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Abstract1

The inference of demographic history from genome data is hindered by a lack of efficient computa-2

tional approaches. In particular, it has proven difficult to exploit the information contained in the distri-3

bution of genealogies across the genome. We have previously shown that the generating function (GF) of4

genealogies can be used to analytically compute likelihoods of demographic models from configurations5

of mutations in short sequence blocks (Lohse et al., 2011). Although the GF has a simple, recursive form,6

the size of such likelihood computations explodes quickly with the number of individuals and applications7

of this framework have so far been limited to small samples (pairs and triplets) for which the GF can be8

written down by hand. Here we investigate several strategies for exploiting the inherent symmetries of the9

coalescent. In particular, we show that the GF of genealogies can be decomposed into a set of equiva-10

lence classes which allows likelihood calculations from non-trivial samples. Using this strategy, we used11

Mathematica to automate block-wise likelihood calculations based on the GF for a very general set of de-12

mographic scenarios that may involve population size changes, continuous migration, discrete divergence13

and admixture between multiple populations. To give a concrete example, we calculate the likelihood for14

a model of isolation with migration (IM), assuming two diploid samples without phase and outgroup in-15

formation, and compare the power of our approach to that of minimal pairwise samples. We demonstrate16

the new inference scheme with an analysis of two individual butterfly genomes from the sister species17

Heliconius melpomene rosina and Heliconius cyndo.18
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Genomes contain a wealth of information about the demographic and selective history of populations.19

However, efficiently extracting this information to fit explicit models of population history remains a con-20

siderable computational challenge. It is currently not feasible to base demographic inference on a complete21

description of the ancestral process of coalescence and recombination, and so inference methods generally22

rely on making simplifying assumptions about recombination (but see Rasmussen et al., 2014). In the most23

extreme case of methods based on the site frequency spectrum (SFS), information contained in the physical24

linkage of sites is ignored altogether (Gutenkunst et al., 2009; Excoffier et al., 2013). Because the SFS is25

a function only of the expected length of genealogical branches (Griffiths & Tavaré, 1998; Chen, 2012),26

this greatly simplifies likelihood computations. However, it also sacrifices much of the information about27

past demography. Other methods approximate recombination along the genome as a Markov process (Li &28

Durbin, 2011; Harris & Nielsen, 2013). However, this approach is computationally intensive, limited to sim-29

ple models (Schiffels & Durbin, 2014) and/or pairwise samples (Li & Durbin, 2011; Mailund et al., 2012)30

and requires phase information and well assembled genomes which are still only available for a handful of31

species.32

A different class of methods assumes that recombination can be ignored within sufficiently short blocks33

of sequence (Hey & Nielsen, 2004; Yang, 2002). The benefit of this "multi-locus assumption" is that it gives34

a tractable framework for analysing linked sites, and so captures the information contained in the distribution35

of genealogical branches. Multi-locus methods are also attractive in practice because they naturally apply to36

RAD data or partially assembled genomes that can now be generated for any species (e.g. Davey & Blaxter,37

2011; Hearn et al., 2014).38

For small samples, the probability of seeing a particular configuration of mutations at a locus can be39

obtained analytically. For example, Wilkinson-Herbots (2008) and Wang & Hey (2010) have derived the40

distribution of pairwise differences under a model of isolation with migration (IM) and Wilkinson-Herbots41
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(2012) has extended this to a history where migration is limited to an initial period. Yang (2002) derives the42

probability of mutational configurations under a divergence model for three populations and a single sample43

from each and Zhu & Yang (2012) have included migration between the most recently diverged pair of44

populations in this model. However, all of these particular cases can be calculated using a general procedure45

based on the generating function for the genealogy (Lohse et al., 2011). Here, we explain how the GF, and46

– from it – model likelihoods can be efficiently computed for larger samples than has hitherto been possible.47

The generating function of genealogies48

Assuming an infinite sites mutation model and an outgroup to polarize mutations, the information in a non-49

recombining block of sequence can be summarized as a vector k of counts of mutations on all possible50

genealogical branches t. Both t and k are labelled by the individuals that descend from them. We have51

previously shown that the probability of seeing a particular configuration of mutations k can be calculated52

directly from the Laplace Transform or generating function (GF) of genealogical branches (Lohse et al.,53

2011). Given a large sample of unlinked blocks, this gives a framework for computing likelihoods under54

any demographic model and sampling scheme. Full details are given in Lohse et al. (2011). Briefly, the GF55

is defined as ψ[ω = E[e−ω.t], where ω is a vector of dummy variables corresponding to t. Setting the ω to56

zero necessarily gives one, the total probability; differentiating with respect to ωi and setting the ω to zero57

gives (minus) the expected coalescence time. If we assume an infinite sites mutation model, the probability58

of seeing ks mutations on a particular branch s is (Lohse et al., 2011, eq. 1):59

P [kS ] = E

[
e−µtS

(µtS) kS

kS !

]
=

(−µ)kS

kS !

