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24 Abstract — The distribution of diversity can vary considerably from clade to clade.

25  Attempts to understand these patterns often employ state-dependent speciation and

26  extinction models to determine whether the evolution of a particular novel trait has

27  increased speciation rates and/or decreased their extinction rates. It is still unclear,

28  however, whether these models are uncovering important drivers of diversification, or
29  whether they are simply pointing to more complex patterns involving many unmeasured
30 and co-distributed factors. Here we describe an extension to the popular state-dependent
31  speciation and extinction models that specifically accounts for the presence of

32  unmeasured factors that could impact diversification rates estimated for the states of any
33  observed trait, addressing at least one major criticism of BiSSE methods. Specifically,
34  our model, which we refer to as HiSSE (Hidden-State Speciation and Extinction),

35 assumes that related to each observed state in the model are “hidden” states that exhibit
36  potentially distinct diversification dynamics and transition rates than the observed states
37 inisolation. We also demonstrate how our model can be used as character-independent
38 diversification (CID) models that allow for a complex diversification process that is

39 independent of the evolution of a character. Under rigorous simulation tests and when
40  applied to empirical data, we find that HiSSE performs reasonably well, and can at least
41  detect net diversification rate differences between observed and hidden states and detect
42  when diversification rate differences do not correlate with the observed states. We

43  discuss the remaining issues with state-dependent speciation and extinction models in
44  general, and the important ways in which HiSSE provides a more nuanced understanding
45  of trait-dependent diversification.

46  Key words — hidden states, diversification, comparative methods, speciation, extinction
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A key question in biology is, why are some groups are much more diverse than
others? Discussions of such questions are often focused on whether there is something
unique about exceptionally diverse lineages, such as the presence of some novel trait,
which has increased their speciation rate and/or decreased their extinction rates. The
BiSSE model (Binary-State Speciation and Extinction; Maddison et al. 2007) was derived
specifically as a means of examining the effect that the presence or absence of a single
character could have on diversification rates, while also accounting for possible
transitions between states. In theory, this model could be used not only for identifying
differences in diversification, but also detecting differences in transitions between
character states, or even some interplay of the two. In practice, however, it has mainly
been used to focus on diversification rate differences (e.g., Goldberg et al. 2010; Wilson
etal. 2011; Price et al. 2012; Beaulieu and Donoghue 2013; Weber and Agrawal, 2014).

It is somewhat surprising, perhaps, that studies that employ BiSSE often find that
the prediction of a trait leading to higher diversification rates is supported by the data. In
fact, all sorts of traits have been implicated as potential drivers of diversity patterns,
ranging from the evolution of herbivory in mammals (Price et al. 2012), to the evolution
of extra-floral nectaries in flowering plants (Weber and Agrawal 2014), to even the
evolution of particular body plans in fungi (i.e., gasteroid vs. nongasteroid forms; Wilson
etal. 2011). Some crucial caveats have recently been identified, however. First,
Maddison and FitzJohn (2014) raise a statistical concern regarding the inability of these
methods to properly account for independence. Consider, for instance, that the carpel,
which encloses the seeds of angiosperms, has evolved only once. They argue that the

inheritance and pseudoreplication of a single event becomes problematic — even if BiSSE
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uncovers a significant correlation between the carpel and diversification, it is unclear
whether the carpel is an important driver of the immense diversity of flowering plants, or
whether this diversity is simply coincidental. It was also pointed out by Beaulieu and
Donoghue (2013) that even with many origins of a trait, it could be that only one clade
actually has a higher diversification rate associated with the focal trait, which is strong
enough to return higher diversification rates for that trait as a whole. In their case, it
appeared that plants with an achene (a fruit resembling a bare seed, as in “sunflower
seeds”) had a higher diversification rate, but upon subdividing the tree it appeared that
this was from the inclusion of one clade in particular, Asterales, which contain the highly
diverse Asteraceae, the sunflower family. They argue that it is far more likely that some
combination of the achene and another unmeasured, co-distributed trait within Asterales
led to a higher diversification rate for achenes as a whole (on this point, also see
Maddison et al. 2007). Finally, Rabosky and Goldberg (2015) recently showed that for
realistically complex data sets, BISSE methods almost always find that a neutral trait is
correlated with higher diversification. This is, however, largely a consequence of using
fairly “trivial” null models that assume equal rates of diversification between character
states, which cannot discern the possibility that a complex diversification process is
entirely independent from the focal trait.

All these caveats relate to the broader issue of whether the proximate drivers of
diversification are really ever just the focal traits themselves. At greater phylogenetic
scales this issue seems the most relevant, where the context of a shared trait is unlikely to
be consistent across many taxonomically distinct clades. In other words, a character’s

effect on diversification will often be contingent on other factors, such as the assembly of
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93  particular combinations of characters (e.g., a “synnovation” as defined by Donoghue and
94  Sanderson 2015) and/or movements into new geographic regions (e.g., de Querioz 2002;
95  Moore and Donoghue 2007). Recent generalizations of the BiSSE model (i.e., MuSSE:
96  Multistate Speciation and Extinction; FitzJohn 2012) do allow for additional binary
97  characters to be accounted for when examining the correlation between a binary trait and
98 net diversification. However, it may not always be clear what the exact characters might
99  be, and in the absence of such information, it should be difficult to ever confidently view
100 any one character state as the true underlying cause of increased diversification rates.
101 Here we describe a potential way forward for trait-dependent models of
102  diversification by extending the BiSSE framework to account for the presence of
103  unmeasured factors that could impact diversification rates estimated for the states of any
104  observed trait. Our model, which we refer to as HiSSE (Hidden State Speciation and
105  Extinction), assumes that related to each observed state in the model are “hidden” states
106 that exhibit potentially distinct diversification dynamics and transition rates than the
107  observed states in isolation. In this way, HiSSE is a state-dependent speciation and
108  extinction form of a Hidden Markov model (HMM). As we will show, HiSSE can
109  distinguish higher net diversification rates nested within clades exhibiting a particular
110  character state, can provide more meaningful tests of character-dependent diversification
111  (CID) through its use as a different kind of null model, and thus can provide a much more
112 refined understanding of how particular observed character states may influence the
113  diversification process.
114

