & Fox 2014; Carstensen et al.20

2014; Trøjelsgaard et al. 2015) surveyed the existence of interactions at different locations, and a21

simple approach of dividing the number of observations of an interaction by the number of co-22

occurence of the species involved will provide a (somewhat crude) estimate of the probability23

of this interaction. This approach requires extensive sampling, especially since interactions24

are harder to observe than species (Poisot et al. 2012; Gilarranz et al. 2014), yet it enables the25

re-analysis of existing datasets in a probabilistic context.26

Understanding the structure of ecological networks, and whether it relates to ecosystem prop-27

erties, is emergent as a key challenge for community ecology. A proper estimation of this28
16
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structure requires tools that address all forms of complexity, the most oft-neglected yet perva-1

sive of which is the fact that interactions are variable. By developing these metrics, we allow2

future analyses of network structure to account for this phenomenon.3
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