(
∂kSψ

∂ωSkS

)
ωS=µ (1)

This calculation extends to the joint probability of mutations P [k]. Using the GF rather than the dis-60

tribution of branches itself to compute P [k] is convenient because we avoid the Felsenstein (1988) integral61
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and because the GF has a very simple form: going backwards in time, the GF is a recursion over successive62

events in the history of the sample (Lohse et al., 2011, eq. 4):63

ψ[Ω] =

∑
i λiψ [Ωi](∑

i λi +
∑
|S|=1 ωS

) (2)

where Ω denotes the sampling configuration (i.e. the location and state of lineages) before some event64

i and Ωi the sampling configuration afterwards. Events during this interval occur with a total rate
∑
i λi.65

The numerator is a sum over all the possible events i each weighted by its rate λi. Equation 2 applies to any66

history that consist of independently occuring events. As outlined by Lohse et al. (2011), the GF for models67

involving discrete events (population splits, bottlenecks) can be found by inverting the GF of the analogous68

continuous model. In other words, if we know the GF for a model that assumes an exponential rate of events69

at rate Λ, then taking the inverse LT wrt Λ gives the GF for any fixed time of the event.70

In principle, the GF recursion applies to any sample size and model and can be automated using sym-71

bolic software (such as Mathematica). In practice however, likelihood calculations based on the GF have72

so far been limited to pairs and triplets: Lohse et al. (2011) computed likelihoods for an IM model with73

unidirectional migration for three sampled genomes and Lohse et al. (2012) and Hearn et al. (2014) derived74

likelihoods for a range of divergence histories for a single genome from each of three populations with in-75

stantaneous admixture, including the model used by Green et al. (2010) to infer Neandertal admixture into76

modern humans (Lohse & Frantz, 2014).77

There are several serious challenges in applying the GF framework to larger samples of individuals.78

First, the number of sample configurations (and hence GF equations) grows super-exponentially with sam-79

ple size. Thus, the task of solving the GF and differentiating it to tabulate probabilities for all possible mu-80

tational configurations quickly becomes computationally prohibitive. Second, models involving reversible81

state transitions, such as two-way migration or recombination between loci, include a potentially infinite82
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number of events. Solving the GF for such cases involves matrix inversions (Hobolth et al., 2011; Lohse83

et al., 2011). Third, while assuming infinite sites mutations may be convenient mathematically and realistic84

for closely related sequences, this assumption becomes problematic for more distantly related outgroups that85

are used to polarise mutations in practice. Finally, being able to uniquely map mutations onto genealogical86

branches assumes phased data that are rarely available for diploid organisms, given the limitations of current87

sequencing technologies.88

In the first part of this paper, we discuss each of these problems in turn and introduce several strategies89

to remedy the explosion of terms and computation time. These arguments apply generally, irrespective90

of the peculiarities of particular demographic models and sampling schemes, and suggest a computational91

"pipeline" for likelihood calculations for non-trivial samples of individuals (up to n = 6). The accompanying92

Mathematica notebook implements this scheme for a wide range of demographic histories that may involve93

arbitrary divergence, admixture and migration between multiple populations, as well as population size94

changes. As a concrete example, we describe maximum likelihood calculations for a model of isolation with95

continuous migration (IM) between two populations for unphased and unpolarized data from two diploid96

individuals. We compare the power of this scheme to that of minimal samples of a single haploid sequence97

per population. Finally, to illustrate the new method, we estimate divergence and migration between the98

butterfly species Heliconius melpomene and H. cyndo (Martin et al., 2013).99

Models and Methods100

Partitioning the GF into equivalence classes101

Because the GF is defined in terms of genealogical branches and each topology is specified by a unique set102

of branches, an intuitive strategy for computing likelihoods is to partition the GF into the contributions from103
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different topologies. To condition on a certain topology, we simply set GF terms that are incompatible with104

it to 0 (Lohse et al., 2011). Importantly however, such incompatible events still contribute to the total rate105 ∑
i λi of events in the denominator of equation 2. Then, setting all ω in the topology-conditioned GF to zero106

gives the probability of that particular topology. Although conditioning on a particular topology gives a GF107

with a manageable number of terms, it is clearly not practical to do this for all possible topologies, given108

their sheer number even for moderate n (Table 1).109

In the following, we will distinguish between ranked and unranked topologies. The GF is a sum over110

all possible sequences of events in the history of a sample; Edwards (1970) called them "labelled histories".111

Considering only coalescence events, each labelled history corresponds to a ranked topology, i.e. a genealogy112

with unique leaf labels and a known order of nodes. A fundamental property of the standard coalescent,113

which follows directly from the exchangeability of genes sampled from the same population, is that all114

ranked topologies are equally likely (Hudson, 1983; Kingman, 1982). In other words, if we could somehow115

assign each mutation to a particular coalescence (i.e. internode) interval, we could use a much simpler GF,116

defined in terms of the (n − 1) coalescence intervals rather than the 2(n − 1) branches for inference. This117

logic underlies demographic methods that use the branch length information contained in well-resolved118

genealogies (e.g. Nee et al., 1995; Pybus et al., 2002) and coalescent-based derivations of the site frequency119

spectrum (Griffiths & Tavaré, 1998; Chen, 2012).120

Unfortunately however, when analysing sequence data from sexual organisms, we are generally limited121

by the number of mutations on any one genealogical branch and so often cannot resolve all nodes or their122

order. Although unranked topologies are not equiprobable, even under the standard coalescent, their leaf la-123

bels are still exchangeable. Therefore, each unranked, unlabelled topology, or "tree shape" sensu Felsenstein124

