THE STRUCTURE OF PROBABILISTIC NETWORKS

T. POISOT, A. CIRTWILL, D. GRAVEL, M.-J. FORTIN, AND D.B. STOUFFER

Abstract

1. There is a growing realization among community ecologists that interactions between species vary in space and time. Yet, our current numerical framework to analyze the structure of interactions, largely based on graph-theoretical approaches, is unsuited to this type of data. Since the variation of species interactions holds much information, there is a need to develop new metrics to exploit it. 2. We present analytical expressions of key network metrics, using a probabilistic framework. Our approach is based on modeling each interaction as a Bernoulli event, and using basic calculus to express the expected value, and when mathematically tractable, its variance. We provide a free and open-source implementation of these measures. 3. We show that our approach allows to overcome limitations of both neglecting the variation of interactions (over-estimation of rare events) and using simulations (extremely high computational demand). We present a few case studies that highlight how these measures can be used. 4. We conclude this contribution by discussing how the sampling and data representation of ecological network can be adapted to better allow the application of a fully probabilistic numerical framework.

Keywords: ecological networks, connectance, degree distribution, nestedness, modularity

Ecological networks are an efficient way to represent biotic interactions between individuals, populations, or species. Historically, their study focused on describing their structure, with a particular attention on food webs (Dunne 2006) and plant-pollinator interactions (Jordano 1987; Bascompte et al. 2003). The key result of this line of research was linking this structure to community or ecosystem-level properties such as stability (McCann 2014), coexistence (Bastolla et al. 2009; Haerter et al. 2014), or ecosystem functioning (Duffy 2002; Thébault \& Loreau 2003; Poisot 2012). To a large extent, the description of ecological networks resulted in the emergence of questions about how functions emerged from structure, and this stimulated the development of a rich methodological literature, defining a wide array of structural properties. Given a network as input, measures of network structure return a property based on one or several units from this network. Some of the properties are direct properties (they only require knowledge of the unit on which they are applied), whereas others are emergent (they require knowledge of, and describe, higher-order structures). For example, connectance, the realized proportion of potential interactions, is a direct property of a network. The degree of a node (how many interactions it is involved in) is a direct property of the node. The nestedness of a network (that is, the extent to which specialists and generalists overlap), on the other hand, is an emergent property that is not directly predictable from the degree of all nodes. Though the difference may appear to be semantics, establishing a difference between direct and emergent properties is important when interpreting their values; direct properties are conceptually equivalent to means, in that they tend to be the first moment of network units, whereas emergent properties are conceptually equivalent to variances or other higher-order moments.

In the recent years, the interpretation of the properties of network structure (as indicators of the action of ecological or evolutionary processes) has been somewhat complicated by the observation that network structure varies through space and time. This happens because, contrary to a long-standing assumption of network studies, species from the same pool do not interact in a consistent way (Poisot et al. 2012). Empirical and theoretical studies suggest that the network is not the right unit to understand this variation; rather, network variation
is an emergent property of the response of ecological interactions to environmental factors and chance events (Poisot et al. 2014). Interactions can vary because of local mismatching in phenology (Olesen et al. 2011), populations fluctuations preventing the interaction (Canard et al. 2014), or a combination of both (Chamberlain et al. 2014; Olito \& Fox 2014). For example, Olito \& Fox (2014) show that accounting for neutral (population-size driven) and trait-based effects allows the prediction of the cumulative change in network structure, but not of the change at the level of individual interactions. In addition, Carstensen et al. (2014) show that within a meta-community, not all interactions are equally variable: some are highly consistent, whereas others are extremely rare. These empirical results all point to the fact that species interactions cannot always be adequately modeled as yes-no events; since it is well established that they do vary, it is necessary to represent them as probabilities. To the question of Do these two species interact?, we should substitute the question of How likely is it that they will interact?.