115
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THE HIDDEN STATE SPECIATION AND EXTINCTION MODEL

Despite the important methodological advancement and power afforded by the
BiSSE model, it can provide a rather coarse-grained view of trait-based patterns of
diversification. Specifically, what may appear like a connection when examining
particular characters in isolation may actually be due to other unmeasured factors, or
because the analysis included a nested clade that exhibits both the focal character plus
"something" else (Maddison et al. 2007; Beaulieu and Donoghue 2013; Beaulieu and
O'Meara 2014). This particular point is illustrated in Figure 1. Here the true underlying
model is one in which state 0 and 1 have identical diversification rates. However, there is
some other trait with states 4 and B, and state B has twice the diversification rate of 4.
We call this trait a “hidden” trait, because it is not observed in the tip data (though it
could be observable if we knew what it was). If state 1 happens to be a prerequisite for
evolving state B (or even by chance), all the state 0 branches will have state 4, but some
branches in state 1 will have state 4 and some will have state B. Thus state 1 actually
takes on two states, 14 when the hidden state with higher diversification rate is absent,
and 1B when the hidden state with higher diversification rate is present. As indicated by
the model, transitions to this unmeasured variable produce nested shifts towards higher
rates of diversification within clades comprised of species in state 1. Necessarily, BiSSE
can only infer parameters for characters that we can observe, and since all origins of state
1 are lumped together, the model infers state 1 as being associated with significantly
higher diversification rates. It is associated with higher diversification, but only due to its

association with trait B.
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138 We attempt to solve this problem by deriving an expansion of the BiSSE model
139 that allows for the inference of these hidden states. For the example in Figure 1, we can
140  assume that all observations of state 1 are actually ambiguous for being in each of the
141  possible hidden states, 14 (i.e., hidden state absent) or state 1B (i.e., hidden state present).
142  We then include transition rates and parameters for the diversification process associated
143  with this hidden state. Our model, which we refer to hereafter as the HiSSE model, is
144  actually a modified form of the MuSSE model (Multi-State Speciation and Extinction;
145  FitzJohn 2012) that extends BiSSE type analyses to allow for multiple binary characters
146  or characters with more than two states. Thus, the HiSSE model can, in theory, have a
147  number of observed states and a number of hidden states (i.e., observed states 0, 1, 2, and
148  hidden states 4, B, C, resulting in nine possible state combinations).

149 Formally, the state space in our model is defined as o being the index of the

150  observed state, 0 €0,1,...,a, and % as the index of the hidden state, h € A,B,...,. A

151 lineage at time ¢ evolves under diversification rates A, = A, and u, = u , . Thus, the model

152 has, in general, af} different diversification rate categories. The likelihood Dy (?) is
153  proportional to the probability that a lineage in state i at time ¢ before the present (#=0)
154  evolved the exact branching structure and character states as observed. Changes in Dy
155  over time along a branch are thus described by the following ordinary differential

156  equation:

157

dD, (1)
158 # = —(Ai + U+ Jqu Dy () +2AE(1)D,, (1) + ;qijDN? (D) Eq. (1a)
159
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160  where E,(7) is the probability that a lineage in state i at time, ¢, goes extinct by the present,
161  and is described by:
162

E(0)+LE() + ),q,E (1) Eq. (1b)

dE (1)
163 — - —-|A+u+ ~
dt ‘ul ( l ‘ul quj Jj=i

j=i
164

165  These series of equations are modified from Maddison et al. (2007); they are solved

166  numerically along each edge starting at the tips and moving rootward. The initial

167  conditions for Dy,;(0) are set to 1 when the trait is consistent with the observed data, and
168 0 otherwise. For example, we would set the probability to 1 for both state 14 and 1B for
169 all species exhibiting state 1 — in other words, the probability of observing a tip

170  demonstrating state 1 is 1 if the true underlying state is 14 or 1B (note this could be done
171  with states 1C, 1D, and so forth in this model, although the current implementation in
172  software currently only allows a binary observed character with four or fewer total

173  hidden state combinations). The initial conditions for E,(0) are all set to zero (i.e., we

174  observe the tip at the present). Incomplete sampling can be allowed by incorporating a
175  state-specific or even clade-specific sampling frequency, £, and setting the initial

176  conditions for Dy,;(0) as f; if the corresponding tip, #, is in state i, and 0 otherwise, and
177  for 1- f; for E(0) (FitzJohn et al., 2009). We assume the sampling frequency of the hidden
178  state to be identical to the state with which it is associated (e.g., fia = fiB. foa = foB).

179 At each internal node, A, that joins descendant lineages N and M, we multiply the
180  probabilities of both daughter lineages together with the rate of speciation:

181

182 DA’i(t): DN,i(t) DM,,' (t) }Ll‘ Eq (2)
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183

184  and the resulting values become the initial conditions for the subtending branch. The

185  overall likelihood is the product of Dg /(¢) calculated at the root. We condition this

186  likelihood by (1-Ei(¢))% which is the probability that the two descendant lineages of the
187  root, evolving under the same estimates of speciation and extinction rates, survived to the
188  present and were sampled (Nee et al. 1994). Finally, we follow the procedure described
189 by FitzJohn et al. (2009) and weight the overall likelihood by the probability that each
190 possible state gave rise to the observed data, although other weights, such as assuming
191  equal probabilities or even “known” fixed probabilities, can also be used. Note that in the
192  absence of a hidden state, our likelihood calculation reduces exactly to the BiSSE model.
193 We also note that it is rather straightforward to use this framework to implement a
194  SSE version of the “precursor” model described by Marazzi et al. (2012) or the “hidden
195 rates” model (HRM) described by Beaulieu et al. (2013). In the latter case, consider a
196  HiSSE model with "two rate classes", 4 and B. We can define speciation and extinction
197  parameters for states 04, 14, 0B, and 1B, and then define a set of transitions to account

198 for transitioning between all character state combinations:

199
0A - Qoas1a  9oa-on 0
G s - 0 Gisr
200 Q- 1A 1A—04 1A—1B
0B | dop-oa 0 - qop—18
1B i 0 dig-1a  4iB—>0B - Eq. (3)
201

202  Thus, HiSSE can be used to account for differences in the diversification process while

203  simultaneously identifying different classes of transition rates within a binary character.
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204  Our implementation allows for this and more complex models, including those that allow
205  for dual transitions between both the observed trait and the hidden trait (e.g., qo4<>qi5).
206 MULTIMODEL INFERENCE AND THE ISSUE OF APPROPRIATE MODELS

207 An important issue was recently raised by Rabosky and Goldberg (2015), who
208  demonstrated that on empirical trees even traits evolving under a neutral, diversification-
209  independent model will still tend to be best fit by a BISSE model. FitzJohn (2012)