(1978, 2003), is an equivalence class that defines a set of identically distributed genealogies (Fig. 1). This125

means we only need to work out the GF for one representative (random labelling) per equivalence class. The126
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Table 1: Fundamental quantities of genealogies.
n branches ranked topologies unranked topologies EC 1 pop. ∗ EC 2 pop. ∗ Configurations ∗∗

2n − 2 (n!(n−1)!)
2(n−1) (2n− 3)!! (Felsenstein, 2003) (2 + km)2(n−1)

3 6 3 3 1 2 625
4 14 18 15 2 6 15625
6 62 2,700 945 6 49 9765625
8 254 1,587,600 135,135 23 560 6103515625
10 1022 2,571,912,000 34,469,425 98 7,139 3814697265625

∗ the number of equivalence classes. ∗∗ the total number of mutational configurations per equivalence class for a sample from 2
populations with km = 3.

full GF can then be written as a weighted sum of the GFs for such class representatives:127

ψ[ω] =
∑
h

nhψ[ωh] (3)

where, nh denotes the size of equivalence class h and ωh ⊂ ω is the set of dummy variables that corre-128

sponds to the branches of a single class representative in h. There are necessarily many fewer equivalence129

classes than labelled topologies (Table 1). For example, given a sample of size n = 6 from a single popula-130

tion, there are 945 unranked topologies, but only six equivalence classes (Fig. 1).131

Crucially, the idea of tree shapes as equivalence classes extends to any demographic model and sampling132

scheme. For samples from multiple populations, the equivalence classes are just the permutations of pop-133

ulation labels on (unlabelled) tree shapes. It is straightforward to generate and enumerate the equivalence134

classes (Felsenstein, 2003) for any sample. For example, for a sample of n = 6 from each of two populations135

(three per population), there are 49 equivalence classes (partially labelled shapes), which can be found by136

permuting the two population labels on the unlabelled tree shapes in figure 1.137

In general, the size of each equivalence class nh is a function of the number of permutations of indi-138

viduals on population labels. For ni individuals from population i, there are ni! permutations. Since the139

orientation of nodes is irrelevant, each symmetric node (i.e. connected to identical subclades) in the equiva-140
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Figure 1: Unranked, unlabelled topologies define equivalence classes of genealogies. For a sample of n = 6
from a single population there are six equivalence classes. Their size, i.e. the number of labelled genealogies
in each class (nh) is shown above.

360 180 90

360 45 90

lence class halves the number of unique permutations:141

nh =
∏
i

ni!/2
ns (4)

,142

where ns is the number of symmetric nodes.143

Any tree shape contains at least one further symmetry: there is at least one node which connects to two144

leaves. Because the branches descending from that node have the same length by definition, we can combine145

mutations (and hence ω terms) falling on them: E.g. for a triplet genealogy with topology (a, (b, c)), we146

can combine mutations on branch b and c without loss of information. The joint probability of seeing a147
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configuration with kb and kc mutations can be retrieved from P [kb + kc]:148

P [kb, kc] =
1

2

kb+kc
(
kb + kc
kb

)
P [kb + kc] (5)

We have previously made use of this in implementing likelihood calculations for triplet samples (Lohse149

et al., 2011). Although in principle, this combinatorial argument extends to arbitrary genealogies, one can150

show that, for larger samples, computing P [k] from mutational configurations defined in terms of internode151

intervals is computationally wasteful compared to the direct calculation (see File S1).152

Approximating models with reversible events153

Migration and recombination events are fundamentally different from coalescence and population diver-154

gence. Going backwards in time, they do not lead to simpler sample configurations. Thus, the GF for models155

involving migration and/or recombination is a system of coupled equations the solution of which involves156

matrix inversion and higher order polynomials and quickly becomes infeasible for large n (Hobolth et al.,157

2011). As an example, we consider two populations connected by symmetric migration at rate M = 4Nm.158

Given that in practice we are often interested in histories with low or moderate migration, it seems reason-159

able to consider an approximate model in which the number of migration events is limited. Using a Taylor160

series expansion, the full GF can be decomposed into histories with 1, 2, . . . nmigration events (Lohse et al.,161

2011). Note that the same argument applies to to recombination between discrete loci and can be used to162

derive the GF for the sequential Markov coalescent (McVean & Cardin, 2005). It is crucial to distinguish163

between M terms in the numerator and denominator. In other words, even if we stop including sampling164

configurations involving multiple migration events, M still contributes to the total rate
∑
i λi in the de-165

nominator. We can modify the GF for a pair of genes a and b sampled from two populations connected by166

symmetric migration (Lohse et al., 2011, eq. 9) to include an indicator variable γ that counts the number of167
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migration events:168

ψ∗[a\b] =
γM

(M + ωa + ωb)
ψ∗[a, b\∅]

ψ∗[a, b\∅] =
1

(1 +M + ωa + ωb)
(1 + γMψ∗[a\b])

(6)

Expanding ψ∗ in γ, the coefficients of γ, γ2 . . . γn correspond to histories with 1, 2, . . . n migration169

events. This is analogous to conditioning on a particular topology: the truncated GF does not sum to one170