The current way of dealing with probabilistic interactions are either to ignore variability entirely or to generate random networks. Probabilistic metrics are a mathematically rigorous alternative to both. When ignoring the probabilistic nature of interactions (henceforth binary networks), every non-zero element of the network is assumed to be 1 . This leads to over-representation of some rare events, and increases the number of interactions. An alternative is to consider only the interactions above a given threshold, which leads to an underrepresentation of rare events and decreases the effective number of interactions. Taken together, these considerations highlight the need to amend our current methodology for the description of ecological networks, in order to give more importance to the variation of individual interactions. Because the methodological corpus available to describe ecological networks had first been crafted at a time when it was assumed that interactions were invariants, it is unsuited to address the questions that probabilistic networks allow us to ask.

In this paper, we show that several direct and emergent core properties of ecological networks (both bipartite and unipartite) can be re-formulated in a probabilistic context (Yeakel et al. 2012; Poisot et al. 2014); we conclude by showing how this methodology can be applied to exploit the information contained in the variability of networks, and to reduce the computational burden of current methods in network analysis. We also provide a free and open-source (MIT

$$
\mathbf{B}=\left(\begin{array}{cc}
0_{(R, R)} & \mathbf{A} \tag{1}\\
0_{(C, R)} & 0_{(C, C)}
\end{array}\right),
$$

where $0_{(C, R)}$ is a matrix of C rows and R columns (noted $C \times R$) filled with 0 s, etc. Note that for centrality to be relevant in bipartite networks, this matrix should be made symmetric: $\mathbf{B}_{i j}=\mathbf{B}_{j i}$.

We will also assume that all interactions are independent (so that $\mathrm{P}(i j \mid k l)=\mathrm{P}(i j) \mathrm{P}(k l)$ for any species), and can be represented as a series of Bernoulli trials (so that $0 \leq \mathrm{P}(i j) \leq 1$). The latter condition allows us to derive estimates for the variance $(\operatorname{var}(X)=p(1-p))$, and expected values $(\mathrm{E}(X)=p)$. We can therefore estimate the variance of most properties, using the fact that the variance of additive independent events is the sum of their individual variances, and that the variance of multiplicative independent events is

$$
\begin{equation*}
\operatorname{var}\left(X_{1} X_{2} \ldots X_{n}\right)=\prod_{i}\left(\operatorname{var}\left(X_{i}\right)+\left[\mathrm{E}\left(X_{i}\right)\right]^{2}\right)-\prod_{i}\left[\mathrm{E}\left(X_{i}\right)\right]^{2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\hat{L}=\sum A_{i j}, \tag{3}
\end{equation*}
$$

and $\hat{C o}=\hat{L} /(R \times C)$. Likewise, the variance of the number of interactions is $\operatorname{var}(\hat{L})=$ $\sum\left(A_{i j}\left(1-A_{i j}\right)\right)$.

Node degree. The degree distribution of a network is the distribution of the number of interactions established (number of successors) and received (number of predecessors) by each node. The expected degree of species i is

$$
\begin{equation*}
\hat{k}_{i}=\sum_{j}\left(A_{i j}+A_{j i}\right) \tag{4}
\end{equation*}
$$

The variance of the degree of each species is $\operatorname{var}\left(\hat{k}_{i}\right)=\sum_{j}\left(A_{i j}\left(1-A_{i j}\right)+A_{j i}\left(1-A_{j i}\right)\right)$. Note also that as expected, $\sum \hat{k}_{i}=2 \hat{L}$.