210  discussed a similar issue of MuSSE falsely assigning diversification rate effects to a

211  character with no such effect. While this behavior is seemingly troubling, it is important
212  to bear in mind that BiSSE, MuSSE, HiSSE, and any other model of state-dependent
213  speciation and extinction are nof models of trait evolution, but rather joint models for the
214  underlying tree and the traits. A trait evolution model like those in Pagel (1994) or

215 Hansen (1997) maximizes the probability of the observed states at the tips, given the tree
216  and model — the tree certainly affects the likelihood of the tip data, but that is the only
217  way it enters the calculation. A trait-based diversification model, on the other hand,

218 maximizes the probability of the observed states at the tips and the observed tree, given
219  the model. If a tree violates a single regime birth-death model due to any number of

220  causes (e.g., mass extinction events, trait-dependent speciation or extinction, maximum
221 carrying capacity, climate change affecting speciation rates, etc.), then even if the tip data
222  are perfectly consistent with a simple transition model, the tip data plus the tree are not.
223  Insuch a case, it should not be surprising that a more complex model will tend to be
224  chosen over a nested simpler model, particularly if the underlying tree is large enough.
225 Furthermore, as is well known in statistics, rejecting the null model does not

226  imply that the alternative model is true. It simply means that the alternative model fits

10
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227  better. This will often be the case when looking at models in any complex system where
228  the true model may not be one of the included models. For example, Rabosky and

229  Goldberg (2015) showed, among several other empirical examples, that binary characters
230  simulated under a model with each character having no effect on diversification rate on
231 an empirical tree of cetaceans (i.e., whales, dolphins, and relatives) almost always

232  rejected the supposed null model. Though presented as a Type I error (i.e., incorrectly
233  rejecting a true null), it is not. While the chosen character model is wrong, the cetacean
234  tree is almost certainly not evolving with a single speciation and extinction rate for the
235  entire clade (see Slater et al. 2010; Morlon et al. 2011). In other words, BiSSE is correct
236  in saying that the simple model is not correct, but it is very wrong in assigning rate

237  differences to the simulated traits. Nonetheless, even when presented with two bad

238 models, where one assumes constant rates and the other assumes rates are changing rate
239  exactly with character states, BiISSE must still select which model fits the data better than
240  the other.

241 A simple example may further illustrate this point. Imagine simulating data under
242  ahypothetical model, called “A”, and then comparing the fit of this model against

243  another hypothetical model, called “B”. If model A is a “null model”, but we end up

244  choosing model B, then this would an instance of a “Type I” error — we are incorrectly
245  rejecting the null. Now, imagine simulating data under another distinct model, “C”, but,
246  like before, we only evaluate the fit of model A and model B. Would choosing model B
247  be considered a Type I error? Of course not, because neither model is correct. So clearly
248  the term Type I error (or even Type Il error) is outside the region of having any valid

249  meaning in this context.

11
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The reality is that it will be always be a problem comparing any two models and
taking the accepted one as the “truth” given a complex underlying reality. Regardless of
whether the behavior they observe is properly called Type I error or not, this is the key
point of Rabosky and Goldberg (2015). When comparing a simpler model to a more
complex model, merely rejecting the simple one does not mean we should accept all the
assumptions and interpretations of the alternate one. It is a simple exercise, for example,
to simulate a tree using the model of Rabosky (2010) and then fit alternate models such
as age-dependent diversification (Alexander et al. 2015) or logistic growth (Rabosky and
Lovette 2008) and compare them to a constant rate model; in most simulated trees, the
alternate model is chosen (results not shown), even though the processes each assumes
were not used to generate the tree.

One potential way forward, at least in regards to the issues Rabosky and Goldberg
(2015) pointed out for SSE models, is to provide equally complex models that fit
different biological explanations. Take, for instance, the likely complex diversification
history of cetaceans. As Rabsosky and Goldberg (2015) demonstrate, when evaluating
neutral data simulated on the cetacean tree using a simple, equal diversification rates
model, and a complex one with trait-dependent diversification, the data choose the
complex one. However, what if there were a complex model that also allowed different
diversification rates on the tree, but was completely independent of the diversification
process? Then, if the true model were trait-correlated diversification, a model of trait-
dependent diversification would be chosen, but if the tree contained some additional
complexity, this new trait-independent model might also be chosen some proportion of

the time. Again, it bears repeating: SSE models are not models of trait evolution, but

12
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rather, a joint modeling framework for the underlying tree and the trait. In the case of
cetaceans, or really any empirical tree, we do not know the true underlying model that
generated the tree, so picking between models of equal rates, trait-dependent, or trait-
independent diversification some percentage of the time in no way represents a kind of
Type I error. Furthermore, if statistics are done with a focus on parameter estimates rather
than model rejection, even if there were some weight for trait-dependent rates, there
would also be substantial weight for trait-independent rates as well, and so the average
rates across these models should tend to be similar across the possible character states.
Here we propose two character independent diversification (CID) models that are
devised to equal the complexity with respect to the number of parameters for the
diversification process (i.e., same number of free speciation and extinction rates under the
Maddison et al. (2007) parameterization) as a general BiSSE or HiSSE model, but
without actually linking them to the observed traits. Thus, these models explicitly assume
that the evolution of a binary character is independent of the diversification process
without forcing the diversification process to be constant across the entire tree, which is
the normal CID used in these types of analyses. The first kind of model, which we refer
to as “CID-2”, contains four diversification process parameters that account for trait-
dependent diversification solely on the two states of an unobserved, hidden trait (e.g., for
speciation rates, Ao4= A4, Aos= A1). In this way, CID-2 contains the same amount of
complexity in terms of diversification as a BiSSE model. As with BiSSE or HiSSE, these
models include the possibility of a variety of constraints for transition rates. These
transition rates can be general by allowing them all to be freely estimated, or simplified in

various ways such as assuming they are all equal. The second kind of model, which we

13
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refer to as “CID-4" contains the same number of diversification parameters as in the

general HiSSE model that are linked across four hidden states (e.g., for speciation rates,
M= Aia, Mos= Ms, Aoc=Aic, dop= Mp). The transition rates under this model are set up to
account for transitions between the four different rate categories, as well as between the

states of the binary character and, in matrix form, they are set up as follows:

0A[ - Qoa—os  Y9oa-oc  9oa—op Goa—1a 0 0 0
0B | Gop—04 - Qoa-oc  Yos—-op 0 90518 0 0
0C (Goc~0a  Goc—os - doc—op 0 0 qoc—1c 0

0 =0D 9op-0a  Y9op—08 Yop—oc - 0 0 0 9op-1p
1A 1404 0 0 0 - Qias13 Ga-ic  Ga-ip
1B 0 9508 0 0 ip 14 - Qip-ic  Gs-1p
1C 0 0 Gic—-oc 0 Qic>1a  YGic—18 - Gic-1p
1D | 0 0 0 4p-op Yp—1a Yp-18 9ip-ic -

Eq. (4)

To simplify the number of transitions in the model there are two natural assumptions:
assume either all transition rates are equal, or assume there are three distinct transition
rates: one rate describing transitions among the different hidden states (i.e., the rates in
columns and rows 1-4, and columns and rows 5-8), and two rates for transitions between
the observed character states (i.e., one rate for columns 5-8, rows 1-4, and one rate for
columns 1-4, and rows 5-8). These or other constraints can be used as part of the CID
family of models.
IMPLEMENTATION
We implemented the above models in the R package "hisse" available through

CRAN. As input all that Aisse requires is a phylogeny with branch lengths and a data file
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that contains the observed states of a binary character. Note that this is an entirely new
implementation, not a fork of the existing diversitree package, as we employ modified
optimization procedures and model configurations. For example, rather than optimizing A,
and ; separately, hisse optimizes transformations of these variables: we let 1,= A+,
define “net turnover”, and we let €; = 1, /A; define the extinction fraction. This
reparameterization alleviates problems associated with over-fitting when A; and L, are
highly correlated, but both matter in explaining the diversity pattern (e.g., Goldberg et al.
2010; Beaulieu and Donoghue 2013). With empirical data we often see good estimates
for diversification rate but correlations for birth and death rate estimates. For example,
Beaulieu and Donoghue (2013) (their Figure S2) showed that the confidence region for
birth and death rates tightly follows a diagonal line, with different characters having lines
of the same slope but different intercepts. This leads to a behavior where looking at the
confidence or credibility intervals for birth or death show overlap between the characters
but intervals for diversification rates do not overlap between characters. However, the
only way to fit this in the common parameterization is with two birth rates and two death
rates. Reparameterizing, as we do, allows us to have the same turnover rate for both states
but estimate different diversification rates, resulting in a less complex, but better fitting,
model. Thus, users specify configurations of models that variously fix t; and ;. Note that

estimates of 1; and g; can be easily backtransformed to reflect estimates of A; and p; by

LN=1/(1+¢), Eq. (5a)

Wi = (’El' 8,‘) / (1 + 8,'), Eq (Sb)
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which can be used to derive other measures of diversification process parameters, such as
net diversification (A-;). One of the diversitree authors (Sally Otto, personal
communication) noted that Hardy and Otto (2014) tested a hidden model that only
affected transition rates within the MuSSE framework. Note that we have not directly
compared the two implementations, though we have confirmed that MuSSE and HiSSE
return the same likelihood when all states are observed.

The hisse package assigns the probability of each ancestral state to an internal
node using marginal ancestral state reconstruction (Yang et al.1995; Schluter et al., 1997)
under the chosen diversification with trait evolution model. These probabilities can be
used to “paint” areas of a phylogeny where the diversification rate has increased or
decreased due to some unmeasured character. In our implementation the marginal
probability of state i for a focal node is the overall likelihood of the tree and data when
the state of the focal node is fixed in state i. Note that the likeliest tip states can also be
estimated: we observe state 1, but the underlying state could either be state 14 or 15.
Thus, for any given node or tip we traverse the entire tree as many times as there are
states in the model. As the size of the tree grows, however, these repeated tree traversals
can slow the calculation down considerably. For this reason, we also include a function
that allows the marginal calculation to be conducted in parallel across any number of
independent computer processors.

SIMULATIONS

We evaluated the performance of the HiSSE model by simulating trees and

character states under various scenarios and then estimating the fit and bias of the

inferred rates from these trees. Our initial simulations first tested scenarios of the single
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hidden state situation described in Figure 1; the known parameters for each scenario are
described in detail in Table 1. We included BiSSE scenarios to test whether we could
correctly conclude that there was no support for a HiSSE model in the absence of a
hidden state in the generating model. For each of these scenarios, trees and trait data were
simulated using diversitree (FitzJohn 2012) to contain 50, 100, 200, or 400 species, with
100 replicates for each taxon set. When the generating model included a hidden state, we
simulated trees that could transition between three possible states: 0, 1, or 2. After each
simulation replicate was completed, we created the hidden state by simply switching the
state of all tips observed in state 2 to be in state 1.

Each simulated data set was evaluated under the generating model, as well as 13
additional models that variously added, removed, or constrained certain parameters. The
entire model set is described in Table 1. For all models under a given scenario, model fit
was assessed by calculating the average Akaike weight (w;), which represents the relative
likelihood that model i is the best model given a set of models (Burnham and Anderson
2002). We also calculated a null expectation of the Akaike weight across our model set,
as the average Akaike weight assuming an equal likelihood across all models. Thus, our
null expectation is based solely on the penalty term in the AIC calculation — in the
absence of information from the model, we would expect to see these weights returned,
rather than equal weights for all models. Moreover, since BiSSE is nested within HiSSE,
they could return the same likelihood, so even with infinite amounts of data the weight of
the HiSSE model should drop to this null expectation, but, counterintuitively, not to zero.

We also conducted a second set of simulations that specifically evaluated the

performance of the general HiISSE model and our two CID models of CID diversification.
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384  Our goal was to test how much model weight the trait-independent models exhibited
385  under scenarios of trait-dependent diversification. We were concerned at the outset that
386  our CID models would always fit at least as well, if not better, than a trait-dependent
387  BISSE or HiSSE model. That is to say, these models were constructed such that they are
388 not constrained by character states and can assign rates wherever they want in order to
389  maximize the likelihood. Table 2 describes the known parameters for the three scenarios
390 evaluated. Again we relied on diversitree to simulate trees and trait data that contained
391 400 species, repeated 100 times, with transitions allowed between four possible states, 0,
392 1,2, or 3. After each simulation replicate was completed, we created the hidden state by
393  simply switching the state of all tips observed in state 2 to be in state 0, and all tips in
394  state 3 to be in state 1.