(if we set the ω to zero), but rather gives the total probability of seeing no more than nmax events. This171

is convenient in practice because it immediately gives an estimate of the accuracy of the approximation.172

Expanding the solution of equation 6 around γ = 0 gives:173

ψ∗[a\b] =
∑
i

M i

((M + ωa + ωb)(1 +M + ωa + ωb))(i+1)/2
(7)

The GF conditional on there being at most one migration event is174

M

(M + ωa + ωb)(1 +M + ωa + ωb)
(8)

The error of this approximation is:175

1− ψ[a/b|Mmax = 1]ωa+ωb→0 =
M

M + 1
(9)

which is just the chance that a migration event occurs before coalescence (see Fig. 2). An analogous expan-176
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Figure 2: The error in limiting the number of migration events to nmax =1 (eqs. 1 & 2) (red), 2 (yellow) and
4 (green) for a pairwise sample in the IM model plotted against M for different divergence times T . The
results for a model of equilibrium migration without divergence is shown for comparison (blue).
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sion for the pairwise GF for the IM model (Lohse et al., 2011, eq. 13) gives:177

ψ[a/b|T,Mmax = 1] =
1

2

(
2Me−MT +

2

1 +M
− 2e−(M+1)TM2

1 +M

)
(10)

Expressions for the GF conditional on a maximum of 2, 3, . . . n migration events and for larger samples can178

be found by automating the GF recursion. While these do not appear to have a simple form, plotting the error179

against M and T (Fig. 2), shows that for recent divergence (T < 1) and moderate gene flow (M < 0.5),180

histories involving more than two migration events are extremely unlikely (p < 0.01) and can be ignored to181

a good approximation. Considering that for large n, coalescence, which occurs at rate n(n− 1)/2, becomes182

much more likely than migration (at rateMn), this approximation should be relatively robust to sample size.183

Unknown phase and root184

There are at least two further complications for block-wise likelihood computations in practice: First, the185

direct correspondence between mutation types and genealogical branches we have assumed so far, assumes186

that the infinite sites mutation model holds between in and outgroup, which is often unrealistic in practice.187

Second, given the current limitations of short read sequencing technology, genomic data are often unphased188

and one would ideally incorporate phase ambiguity explicitly rather than ignore it (e.g. Lohse & Frantz,189
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2014) or rely on computational phasing.190

Both unknown phase and root can be incorporated via a simple relabeling of branches. In generating the191

GF, we have labelled branches and corresponding ω variables by the tips (leaf-nodes) they are connected192

to. Crucially, the full GF expressed as a sum over equivalence class representatives has unique labels for all193

individuals, i.e. we distinguish genes from the same population. To incorporate unknown phase, we simply194

combine branches with the same set of descendants in each population. Each branch combination correspond195

to an entry in the (joint) site frequency spectrum (SFS). Consider for example two genes from each of two196

populations. There are six equivalence classes of rooted genealogies (Fig. 3). Combining all branches with197

the same population labels gives seven ω variables that correspond to unphased site types: ωa, ωb, ωab, ωaa,198

ωbb, ωaab, ωabb. In the absence of root information, we further combine the two branches on either side of199

the root. Denoting ω variables for unrooted branches by ∗ and the two sets of individuals they are connected200

to we have: ω∗{a,abb}, ω
∗
{b,abb}, ω

∗
{ab,ab}, ω

∗
{aa,bb}. The rooted branches contributing to each unrooted branch201

are indicated in colour in figure 3. The ω∗ terms correspond to the four types of variable sites defined by202

the (folded) SFS for two populations: k∗{a,abb} (heterozygous sites unique to a), k∗{b,aab} (heterozygous sites203

unique to b), k∗{ab,ab} (heterozygous sites shared by both) and k∗{aa,bb} (fixed differences between a and b).204

Note also that without the root, the six equivalence classes collapse to two unrooted equivalence classes205

(defined by branches t∗{aa,bb} and t∗{ab,ab}) (Fig. 3).206

The combinatorial arguments outlined above extend to arbitrary sample sizes and numbers of popula-207

tions. We modify eq. 9 to write the GF of an unrooted genealogy ψ[ω∗] as a sum over unrooted equivalence208

classes (denoted h∗), each of which is in turn a sum over rooted equivalence classes:209

ψ[ω∗] =
∑
h∗

∑
h∈h∗

ψ[ωh → ω∗h] (11)

Similarly, the GF for unphased data is given by combining ω variables with the same number of descen-210
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Figure 3: For a sample of two sequences from each of two populations (a and b), there are six classes
of equivalent, rooted genealogies (left); their sizes nh are shown above. Without root information, these
collapse to two unrooted genealogies (right). Without phase information, there are four mutation types
that map to specific branches in the rooted genealogy: heterozygous sites unique to one sample (t∗{a,abb}
and t∗{b,aab}, red and blue respectively), shared heterozygous sites (t∗{ab,ab}, green) and fixed, homozygous
differences (t∗{aa,bb}, black).

a b a b a b a b a b b a

b b b b b b a a

1

a a a

2 2

a

4 42

dants in each population. From this simplified GF, we can compute the probability of blockwise counts of211

mutation types defined by the SFS. Following Bunnefeld et al. (2015), who have used this extension of the212