Generality and vulnerability. By simplification of the above, generality \hat{g}_{i} and vulnerability \hat{v}_{i} are given by, respectively, $\sum_{j} A_{i j}$ and $\sum_{j} A_{j i}$, with their variances $\sum_{j} A_{i j}\left(1-A_{i j}\right)$ and $\sum_{j} A_{j i}\left(1-A_{j i}\right)$.

$$
\begin{equation*}
n_{i j}^{\hat{(k)}}=\left(\mathbf{A}^{k}\right)_{i j} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\hat{p}_{i j}^{(3)}=\left(1-A_{i j}\right)\left(1-\hat{p}_{i j}^{(2)}\right)\left(1-\prod(1-\mathbf{m})\right) \prod_{x, y}\left(\left(1-A_{i y}\right)\left(1-A_{x j}\right)\right) \tag{7}
\end{equation*}
$$

where \mathbf{m} is the vector of all $A_{i x} A_{x y} A_{y j}$ for $x \notin(i, j), y \neq x$. This gives the probability of having at least one path from i to j, passing through any pair of nodes x and y, without having any

$$
\begin{equation*}
\eta^{(R)}=\sum_{i<j} \frac{\sum_{k} A_{i k} A_{j k}}{\min \left(g_{i}, g_{j}\right)^{\prime}} \tag{8}
\end{equation*}
$$

where g_{i} is the expected generality of species i. The reciprocal holds for $\eta^{(C)}$ when using v_{i} (the vulnerability) instead of g_{i}.

The values returned are within $[0 ; 1]$, with $\eta=1$ indicating complete nestedness.

Modularity. Modularity represents the extent to which networks are compartmentalized, i.e. the tendency for subsets of species to be strongly connected together, while they are weakly connected to the rest of the network (Stouffer \& Bascompte 2011). Modularity is measured as the proportion of interactions between nodes of an arbitrary number of modules, as opposed to the random expectation. Assuming a vector \mathbf{s} which, for each node in the network, holds the value of the module it belongs to (an integer in $[1, c]$), Newman (2004) proposed a general measure of modularity, which is

$$
\mathcal{Q}=\sum_{m=1}^{c}\left(e_{m m}-a_{m}^{2}\right)
$$

$$
\begin{equation*}
C_{i}=\sum_{j=1}^{n} \sum_{k=1}^{\infty} \alpha^{k}\left(\mathbf{A}^{k}\right)_{j i} \tag{9}
\end{equation*}
$$

, where c is the number of modules,

$$
e_{m m}=\sum_{i j} \frac{\mathbf{A}_{i j}}{2 c} \delta\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)
$$

, and

$$
a_{m}=\sum_{n} e_{m n}
$$

, This formula can be directly applied to probabilistic networks. path. on this, the expected centrality of species i is
with δ being Kronecker's function, returning 1 if its arguments are equal, and 0 otherwise.

Centrality. Although node degree is a rough first order estimate of centrality, other measures are often needed. We derive the expected value of centrality according to Katz (1953). This measures generalizes to directed acyclic graphs (whereas other do not). For example, although eigenvector centrality is often used in ecology, it cannot be measured on probabilistic graphs. Eigenvector centrality requires the matrix's largest eigenvalues to be real, which is not the case for all probabilistic matrices. The measure proposed by Katz is a useful replacement, because it accounts for the paths of all length between two species instead of focusing on the shortest

As described above, the expected number of paths of length k between i and j is $\left(\mathbf{A}^{k}\right)_{i j}$. Based

The parameter $\alpha \in[0 ; 1]$ regulates how important long paths are. When $\alpha=0$, only first-order paths are accounted for (and the centrality is equal to generality). \%DG: to the degree or

$$
\begin{equation*}
\prod_{j}\left(1-A_{i j}\right) . \tag{11}
\end{equation*}
$$ size of the matrix, we suggest normalizing by $\mathbf{C}=\sum C$, so that

$$
\begin{equation*}
C_{i}=\frac{C_{i}}{\mathbf{C}} \tag{10}
\end{equation*}
$$ with probability

$$
\begin{equation*}
\hat{P P}=\sum_{i}\left(\prod_{j}\left(1-A_{i j}\right)\right) . \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{var}(\hat{P P})=\sum_{i}\left(\prod_{j}\left(1-A_{i j}^{2}\right)-\prod_{j}\left(1-A_{i j}\right)^{2}\right) \tag{13}
\end{equation*}
$$

generality? When $\alpha=1$, paths of all length are equally important. As C_{i} is sensitive to the

This results in the expected relative centrality of each node in the probabilistic network.