395 We also included a scenario that was designed to test whether the general HiSSE
396 model is immune to empirical issues of spurious assignment of importance to state

397 combinations that have no actual effect on diversification. In other words, is HiSSE still
398 favored in situations where the trees and traits evolved under a very different model than
399 the one used for inference? Here we generated trees containing 400 taxa using code from
400 Rabosky (2010). A symmetric Markov model for trait evolution alone (no influence by
401  diversification) was used to simulate binary traits on this tree (using the R package

402  geiger; Harmon et al. 2008; Pennell et al. 2014). The Rabosky (2010) model was used, as
403 it is very different from the model assumed by BiSSE/HiSSE; speciation rates evolve
404  gradually on branches, rather than moving discretely between distinct levels based on a
405 trait (hidden or not). Though the rate change is gradual under the Rabosky (2010) model,

406 the speciation rate does not evolve under a Brownian, Ornstein-Uhlenbeck, or similar
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processes, but in a heterogeneous way that depends on the timing of speciation events
(Beaulieu and O’Meara 2015). Thus, as with many empirical data sets, this
diversification model is quite different from HiSSE’s model, providing a difficult
challenge. The Rabosky (2010) model has also been very influential in affecting
biologists’ attitudes towards estimating extinction rates, and so we include it as a semi-
realistic “worst-case” scenario. Each simulated data set was evaluated under multiple
models that variously added, removed, or constrained certain parameters, with model fit
again being assessed by calculating the average Akaike weight (w;). The entire model set
is described in Table 2. For simplicity, all models in this set assumed equal transition
rates.

In regards to the parameter estimates in all our simulations, comparisons between
the model-average of the parameters against the known parameters provided an
assessment of the bias and precision of the inferred parameters. However, rather than
averaging parameters across the entire model set, we only averaged across models that
included similar parameters. For example, when estimating the bias in the HiSSE
scenarios we only model-averaged parameters for models that included the hidden state.
This required reformulating the Akaike weights to reflect the truncated model set.
Finally, we also assessed the reliability of the ancestral state reconstructions by
comparing the true node states from each simulated tree to the marginal probabilities

calculated from the model-averaged parameter estimates.
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ASSESSING MODEL FIT

Our main focus is estimating parameters well, but this is aided by picking the true
model with high weight when it is in the set (though, of course, for real data the true
model is always more complex than any examined one). From a model comparison
perspective, our first set of simulations indicated that data sets that lack hidden states
could generally be distinguished from those that do, especially with larger data sets
(Table 1). When the generating model is a BiSSE model with only two observable states,
there were low levels of support for all seven HiSSE models. In fact, as sample size
increased, the average Akaike weight of the HiSSE models converged towards the null
Akaike weight based only on the penalty term (Table 1). When evaluating data sets that
included a hidden state, the ability to correctly favor a HiSSE model over any of the
BiSSE models depended not just on the size of the data set, but also the underlying
generating model. For example, when the generating model assumed a hidden state with
higher speciation rates, data sets that contained 200 or more taxa were required to provide
strong evidence for a HiSSE model that varied the turnover rate (Table 1). However,
when the main effect of the generating model assumed lower extinction fractions for the
hidden state there remained strong support for a BiSSE model that assumed both equal
turnover rates and extinction fractions. Interestingly, when we simulated under a HiSSE
scenario that combines the processes of higher speciation rates and asymmetrical
transition rates, the issue of incorrectly favoring a BiSSE model disappears (Table 1).

We also found that HiSSE was able to distinguish between generating models that
assumed diversification rates differences are trait-dependent (e.g., when speciation is

two-fold greater for state 1B), or when the diversification rate difference is trait-
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independent and due to simply to the presence of a hidden trait only (e.g., when
speciation is two-fold greater for hidden state B) (Table 2; Table S1). And, contrary to
our concerns, when the generating model assumed some form of trait-dependent
diversification neither the CID-2 nor the CID-4 model had much support.

For the “worst-case” scenario, which simulated a neutral binary character along
trees generated from a complex heterogeneous rate branching process, it clearly falls into
the zone where BiSSE has unwelcome behavior (94% of data sets favored a BiSSE model
over a single-rate diversification model, and the average Akaike weight for state-
dependent models across data sets was 92.0%; see Table S1). Thus, these simulation
conditions create difficult data sets of the sort used by Rabosky and Goldberg (2015).
The addition of merely the CID-2 model dramatically improved performance, where the
average weight for the BiSSE models went from 92.0% to 1.3%. When the full HiSSE
model set was examined, we found that the CID-4 trait independent model had the
highest support on average across the entire set of models (Table 2; Table S1). However,
if we combine support for both this CID model and the CID-2 model, they cumulatively
account for 70% of the total model weight. Both of these models are independent of any
particular character state, but assume shifts among distinct levels, and therefore more
closely resemble the conditions by which these data sets were generated.

We note, however, that there was some support for a trait-dependent HiSSE
model with the same number of diversification parameters (Table 2; Table S1). And, in
spite of the Akaike weight across all data sets showing greater support for the CID-4
model on average, 29% of the individual data sets would favor some form of the general

HiSSE model (Table S1). However, there was only a 1.02% difference in the mean
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diversification rate between states 0 and 1 (though, focusing on just the set of trees for
which a HiSSE model was best, the percent difference is 16% — still relatively small for
diversification studies, but clearly not as good). Taken together, these results indicate that
in these “worst-case” trait-independent scenarios, likely encountered in many empirical
data sets, the inclusion of the CID models can attenuate the issue of spuriously accepting
trait-dependent diversification. The addition of models that allow some dependence with
the observed traits and some with hidden traits, the rates of falsely assessing some state-
dependence somewhat increases, but with the benefit of being able to better detect hidden
effects when they are true (see earlier simulation results).

ESTIMATING MODEL PARAMETERS

It is important to point out that in all simulation scenarios we never recovered
strong support for a model consistent with the model that actually generated the data.
That is, whether we vary the speciation rate or the extinction rate, which affects both net
turnover and extinction fraction, we always found support for a simplified model that
either allowed 1 to vary or € to vary, but not both. This is likely a consequence of the
uncertainty and upward biases in estimates of extinction fraction (Fig. 2-4), making it
difficult for the model to infer multiple extinction fractions, at least with smaller data
sets.