SFS to block-wise data to fit bottleneck histories in a single population, we will refer to it as the blockwise213

site frequency spectrum (bSFS).214

Limiting the total number of mutational configurations215

In principle, we can compute the probability of seeing arbitrarily many mutations on a particular branch from216

equation 1. In practice however, the extra information gained by explicitly including configurations with217
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large numbers of mutations (which are very unlikely for short blocks) is limited, while the computational218

cost increases. An obvious strategy is to tabulate exact probabilities only up to a certain maximum number219

of mutations km per branch and combine residual probabilities for configurations involving more than km220

mutations on one or multiple branches. As described by Lohse et al. (2011) and Lohse et al. (2012), the221

residual probability of seeing more than km mutations on a particular branch s is given by222

P [ks ≥ km] = ψ[ω]|ωs→0 −
km∑
i=0

P [ks = i]

i.e. we subtract the sum of exact probabilties for configurations involving up to km mutations from the223

marginal probability of seeing branch s.224

Assuming that we want to distinguish between all 2(n−1) branches in a given equivalence class and use225

a global km for all branches, there are (km + 2) possible mutation counts per branch (including those with226

no mutations or more than km mutations on a branch) which gives (km+2)2(n−1) mutational configurations227

in total. For example, for n = 6 and km = 3 there are 9,765,625 mutational configurations per equivalence228

class (Table 1). Although this may seem daunting, most of these configurations are extremely unlikely, so229

a substantial computational saving can be made by choosing branch-specific km. We have implemented230

functions in Mathematica to tabulate P [k] for an arbitrary vector of km (File S1).231

The bSFS with km = 0 defines mutational configurations by the joint presence and/or absence of mu-232

tation types defined by the SFS in a block, irrespective of the number of mutations of each type. This233

constitutes an interesting special case. In the limit of very large blocks, i.e. if we assume an unlimited sup-234

ply of mutations, this converges to the topological probabilities of equivalence classes which can be obtained235

directly from the partitioned GF by setting all ω → 0. We can think of this set of probabilities as the "topol-236

ogy spectrum". For a sample of 3 genes from each of 2 populations this consists of 49 equivalence classes237

which reduce to 11 unrooted topologies (Fig. 6). Under the IM model with unidirectional migration, the GF238
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Figure 4: The topology spectrum for a sample of n = 6 from a two population IM model with asymmetric
migration and T = 1.5. The probabilities of all 11 unrooted topolgies are plotted againstM . The probability
of the most likely topology of reciprocal monophyly (((a, (a, a)), (b, (b, b))) is shown as a dashed line.
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0.001

0.010
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of each class is solvable using Mathematica (see Supplementary.nb). The most likely topology is reciprocal239

monophyly, i.e. (((a, a), a)), ((b, b), b)))). As expected, its probability decreases with M and increases with240

T .241

Results242

The various strategies for simplifying likelihood calculations based on the GF outlined above suggest a243

general "pipeline", each component of which can be automated:244

1. Generate all equivalence classes h and enumerate their sizes nh for a given sampling scheme.245

2. Generate and solve the GF conditional on one representative within each h.246

3. Take the Inverse Laplace Transform with respect to the parameters that correspond to discrete events247

(e.g. divergence, admixture, bottlenecks). These processes are initially modelled as occurring with a248
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continuous rate.249

4. Re-label ω variables to combine branches and equivalence classes that are indistinguishable in the250

absence of root and/or phase information.251

5. Find sensible km cut-offs for each mutation type from the data.252

6. Tabulate probabilities for all mutational configurations in each equivalence class.253

In the accompanying Mathematica notebook we have implemented this pipeline as a set of general254

functions. These can be used to automatically generate, solve and simplify the GF (step 1–3 above), and255

– from this – tabulate P [k], the likelihood of a large range of demographic models (involving population256

divergence, admixture and bottlenecks) (6 above). In principle, this automation works for arbitrary sample257

sizes. In practice however, the inversion step (3 above) and the tabulation of probabilities (6 above) become258

prohibitively slow for n > 6.259

To give a concrete example, we derive the GF for a model of isolation (at time T×2Ne generations) with260

migration (at rate M = 4Nem migrants per generation) (IM) between two populations (labelled a and b).261

We further assume that migration is unidirectional, i.e. from a to b forwards in time and that both populations262

and their common ancestral population are of the same effective size (we later relax this assumption when263

analysing data). As above, we consider the special case of a single diploid sample per population without264

root and phase information. We first derive some basic properties of unrooted genealogies under this model.265

We then investigate the power of likelihood calculations based on the bSFS. Finally, we apply this likelihood266

calculation to an example dataset from two species of Heliconius butterflies.267
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The distribution of unrooted branches under the IM model268

We can find the expected length of any branch (or combination of branches) s from the GF as: E[ts] =269

−∂ψ[ω]/∂ωs
∣∣
ω→0

. The expressions for the expected lengths of rooted branches are cumbersome (File S2).270

Surprisingly however, the expected lengths of the four unrooted branches t∗{aa,bb}, t
∗
{ab,ab}, t