Species with no outgoing links. Estimating the number of species with no outgoing links (successors) can be useful when predicting whether, e.g., predators will go extinct. A species has no successors if it manages not to establish any outgoing interaction, which for species i happens

8 The number of expected such species is therefore the sum of the above across all species:
and its variance is

Note that in a non-probabilistic context, species with no outgoing links would be considered primary producers. This is not the case here: if interactions are probabilistic events, then e.g. a top predator may have no preys, which do not mean it will not become a primary producer. For this reason, the trophic position of the species may better be measured on the binary version of the matrix.

$$
\begin{equation*}
\hat{T P}=\sum_{i}\left(\prod_{j \neq i}\left(1-A_{j i}\right)\right) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{j \neq i}\left(1-A_{i j}\right)\left(1-A_{j i}\right) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\hat{F S}=\sum_{i} \prod_{j \neq i}\left(1-A_{i j}\right)\left(1-A_{j i}\right) \tag{16}
\end{equation*}
$$

Note that we exclude self-interactions, as top-predators can, and often do, engage in cannibalism.

Number of species with no interactions. Predicting the number of species with no interactions (or whether any species will have at least one interaction) is useful when predicting whether species will be able to integrate into an existing network, for example. Note that from a methodological point of view, this can be a helpful a priori measure to determine whether null models of networks will have a lot of species with no interactions, and so will require intensive sampling.

A species has no interactions with probability

As for the above, the expected number of species with no interactions (free species) is the sum of this quantity across all i :

The variance of the number of species with no interactions is

Species with no incoming links. Using the same approach as for the number of species with no outgoing links, the expected number of species with no incoming links is therefore

$$
\begin{equation*}
\operatorname{var}(\hat{F S})=\sum_{i}\left(A_{i j}\left(1-A_{i j}\right) A_{j i}\left(1-A_{j i}\right)+A_{i j}\left(1-A_{i j}\right) A_{j i}^{2}+A_{j i}\left(1-A_{j i}\right) A_{i j}^{2}\right) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\hat{N}_{\mathrm{m}}=\sum_{i} \sum_{j \neq i \neq j} \sum_{k \neq j} P(i, j, k \in \mathrm{~m}) \tag{20}
\end{equation*}
$$

Self-loops. Self-loops (the existence of an interaction of a species onto itself) is only meaningful in unipartite networks. The expected proportion of species with self-loops is very simply defined as $\operatorname{Tr}(\mathbf{A})$, that is, the sum of all diagonal elements. The variance is $\operatorname{Tr}(\mathbf{A} \diamond(1-\mathbf{A}))$, where \diamond is the element-wise product operation.

Motifs. Motifs are sets of pre-determined interactions between a fixed number of species (Milo et al. 2002; Stouffer et al. 2007), such as for example one predator sharing two preys. As there are an arbitrarily large number of motifs, we will illustrate the approach with only two examples.

The probability that three species form an apparent competition motif (one predator, two prey) where i is the predator, j and k are the prey, is

$$
\mathrm{P}(i, j, k \in \text { app. comp })=A_{i j}\left(1-A_{j i}\right) A_{i k}\left(1-A_{k i}\right)\left(1-A_{j k}\right)\left(1-A_{k j}\right)
$$

Similarly, the probability that these three species form an omnivory motif, in which i and j consume k and i consumes j, is

$$
\begin{equation*}
\mathrm{P}(i, j, k \in \text { omniv. })=A_{i j}\left(1-A_{j i}\right) A_{i k}\left(1-A_{k i}\right) A_{j k}\left(1-A_{k j}\right) \tag{19}
\end{equation*}
$$

The probability of the number of any motif m with three species in a network is given by

It is indeed possible to have an expression of the variance of this value, or of the variance of any three species forming a given motif, but their expressions become rapidly untractable and are better computed than written.