It is well known that there can be difficulties, generally, in obtaining precise
estimates of the extinction rates (i.e., |;) under the BiSSE framework (Maddison et al.
2007). Backtransforming estimates of net turnover and extinction fraction shows that
HiSSE suffers the same precision issues in regards to the rate of extinction (Fig. 3, Fig.

S2). Recently, it was reported that biases in the tip state ratios could also impact all
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parameter estimates (see Davis et al. 2013). Our simulations did not specifically test
issues related to tip state biases. However, we did find that with HiSSE, the precision in
extinction rate estimates remains fairly low regardless of the ratio of the states at the tips,
especially when estimating extinction for the hidden state (Fig. 3). Interestingly, the lack
of precision for extinction rates seems to have a relatively minor impact on estimates of
net turnover or net diversification (Fig. 2-4; Fig. S1), though there is a general bias for
net diversification to be underestimated as a consequence of inflated extinction rates.
Nevertheless, it appears HiSSE correctly and qualitatively distinguishes differences in
diversification among the various states in the model. And, as the number of species
increases, the trajectory of the downward bias in net diversification suggests it will
eventually disappear, and rate differences can be distinguished even if the differences are
trivial (e.g., Fig. 2c¢).

For parameter estimates from the simulations testing both the CID models and the
general HiSSE model we found very similar results as those described above, in that the
model-averaged net turnover and net diversification parameters largely resembled the
generating model (Fig. 4, S4). However, similar to the first set of simulations, there is a
large amount of uncertainty and upward biases in estimates of extinction fraction. Thus,
HiSSE generally has very low power in distinguishing multiple extinction fractions
regardless of the number of states included in the model.

One issue of concern from our first set of simulations is that transition rates are
almost always overestimated. This behavior appears unique to the HiSSE model in our
simulations (Fig. 2), given that when evaluating data sets under BiSSE scenarios,

transition rates are estimated reasonably well (Fig. S3). One suggestion from Rich
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522  FitzJohn (personal communication) is that this can occur when some states are present in
523 low frequency, and since HiSSE has more states than BiSSE, it is likely that many state
524  combinations are in very low frequencies. There are also relatively large confidence

525 intervals surrounding each of the transition rate estimates that naturally favor models that
526  assume equal transition rates, which should be reflected in the model-averaged rates.
527 Indeed, as in the case of the HiSSE scenario that assumed pronounced differences in the
528 transition rates, even 800 taxa was still not enough to unequivocally reject models that
529  assumed equal transition rates (Table 1). We also examined the impact each parameter
530 had on a fixed set of equilibrium frequencies, by randomly sampling sets of values and
531 retaining those that estimated the same frequency within a small measure of error (see
532  Supplemental Materials). The proportional range of values for the transition rates were
533  more than double those found for the speciation rate, indicating that state frequencies are
534 fairly resilient to changes in the transition rates. Taken together, estimating unique

535 transition rates (and to some extent the rate of extinction) appears to be a difficult

536  problem, which is not made any easier by HiSSE’s increase in state space. That is to say,
537  HiSSE requires more from the data by including additional parameters without providing
538 any more observable information. It is likely that in many cases far larger data sets with
539  many more state origins than the ones we have generated here may be required to

540 adequately estimate these particular parameters.

541 Finally, in regards to inference of ancestral states from the model-averaged

542  parameter estimates, the simulations indicate that HiSSE correctly identifies and locates
543  regions of the tree where supposed diversification rate differences have taken place (Fig.

544 5). The degree of reliability does, of course, depend on the size of the data set. For the
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HiSSE scenario that assumed a doubled speciation rate for state 1B, for example, data
sets comprised of 50 taxa, 84.1% of the nodes, on average, have the state correctly
inferred, and data sets comprised of 400 taxa 92.4% are correct. However, we note that
there is also a general tendency for HiSSE to infer high marginal probabilities for the
incorrect state (e.g., Fig. 5), which could provide misleadingly confident state
reconstructions.
MODEL REJECTION PROPERTIES

We have strongly advocated (e.g., Beaulieu et al. 2012), as have many others
(e.g., Anderson et al. 2000; Nickerson 2000; Nakagawa and Cuthill 2007), that parameter
estimation is more important for understanding biology than is rejecting models. Model
selection is part of this, of course, but it is more appropriate to examine a set of models
and average or integrate their results, either through the use of information theory (e.g.,
Burnham and Anderson 2002), as we do here, or Bayesian approaches (e.g., Huelsenbeck
et al. 2004). However, there are clearly still many studies whose main focus is rejecting
trivial null models. The use of AIC or Akaike weights are inappropriate for these
purposes (Burnham and Anderson 2002), despite being used frequently. Here, we
examine how HiSSE and its various models perform in this way, especially in relation to
the situation highlighted by Rabosky & Goldberg (2015), where a species tree evolves
under a complex, unknown diversification process but traits evolve under a simple model
independent of diversification parameters (e.g., our “worst-case” scenario).

Even though examining AAIC values are not recommended for model rejection,
the rule of thumb from Burnham and Anderson (2002) remains popular for this use in

phylogenetics: 0-2 means a model has substantial support, 4-7 means considerably less
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support, and >10 means essentially no support. Using these guidelines, we examined two
of our simulations, the CID-2 and our “worst-case” scenario, both of which assume trait-
independent diversification model (see Table S1). If we were to compare the fit of a
constant birth-death BiSSE with a BiSSE model that assumes trait-dependent
diversification, as Rabosky and Goldberg (2015) did, we found that when the true
generating model was our CID-2 model, 38% of the time the BiSSE model had
substantial support; in our “worst-case” scenario, 80% of the time BiSSE had substantial
support. However, if we were to add just our CID-2 model into the set, in both cases the
number of simulated data sets that show substantial support for the BiSSE case drop
dramatically: just 7% in the CID-2 simulations, and just 1% in the “worst-case” scenario.
If we examine the full set, which also includes CID-4 and the HiSSE model, 10% of
simulated data sets that favor a trait-dependent scenario for CID-2, and 16% of the time
under the “worst-case” scenario (Table S1).

We also conducted similar tests by simulating neutral characters on two empirical
trees — the cetacean tree used by Rabosky and Goldberg (2015), and our own empirical
tree (see below) — and found very similar behavior (see Table S2). More importantly, for
parameter estimation, using a set of models and doing parameter estimation using a
weighted average results in largely accurate inferences. For the 87-taxon cetacean tree,
across simulated trees the model-averaged diversification rate in state 0 was within 10%
of the rate for state 1 in 87% of the simulations (and we expect substantial uncertainty in
these estimates); for Dipsidae, in 95% of the simulations the estimated diversification rate

for state 0 was within 0.5% of the rate for state 1. In other words, even if a trait-
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dependent model were chosen, a careful biologist who looks at parameter estimates
would be unlikely to find a rate difference of half a percent biologically significant.