∗
{a,abb} and271

t∗{b,aab}, each of which is a sum over the underlying rooted branches (Fig. 3), have a relatively simple form272

(Fig. 5):273

E[t∗{aa,bb}] =
e−(2+M)T (−6eTM2 − 24e

1
2 (4+M)T (1 +M) + 2(1 +M) + e(2+M)T + (24 + 24M + 7M2 +M3))

3M(1 +M)(2 +M)

E[t∗{ab,ab}] =
2(2e−(2+M)T +M)

3(2 +M)

E[t∗{a,abb}] =
4e−(2+M)T (3eTM − 1−M − 6e

1
2 (4+M)T (1 +M) + e(2+M)T (9 + 7M + 7M2))

3M(1 +M)(2 +M)

E[t∗{b,aab}] =
4(3− e−(2+M)T +M)

3(2 +M)

(12)

Similarly, the probability of the two unrooted topologies reduces to:274

p[t∗{aa,bb}] =
4e(2+M)T + 2M

3(2 +M)

p[t∗{ab,ab}] =1− p[t∗{aa,bb}]

(13)

We can recover the full distribution of rooted branches from the GF by taking the Inverse Laplace Trans-275

form (using Mathematica) with respect to the corresponding ω∗. While this does not yield simple ex-276

pressions (File S2), examining figure 6 illustrates that much of the information about population history is277

contained in the shape of the branch length distribution rather than its expectation (Fig. 5). For example,278
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Figure 5: The expected length of unrooted genealogical branches (eq. 12) for a sample of n = 4 under the
IM model of two populations (a and b) with asymmetric migration and population divergence time T = 1.5
(×2Ne generations). Colours correspond to those in figure 3.

2 4 6 8 10
M

0.5

1.0

1.5

2.0

2.5

3.0

E[t]

branches carrying fixed differences t∗{aa,bb} have a multi-modal distribution with discontinuities at T and the279

relative size of the first mode depends strongly on M .280

Power analysis281

We compared the power to detect post-divergence gene flow between two different blockwise likelihood cal-282

culations: the bSFS for a diploid genome per population (n = 4) and a minimal sample of a single haploid283

sequence (n = 2) per population. We measured power as the expected difference in support (E[∆lnL]) be-284

tween the IM model and a null model of strict divergence without gene flow and arbitrarily assumed datasets285

of 100 blocks. However, since we are assuming that blocks are unlinked, i.e. statistically independent,286

E[∆lnL] scales linearly with the number of blocks.287

Figure 7 shows the power to detect gene flow for a relatively old split (T = 1.5) and sampling blocks288

with an average of 1.5 heterozygous sites within each species (i.e. θ = 4Neµ = 1.5). Without gene flow,289

this corresponds to a total number of 5.2 mutations per block on average. Unsurprisingly, sampling a diploid290
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Figure 6: The length distribution of unrooted genealogical branches for a sample of n = 4 under the IM
model of two populations (a and b) with asymmetric migration and population divergence at T = 1.5 (in
2Ne generations).
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Figure 7: The power (E[∆lnL]) to distinguish between an IM model and a null model of strict divergence
(T = 1.5) from 100 unlinked blocks of length θ = 1.5 for different sample sizes and data summaries: the
total number of mutations in a sample of n = 2 (black) and n = 4 (grey), the bSFS for unphased data for
two diploids (n = 4) with root (green) and without root (blue). Dotted, dashed and solid lines correspond to
different maximum numbers of mutations per branch type, km = 0, 1 and 3 respectively.
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sequence from each population gives greater power to detect gene flow than pairwise samples (compare291

black and blue lines in figure 7). However, contrasting this with the power of a simpler likelihood calculation292

for n = 4 which is based only on the total number of mutations ST in each block (grey line in figure 7),293

illustrates that the additional information does not stem from the increase in sample size per se, but rather294

the addition of topology information. In fact, there is less information in a larger sample without topology295

information than in pairwise samples. Similarly, adding root information almost doubles power (green lines296

in Fig. 7).297

In comparison and perhaps surprisingly, the threshold km has relatively little effect on power. In other298

words, for realistically short blocks, most of the information is contained in the joint presence and absence299

of mutation types (regardless of their number), i.e. km = 0.300

Heliconius analysis301

To illustrate likelihood calculation based on the bSFS, we estimated divergence and gene flow between two302

species of Heliconius butterflies. The sister species H. cydno and H. melpomene rosina occur in sympatry303
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in parts of Central and South America, are known to hybridise in the wild at a low rate (Mallet et al., 2007),304

and have previously been shown to have experienced post-divergence gene flow (Martin et al., 2013). We305

sampled 150 bp blocks of intergenic, autosomal sequence for one individual genome of each species from306

the area of sympatry in Panama (chi565 and ro2071). These data are part of a larger resequencing study307

involving high coverage genomes for four individuals of each H. cydno and H. m. rosina as well as an308

allopatric population of H. melpomene from French Guiana (Martin et al., 2013). We excluded CpG islands309

and sites with low quality (GQ <30 and MQ<30), excessively low (<10) or high (>200) coverage and only310

considered sites that passed these filtering criteria in all individuals.311

We partitioned the intergenic sequence into blocks of 225bp length and sampled the first 150 bases312

passing filtering in each block. 6.3% of blocks violated the 4-gamete criterion (i.e. contained both fixed313

differences and shared heterozygous sites) and were removed. This sampling strategy yielded 161,726 blocks314

with an average per site heterozygosity of 0.017 and 0.015 in H. m. rosina and H. cydno respectively (Fig.315