Network comparison. The dissimilarity of a pair of (ecological) networks can be measured using the framework set forth by Koleff et al. (2003). Measures of β-diversity compute the dissimilarity between two networks based on the cardinality of three sets, a, c, and b, which are respectively the shared items, items unique to superset (network) 1, and items unique to superset 2 (the identity of which network is 1 or 2 matters for asymmetric measures). Supersets can be the species within each network, or the interactions between species. Following Poisot et al. (2012), the dissimilarity of two networks can be measured as either $\beta_{W N}$ (all interactions), or $\beta_{O S}$ (interactions involving only common species), with $\beta_{O S} \leq \beta_{W N}$.

Within our framework, these measures can be applied to probabilistic networks. The expected values of \bar{a}, \bar{c}, and \bar{b} are, respectively, $\sum \mathbf{A}_{1} \diamond \mathbf{A}_{2}, \sum \mathbf{A}_{1} \diamond\left(1-\mathbf{A}_{2}\right)$, and $\sum\left(1-\mathbf{A}_{1}\right) \diamond \mathbf{A}_{2}$. Whether $\beta_{O S}$ or $\beta_{W N}$ is measured requires to alter the matrices \mathbf{A}_{1} and \mathbf{A}_{2}. To measure $\beta_{O S}$, one must remove all unique species; to measure $\beta_{W N}$, one must expand the two matrices so that they have the same species at the same place, and give a weight of 0 to the added interactions.

Applications

In this section, we contrast the use of probabilistic measures to the current approaches of either using binary networks, or working with null models through simulations. When generating random networks, what we call Bernoulli trials from here on, a binary network is generated by doing a Bernoulli trial with probability $A_{i j}$, for each element of the matrix. This is problematic because higher order structures involving rare events will be under-represented in the sample, and because most naive approaches are likely to generate free species, especially in sparsely connected networks frequently encountered in ecology (Milo et al. 2003; Poisot \& Gravel 2014) - on the other hand, non-naive approaches break the assumption of independence between interactions.

Comparison of probabilistic networks. In this sub-section, we apply the above measures to a bacteria-phage interaction network. Poullain et al. (2008) have measured the probability that 24 phages can infect 24 strains of bacteria of the Pseudomonas fluorescens species (group SBW25). Each probability has been observed though independent infection assays, and can take values of $0,0.5$ (interaction is variable), and 1.0.

Measuring the structure of the Binary, Bernoulli trials, and Probabilistic network gives the following result:

Measure	Binary	Bernoulli trials	Probabilistic
links	336	221.58 ± 57.57	221.52 ± 57.25
η	0.73	0.528	0.512
$\eta^{(R)}$	0.72	0.525	0.507
$\eta^{(C)}$	0.75	0.531	0.518

As these results show, transforming the probabilistic matrix into a binary one (i) overestimates nestedness by ≈ 0.2, and (ii) overestimates the number of links by 115 . For the number of links, both the probabilistic measures and the average and variance of 10^{4} Bernoulli trials were in strong agreement (they differ only by the second decimal place).

Using Bernoulli trials had the effect of slightly over-estimating nestedness. The overestimation is statistically significant from a purely frequentist point of view, but significance testing is rather meaningless when the number of replicates is this large and can be increased arbitrarily; what is important is that the relative value of the error is small enough that Bernoulli trials are able to adequately reproduce the probabilistic structure of the network. It is not unexpected that Bernoulli trials are this close to the analytical expression of the measures; due to the experimental design of the Poullain et al. (2008) study, probabilities of interactions are bound to be high, and so variance is minimal (most elements of A have a value of either 0 or 1 , and so their individual variance is 0 - though their confidence interval varies as a function of the number of observations from which the probability is derived). Still, despite overall low variance, the binary approach severely mis-represents the structure of the network.