In summary, we have gone from 94% of the time choosing the “wrong” model, to
anywhere from 7-16% when the model set includes any number of our HiSSE models. Of
course, if the goal is to simply find the best model, the rather marked improvement
afforded by our HiSSE framework may remain somewhat unsatisfying. Future attention
could, therefore, be paid to determining the appropriate AAIC that would constitute
“substantial support” when using HiSSE, as opposed to simply using a AAIC<2 cutoff, as
we have done here. Nevertheless, if the goal is to understand the potential biological
implications provided by the parameters estimated from these models, even though the
“best” model may at times be incorrect, taking into account model uncertainty when
summarizing the parameter estimates will ameliorate spurious interpretations of trait-
dependent diversification when it does not exist (e.g., Fig. 4, Fig. S5).

THE EVOLUTION OF ACHENE FRUITS

The development of this model was inspired by results from recent empirical
work that applied BiSSE to understand the macroevolutionary consequences of evolving
particular fruit types within a large flowering plant clade (i.e., campanulids; Beaulieu and
Donoghue 2013). This study investigated whether diversification rates differences could
explain why more than 80% of campanulid species exhibit fruits that are indehiscent (i.e.,
do not open mechanically), dry, and contain only a single seed. From a terminological
standpoint, these fruits were broadly referred to as “achene” or “achene-like” to unify the
various terms used to identify the same basic fruit character configuration (e.g.,

“cypselas” of Asteraceae — sunflowers and their relatives — or the single-seeded
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“mericarps” of Apiaceae — carrots and their relatives). According to the BiSSE model, the
preponderance of achene fruits within campanulids can be explained by strong
differences in diversification rates, with achene lineages having a rate that was roughly
three times higher than non-achene lineages.

While these results are seemingly straightforward, they are complicated by the
fact that the correlation between net diversification rates and the achene character state
differed among the major campanulid lineages and was driven entirely by the inclusion of
Asterales clade (Beaulieu and Donoghue 2013). Within Apiales and Dipsacales, the two
remaining major achene-bearing clades, the diversification rate differences were not
significant. However, in both these clades there were qualitative differences in the
predicted direction, likely as a consequence of one or more shifts in diversification nested
within one of the major achene-bearing clades. Together, these point to a more complex
scenario for the interaction between achene fruits and diversification patterns that is not
being adequately explained by BiSSE.

We illustrate an empirical application of HiSSE by examining the Dipsidae
(Paracryphiales+Dipsacales; Tank and Donoghue 2010) portion of the achene data set of
Beaulieu and Donoghue (2013). Specifically, we used HiSSE to locate and “paint”
potential areas within Dipsidae that may be inflating the estimates of net diversification
rates for achene lineages as a whole. We modified the original data set of Beaulieu and
Donoghue (2013) in three important ways. First, we re-estimated the original molecular
branch lengths using PAUP* (Swofford 2000), as opposed to relying on the branch
lengths from the original RAXML (Stamatakis 2006) analysis, because PAUP* provides

better optimization precision. Second, the molecular branch lengths were re-scaled in
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units of time using treePL (Smith and O’Meara 2012), an implementation of the
penalized likelihood dating method of Sanderson (2002) specifically designed for large
trees. We applied the same temporal constraints for Dipsidae as in the original Beaulieu
and Donoghue (2013) study, and used cross-validation to determine the smoothing value
that best predicted the rates of terminal branches pruned from the tree. Third, we
conservatively removed various taxa of dubious taxonomic distinction, taxa considered
varietals or subspecies of a species already contained within the tree, and tips that treePL
assigned very short branch lengths (i.e., <1.0 Myr) — all of which have the tendency to
negatively impact accuracy of estimating diversification rates (though in this case,
rerunning the analyses including such tips did not have a qualitative effect on the results).
The exclusion of these taxa resulted in a data set comprised of 417 species from the
original 457.

We fit 24 different models to the achene data set for Dipsidae. Four of these
models corresponded to BiSSE models that either removed or constrained particular
parameters, 16 corresponded to various HiSSE models that assumed a hidden state
associated with both the observed states (i.e., non-achene+, achene+), and four
corresponded to various forms of our trait-independent models (i.e., CID-2, CID-4). In all
cases, we incorporated a unique sampling frequency scheme to the model. Rather than
assuming random sampling for the entire tree (see above), we included the sampling
frequency for each major clade included in the tree (see Table S3; note, that the results
are qualitatively similar regardless of sampling scheme used). In order to generate a
measure of confidence for parameters estimated under a given model, we implemented an

“adaptive search” procedure that provides an estimate of the parameter space that is some
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659  pre-defined likelihood distance (e.g., 2 InL units) from the maximum likelihood estimate
660 (MLE), which follows from Edwards (1992). We also took into account both state

661 uncertainty and uncertainty in the model when “painting” diversification rates across the
662 tree. Our procedure first calculated a weighted average of the likeliest state and rate

663  combination for every node and tip for each model in the set, using the marginal

664  probability as the weights, which were then averaged across all models using the Akaike
665  weights. All analyses were carried out in Aisse.

666 The best model, based on Akaike weights, was a relatively simple HiSSE model
667  with regards to the number of free parameters it contained (Table 3). The model suggests
668  character-dependent diversification with fruit type, where only rates for non-achene+ and
669 achene+ are allowed to be free, and where transitions between state 08 and 1B were

670  disallowed. This model had a pronounced improvement over the set of BiSSE models,
671  where none had an Akaike weight that was greater than 0.001. However, before

672  describing the parameter estimates of the best model, we note that, with a modified tree
673  and character set, the parameter estimates under the BiSSE models were different from
674  those reported by Beaulieu and Donoghue (2013). Specifically, the higher diversification
675  rates estimated for achene lineages (7achene=0.148, support range: [0.121,0.161])

676  compared to non-achene lineages (7non-achene=0.065, support range: [0.0498,0.083]) were
677  indeed significant based on a sampling of points falling within 2InL units away from the
678  MLE. The parameters estimated under the HiSSE model, on the other hand, suggest a
679  more nuanced interpretation of this result. The higher diversification rates of clades

680  bearing achenes as a whole is likely due to a hidden state nested within some of these

681 lineages that is associated with exceptionally high diversification rates (#achene+=0.199,
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support region: [0.179,0.221]). In fact, the model suggests that achene lineages not
associated with the high diversification hidden state have a diversification rate that is
indistinguishable from the non-achene diversification rate (#non-achene-= Fachene-=0.059,
support range: [0.049,0.068]). Non-achene lineages associated with the high
diversification hidden state also show elevated diversification rates (#on-achene+=0.158,
support region: [0.138,0.185]), relative to the rate of the non-achene state with the other
hidden state, suggesting strong rate heterogeneity even in Dipsidae lineages that bear
other fruit types.