8). Summarizing the data by counting the four mutation types in each block gave a total of 2,337 unique316

mutational configurations, 1,743 of which occured more than once.317

We initially used all blocks (regardless of linkage) to obtain point estimates of parameters under three318

models: i) strict isolation without migration (Div) ii) isolation with migration from H. cydno into H. m.319

rosina (IMc→m) and iii) isolation with migration from H. m. rosina into H. cydno (IMc→m). In all cases,320

we assumed that the common ancestral population shared its Ne only with one descendant species while the321

other species has a different Ne. We maximise lnL under each model using Nelder-Mead simplex optimi-322

sation implemented in the Mathematica function NMaximise. To compare models, we corrected for LD by323

rescaling ∆lnL with a factor of 1/121. This admittedly ad hoc correction was obtained after examining the324

decay of LD between pairs of blocks with distance (for scaffolds >200kb) (File S2). At a distance of 121325

blocks (which corresponds to an average physical distance of >27kb) the correlation drops below 0.025 and326
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LD approaches background levels (see Discussion).327

We find strong support for a model of isolation with migration from H. cydno into H. m. rosina (IMc→m)328

(Table 2). This model fits significantly better than both a history of strict divergence or divergence followed329

by migration in the opposite direction (IMm→c). Our results agree with earlier genomic analyses of these330

species that showed support for post-divergence gene flow based on D-statistics (Martin et al., 2013), IMa331

analyses based on smaller numbers of loci (Kronforst et al., 2013) and genome wide SNP frequencies anal-332

ysed using approximate Bayesian computation. Asymmetrical migration from H. cydno into H. m. rosina has333

also been reported previously, and could be explained by the fact that F1 hybrids resemble H. m. rosina more334

closely due to dominance relationships among wing patterning alleles, possibly making F1s more attractive335

to H. melpomene (Kronforst et al., 2006; Martin et al., 2015).336

A recent direct, genome-wide estimate of the mutation rate for H. melpomene (Keightley et al., 2015)337

allows us to convert parameter estimates into absolute values. Assuming a spontaneous mutation rate of338

2.9 × 10−9 per site and generation and using the ratio of divergence between H. m. rosina and the more339

distantly-related ’silvaniform’ clade of Heliconius at synonymous and intergenic sites to estimate selective340

constraint on intergenic sites, gives an effective mutation rate of µ = 1.9 × 10−9 (Martin et al., 2015).341

Applying this rate to our estimate of θ and assuming four generations per year, we obtain an Ne estimate of342

1.10× 106 for H. m. rosina and the common ancestral population and 2.85× 106 for H. cydno. We estimate343

species divergence to have occurred roughly 1 million years ago. Note that this is more recent than previous344

estimates of 1.5 million years which was obtained using approximate Bayesian computation and a different345

calibration based on mitochondrial genealogies (Kronforst et al., 2013; Martin et al., 2015).346
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Table 2: Top: Support (∆lnL relative to the best model) for isolation with migration and strict divergence
(Div) between H. m. rosina and H. cydno. Migration from H. cydno into H. m. rosina (IMc→m) fits better
than migration in the opposite direction (IMm→c). Bottom: Maximum likelihood estimates of parameters
under the IMc→m model (scaled estimates in brackets).

Div IMm→c IMc→m
-49.1 -26.2 0
θ (Ne) θC (Ne) T M
1.25 (1.10× 106) 3.24 (2.85× 106) 1.90 (1.04 MY) 1.50

Discussion347

We have shown how the probabilities of genealogies, and hence of mutational configurations, can be calcu-348

lated for a wide variety of demographic models. This gives an efficient way to infer demography from whole349

genome data. Irrespective of any particular demographic history, the possible genealogies of a sample can be350

partitioned into a set of equivalence classes, which are given by permuting population labels on tree shapes.351

We show how this fundamental symmetry of the coalescent can be exploited when computing likelihoods352

from blockwise mutational configurations. We have implemented this combinatorial partitioning in Math-353

ematica to automatically generate and solve the generating function (GF) of the genealogy and, from this,354

compute likelihoods for a wide range range of demographic models. Given a particular sample of genomes,355

we first generate a set of equivalence classes of genealogies and condition the recursion for the GF (Lohse356

et al., 2011) on a single representative from each class. This combinatorial strategy brings a huge computa-357

tional saving. Importantly, it does not sacrifice any information. This is in contrast to a similar partitioning358

of the GF, which as we show, can be used to find approximations for models that include reversible events, in359

particular migration between populations and recombination between discrete loci and involves a trade-off360

between computational efficiency and loss of information.361

Although these approaches make it possible to solve the GF for surprisingly large samples and bio-362

logically interesting models, the number of mutational configurations (which explodes with the number of363
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sampled genomes) remains a fundamental limitation of likelihood calculations in practice. Given outgroup364

and phase, the full information is contained in a vast table of mutational configurations which are defined in365

terms of the 2(n− 1) branches of each equivalence class. For samples from two populations, the number of366

mutational configurations we need to calculate is the product of the last two columns of Table 1. For exam-367

ple, considering a sample of 3 haploid genomes per populations and allowing for up to km = 3 mutations368

per branch, there are 49× 9, 765, 625 = 478, 515, 625 possible mutational configurations.369