Null-model based hypothesis testing. In this section, we analyse 59 pollination networks from the literature using two usual null models of network structure, and two models with intermediate constraints. These data cover a wide range a situations, from small to large, and from densely to sparsely connected networks. They provide a good demonstration of the
performance of probabilistic metrics. Data come from the InteractionWeb Database, and were queried on Nov. 2014.

We use the following null models. First (Type I, Fortuna \& Bascompte (2006)), any interaction between plant and animals happens with the fixed probability $\mathrm{P}=C o$. This model controls for connectance, but removes the effect of degree distribution. Second, (Type II, Bascompte et al. (2003)), the probability of an interaction between animal i and plant j is $\left(k_{i} / R+k_{j} / C\right) / 2$, the average of the richness-standardized degree of both species. In addition, we use the models called Type III in and out (Poisot et al. 2013), that use the row-wise and column-wise probability of an interaction respectively, as a way to understand the impact of the degree distribution of upper and lower level species.

Note that these null models will take a binary network, and through some rules turn it into a probabilistic one. Typically, this probabilistic network is used as a template to generate Bernoulli trials and measure some of their properties, the distribution of which is compared to the empirical network. This approach is computationally inefficient (Poisot \& Gravel 2014), especially using naive models (Milo et al. 2003), and as we show in the previous section, can yield biased estimates of the true average of nestedness (and presumably other properties).

We measured the nestedness of the 59 (binary) networks, then generated the random networks under the four null models, and calculated the expected nestedness using the probabilistic measure. For each null model i, the difference $\Delta_{N}^{(i)}$ in nestedness N is expressed as $\Delta_{N}^{(i)}=$ $N-\mathcal{N}^{(i)}(N)$, where $\mathcal{N}^{(i)}(N)$ is the nestedness of null model i. Our results are presented in Figure 1.

There are two striking results. First, empirical data are consistently more nested than the null expectation, as evidenced by the fact that all Δ_{N} values are strictly positive. Second, this underestimation is linear between null models I and II (in that it does not depends on how nested the empirical network is), although null model II is always closer to the nestedness of the empirical network (which makes sense, since null model II incorporates the higher order constraint of respecting the degree distribution of both levels). That the nestedness of the null
model probability matrix is so strongly determined by the nestedness of the empirical networks calls for a closer evaluation of how the results of null models are interpreted (especially since Bernoulli simulations revealed a very low variance in the simulated nestedness).

There is a strong, and previously unaccounted for, circularity in this approach: empirical networks are compared to a null model which, as we show, has a systematic bias and a low variance (in simulations), meaning that differences in nestedness that are small (thus potentially ecologically irrelevant) have a good chance of being reported as significant. Interestingly, models III in and III out made overall fewer mistakes at estimating nestedness - resp. 0.129 and 0.123 , compared to resp. 0.219 and 0.156 for model I and II. Although the error is overall sensitive to model type (Kruskal-Wallis $\chi^{2}=35.80$, d.f. $=3, p \leq 10^{-4}$), the three pairs of models that where significantly different after controlling for multiple comparisons are I and II, I and III in, and I and III out (model II is not different from either models III in or out).

In short, this analysis reveals that (i) the null expectation of a network property under randomization scenarios can be obtained through the analysis of the probabilistic matrix, instead of the analysis of simulated Bernoulli networks; (ii) Different models have different systematic biases, with models of the type III performing overall better for nestedness than any other

Figure 1. Results of the null model analysis of 59 plant-pollination networks. A. There is a consistent tendency for (i) both models I and II to estimate less nestedness than in the empirical network, although null model II yields more accurate estimates. B. Models III in and III out also estimate less nestedness than the empirical network, but neither has a systematic bias.
models. This can be explained by the fact that nestedness of a network, as expressed by Bastolla et al. (2009), is the average of a row-wise and column-wise nestedness. These depend on the species degree, and as such should be well predicted by models III.