The bockwise site frequency spectrum370

Our initial motivation for studying the bSFS was to deal with unphased data in practice. The GF of the371

bSFS can be obtained from the full GF simply by combining branches with equivalent leaf labels. As372

well as being a lossless summary of blockwise data in the absence of phase information, the bSFS is a373

promising summary in general for several reasons. First, it is extremely compact compared to the full set of374

(phased) mutational configurations. Unlike the latter, the size of the bSFS does not depend on the number375

of equivalence classes (which explodes with n, Table 1), but only on n. Given a sample of ni individuals376

from population i and assuming a global maximum number of mutations km for all mutation types, the377

(unfolded) bSFS comprises of a maximum of ((
∏
i(ni + 1)) − 2)(km+2)) mutational configurations. For a378

sample of 3 haploid genomes from each of two populations and km = 3, the bSFS has 75 = 16, 807 entries.379

Second, because equivalence classes of genealogies are defined by the presence and absence of SFS types,380

much of the topology information contained in the full data will still be captured in the bSFS. Finally, and381

perhaps surprisingly, at least for the IM model the expressions for the total length of branches contributing382

to unphased and unpolarized mutation types (eq. 12 & 13) are much simpler than those of the underlying383

rooted branches, which suggests that it may be possible to find general results.384

Despite the strategies developed here, it is clear that full likelihood calculations will rarely be feasible385
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for samples > 6 given the rapid increase in the number of equivalence classes. However, a separation of386

timescales exists for many models of geographic and genetic structure (Wakeley, 1998, 2009), and so full387

likelihood solutions for moderate (n < 6) samples may be sufficient for computing likelihoods for much388

larger samples if these contribute mainly very short branches with no mutations in the initial scattering phase389

during which lineages from the same population either coalesce or trace back to unsampled demes.390

Dealing with linkage391

A key assumption of our blockwise likelihood calculations is that there is no recombination within sequence392

blocks, and that different blocks are independent of each other. This latter assumption is especially prob-393

lematic when we analyse whole-genome data. If we divide the genome into blocks that are small enough394

for recombination within them to be negligible, our method correctly gives the probabilities of possible395

mutational configurations, and this can be used to fit a demographic model. However, the accuracy of this396

fit will be grossly overestimated if we simply multiply likelihoods across blocks, because adjacent blocks397

are strongly correlated. Ignoring this correlation is essentially a composite likelihood calculation. Suppose,398

that we multiply likelihoods across every k th block, k being chosen large enough that blocks are uncor-399

related. This procedure is valid starting at any block, and so can be repeated k times, such that the whole400

genome is included in the analysis, and taking the average lnL across all k analyses. This is equivalent to401

simply multiplying the likelihoods across all blocks, and then dividing the total lnL by k. In the Heliconius402

example above, we found that there is little correlation between blocks 121 blocks apart, and so assessed403

significance simply by dividing the lnL by 121. We note that analysing well-separated blocks or SNPs is404

very common practice (e.g. Wang & Hey, 2010; Excoffier et al., 2013), and is essentially equivalent to our405

simple procedure. However, this procedure is quite arbitrary, and clearly needs improvement. On the one406

hand, successive blocks or SNPs are not completely correlated, suggesting that this procedure considerably407
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underestimates the accuracy of estimates. On the other hand, however, there may be weak, long-range corre-408

lations, due to a small fraction of long regions that coalesced recently, and these may increase the variance of409

parameter estimates. The safest course is to check the accuracy of estimates by simulation under the inferred410

demographic model and a realistic model of recombination via a full parametric bootstrap.411

An advantage of direct likelihood calculations is that one can easily check the absolute fit of the data to412

a model by asking how well the observed frequency of mutational configurations or some summary such as413

the SFS is predicted by the model. For example, the IM history we estimated for the two Heliconius species414

fits the observed genome-wide SFS reasonably well (Fig. 8). The fact that we slightly underestimate the415

heterozygosity in H. cydno may suggests that some process (e.g. demographic change after divergence or416

admixture from an unsampled ghost population/species) is not captured by our model.417

Figure 8: The folded SFS has four site types: i) heterozygous sites unique to either H. m. melpomene or ii)
H. cydno iii) shared in both species and iv) fixed differences. The observed genome wide SFS is shown in
black. The expectation under the IM history estimated from the bSFS (Table 2) was computed using eq. 12
and is shown in grey.
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In general, the GF framework makes it possible to derive the distribution of any summary statistic that418

can be defined as a combination of genealogical branches and understand its properties under simple demo-419
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graphic models and small n. Although explicit calculations based on such summaries are not feasible for420

large n, summary statistics such as the bSFS may still have wide applicability for fitting complex models421

and larger samples of individuals, for example using approximate likelihood methods, or simply as a way to422

visualize how genealogies vary along the genome.423
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