Implications for data collection

We developed and presented a set of measures to quantify the expected network structure, using the probability that each interaction is observed or happens, in a way that do not require time-consuming simulations. Our framework is set up in such a way that the probabilities of interactions are considered to be independent. Estimating interaction probabilities based on species abundances (Olito \& Fox 2014; Canard et al. 2014) do not, for example, yield independent probabilities: changing the abundance of one species changes all probabilities in the network. They are not Bernoulli events either, as the sum of all probabilities derived this way sums to unity. On the other hand, "cafeteria experiments" give truly independent probabilities of interactions; even a simple criteria, such as the frequency of interactions when the two species are put together, is a way of estimating probability. Using the approach outline by Poisot et al. (2014), both sources of information (species abundance and the outcome of experiments) can be combined to estimate the probability that interactions will happen in empirical communities. This effort requires improved communications between scientists collecting data and scientists developing methodology to analyze them.

Another way to obtain approximation of the probability of interactions is to use spatially replicated sampling. Some studies (Tylianakis et al. 2007; Olito \& Fox 2014; Carstensen et al. 2014; Trøjelsgaard et al. 2015) surveyed the existence of interactions at different locations, and a simple approach of dividing the number of observations of an interaction by the number of cooccurence of the species involved will provide a (somewhat crude) estimate of the probability of this interaction. This approach requires extensive sampling, especially since interactions are harder to observe than species (Poisot et al. 2012; Gilarranz et al. 2014), yet it enables the re-analysis of existing datasets in a probabilistic context.

Understanding the structure of ecological networks, and whether it relates to ecosystem properties, is emergent as a key challenge for community ecology. A proper estimation of this
structure requires tools that address all forms of complexity, the most oft-neglected yet pervasive of which is the fact that interactions are variable. By developing these metrics, we allow future analyses of network structure to account for this phenomenon.

Acknowledgements: This work was funded by a CIEE working group grant to TP, DG, and DBS. TP is funded by a starting grant from the Université de Montréal.

References

Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. \& Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227-1239. Retrieved October 10, 2014,

Bascompte, J., Jordano, P., Melián, C.J. \& Olesen, J.M. (2003). The nested assembly of plantanimal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383-9387.

Bastolla, U., Fortuna, M.A., Pascual-García, A., Ferrera, A., Luque, B. \& Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018-1020. Retrieved October 10, 2014,

Canard, E.F., Mouquet, N., Mouillot, D., Stanko, M., Miklisova, D. \& Gravel, D. (2014). Empirical evaluation of neutral interactions in host-parasite networks. The American Naturalist, 183, 468-479.

Carstensen, D.W., Sabatino, M., Trøjelsgaard, K. \& Morellato, L.P.C. (2014). Beta Diversity of Plant-Pollinator Networks and the Spatial Turnover of Pairwise Interactions. PLoS ONE, 9, e112903. Retrieved November 19, 2014,

Chamberlain, S.A., Cartar, R.V., Worley, A.C., Semmler, S.J., Gielens, G., Elwell, S., Evans, M.E., Vamosi, J.C. \& Elle, E. (2014). Traits and phylogenetic history contribute to network structure across Canadian plant-pollinator communities. Oecologia, 1-12. Retrieved September 11, 2014, from http://link.springer.com/article/10.1007/s00442-014-3035-2

Duffy, J.E. (2002). Biodiversity and ecosystem function: the consumer connection. Oikos, 99, 201-219.

Dunne, J.A. (2006). The Network Structure of Food Webs. Ecological networks: Linking structure and dynamics (eds J.A. Dunne \& M. Pascual), pp. 27-86. Oxford University Press.

Fortuna, M.A. \& Bascompte, J. (2006). Habitat loss and the structure of plant-animal mutualistic networks. Ecology Letters, 9, 281-286. Retrieved January 21, 2015,

Gilarranz, L.J., Sabatino, M., Aizen, M.A. \& Bascompte, J. (2014). Hot spots of mutualistic networks. Journal of Animal Ecology, n/a-n/a. Retrieved November 17, 2014, Haerter, J.O., Mitarai, N. \& Sneppen, K. (2014). Phage and bacteria support mutual diversity in a narrowing staircase of coexistence. The ISME journal.

Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist, 129, 657-677.

Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18, 39-43. Retrieved October 9, 2014,

Koleff, P., Gaston, K.J. \& Lennon, J.J. (2003). Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382.

McCann, K.S. (2014). Diversity and Destructive Oscillations: Camerano, Elton, and May. Bulletin of the Ecological Society of America, 95, 337-340. Retrieved October 7, 2014,

Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J. \& Alon, U. (2003). On the uniform generation of random graphs with prescribed degree sequences. arXiv:cond-mat/0312028. Retrieved October 9, 2014, from http://arxiv.org/abs/cond-mat/0312028

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. \& Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science (New York, N.Y.), 298, 824-7.

Mirchandani, P.B. (1976). Shortest distance and reliability of probabilistic networks. Computers \mathcal{E} Operations Research, 3, 347-355. Retrieved October 12, 2014, from http ://www. sciencedirect . com/science/article/pii/0305054876900174

Newman, M.E.J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69, 066133. Retrieved February 24, 2015,

Olesen, J.M., Bascompte, J., Dupont, Y.L., Elberling, H., Rasmussen, C. \& Jordano, P. (2011). Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 278, 725-732. Retrieved October 7, 2014,

Olito, C. \& Fox, J.W. (2014). Species traits and abundances predict metrics of plant-pollinator network structure, but not pairwise interactions. Oikos, n/a-n/a. Retrieved January 19, 2015,

Poisot, T. (2012). L'ABC de la spécialisation: apparition, biodiversité, conservation. Le Prisme à Idées, 4, 49-52.

Poisot, T. \& Gravel, D. (2014). When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ, 2, e251. Retrieved September 13, 2014,

Poisot, T., Canard, E., Mouillot, D., Mouquet, N. \& Gravel, D. (2012). The dissimilarity of species interaction networks. Ecology Letters, 15, 1353-1361. Retrieved November 3, 2014, Poisot, T., Lounnas, M. \& Hochberg, M.E. (2013). The structure of natural microbial enemyvictim networks. Ecological Processes.

Poisot, T., Stouffer, D.B. \& Gravel, D. (2014). Beyond species: why ecological interaction networks vary through space and time. Oikos, n/a-n/a. Retrieved November 5, 2014, Poullain, V., Gandon, S., Brockhurst, M.A., Buckling, A. \& Hochberg, M.E. (2008). The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution, 62, 1-11. Retrieved October 10, 2014,

Stouffer, D.B. \& Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 108, 3648-3652.

Stouffer, D.B., Camacho, J., Jiang, W. \& Amaral, L.A.N. (2007). Evidence for the existence of a robust pattern of prey selection in food webs. Proceedings of the Royal Society B: Biological Sciences, 274, 1931-40.

Thébault, E. \& Loreau, M. (2003). Food-web constraints on biodiversity-ecosystem functioning relationships. Proceedings of the National Academy of Sciences of the United States of America, 100, 14949-14954.

1 Trøjelsgaard, K., Jordano, P., Carstensen, D.W. \& Olesen, J.M. (2015). Geographical variation in 2 mutualistic networks: similarity, turnover and partner fidelity. Proceedings of the Royal Society

3 B: Biological Sciences, 282, 20142925. Retrieved February 1, 2015,
4 Tylianakis, J.M., Tscharntke, T. \& Lewis, O.T. (2007). Habitat modification alters the structure 5 of tropical host-parasitoid food webs. Nature, 445, 202-205. Retrieved January 28, 2013, from

6 http://www.nature.com/nature/journal/v445/n7124/abs/nature05429.html
7 Yeakel, J.D., Guimarães, P.R., Novak, M., Fox-Dobbs, K. \& Koch, P.L. (2012). Probabilistic 8 patterns of interaction: the effects of link-strength variability on food web structure. Journal of

9 The Royal Society Interface, rsif20120481. Retrieved November 3, 2014,