Character reconstructions identified two transitions to the hidden fast state in
achene lineages, and thus a higher diversification rate: one shift occurred along the stem
leading to crown Dipsacaceae and the other occurred along the stem leading to “core
Valerianaceae” (the most inclusive clade that excludes Patrinia, Nardostachys, and
Valeriana celtica) (Fig. 6). It is important to note that in the case of non-achene lineages,
the model identified four shifts to the hidden fast state — one at the base of Caprifolieae
(Lonicera, Symphoricarpus, Leycesteria, and Triosteum), and three within Viburnum
(Fig. 6). The several shifts detected in Viburnum are noteworthy in that they correspond
almost exactly with the inferred shifts detected in a more focused study of the genus that
applied various models of diversification (Spriggs et al. 2015).

In regards to achene lineages, the general location of the inferred shifts is
intriguing, as they appear to coincide with specific clades that exhibit specialized
structures related to achene dispersal. In Dipsacaceae, for example, there is tremendous
diversity in the shape of the “epicalyx”, a tubular structure that subtends the calyx and

encloses the ovary (Donoghue et al. 2003; Carlson et al. 2009), which is often associated
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with elaborated structures (e.g., “wings”, “pappus-like” bristles) that accompany their
achene fruits. Interestingly, many of these same general forms are observed throughout
core Valerianaceae, although they arise from modifications to the calyx (Donoghue et al.
2003; Jacobs et al. 2010). While the significance of these structures is thought to improve
protection, germination, and dispersal of the seed, we emphasize that, at this stage, it is
difficult to confidently rule out other important factors, such important biogeographic
movements due to increased dispersal abilities (i.e., “key opportunities” sensu Moore and
Donoghue 2007), or even purely genetic changes, such as gene and genome duplications
(Hildago et al. 2010; Carlson et al. 2011). But, we can at least confidently conclude that
the achene by itself is likely not a strong correlate of diversity patterns within Dipsidae.
DISCUSSION
Progress in biology comes from confronting reality with our hypotheses and
either confirming that our view of the world is correct, or, more excitingly, finding out
that we still have a lot left to discover. With studies of diversification, we have mostly
been limited to doing the former — we have an idea about a trait that may affect
diversification rates based on intuition about its potential effect (e.g., an achene might
allow greater dispersal, and thus easier colonization of new habitats to form new species)
as well as some knowledge of its distribution (e.g., some very large plant clades have
achenes) and then run an analysis. Typical outcomes are yes, there is a difference in
diversification in the way we expected, or there is no difference but maybe we just lack
the necessary power. In any case, chances are we are at least vaguely correct that the trait
we think credibly has a mechanism for increasing diversification rate actually has an

effect (at least once there is enough power), or, less compellingly, clades we identify for
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such a test from eyeballing the data return a significant result despite no underlying
reality.

Surprise is a necessary part of discovery that, to put it bluntly, has been relatively
lacking in trait-dependent diversification studies until now. With HiSSE we can still test
our intuitions about a particular character, but we can also discover that rates seem to be
driven by some unknown and unmeasured character state, allowing the data to help us
generate new hypotheses — Is the diversification rate correlated with the achene, or is the
achene simply a necessary precursor to some other trait that is more likely to be driving
diversification? This lets us go from a scenario where we simply reject trivial nulls, such
as whether diversification rates of clades with and without some focal trait are precisely
equal, to being potentially surprised by the results — No, it is not the achene per se, but it
is something else nested within these particular clades in addition to the achene fruit type.

Currently, diversification models are divided between those that look at one or
more focal traits only, integrating over any other factors (e.g., BISSE, Maddison et al.
2007; BiSSE-ness, Magnuson-Ford and Otto, 2012; ClaSSE, Goldberg and Igic, 2012;
sister group comparisons, Mitter et al. 1988), and those that fit rates to trees but ignore
trait information altogether (e.g., MEDUSA, Alfaro et al. 2009; BAMM, Rabosky 2014).
Our HiSSE framework spans this range. If the true model is strictly trait-dependent
diversification, it can detect this (Fig. 1-5), as a BiSSE analysis would. If the true model
is rates varying due to some other unexamined factor (a physical trait, a property of the
environment, etc.) HiSSE recovers this too, as in the case of achene evolution in the
Dipsidae clade (Fig. 6). Uniquely, HiSSE can also give an intermediate answer where a

focal trait explains some but not all of the diversification difference.
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751 The HiSSE framework also addresses some of the recent important criticisms
752  levied against state speciation and extinction models (Rabosky and Goldberg 2015).

753  Specifically, our method no longer requires the assumption that focal character states are
754  associated with diversification rate differences. Instead, it allows this assumption to be
755  explored as part of a more flexible overall model, as opposed to relying on separate tests
756  for uncovering character-dependent and CID rates of diversification (e.g., Beaulieu and
757  Donoghue 2013; Weber and Agrawal 2014; Spriggs et al. 2015). Including our models of
758 trait-independent diversification in a set of alternative trait-dependent models should also
759 alleviate concerns of spurious assignments of diversification rate differences between
760  observed character states in cases where trees are evolving separately from the focal trait
761  (c.f., Rabosky and Goldberg 2015). These CID diversification models are designed

762  specifically to be as complex as competing BiSSE or HiSSE models, which provides a
763  fairer comparison over more trivial equal-rate “nulls.”

764 We do, however, highlight one important statistical concern in which HiSSE

765  requires significant caution in its use. This involves its indifference to number of changes
766  (c.f., Maddison and FitzJohn 2014). As with BiSSE, we should find it more credible that
767  aparticular character state enhances diversification rates if we see a rate increase in each
768  of the 10 times it evolves than if it evolved just once but had the same magnitude of rate
769  increase. A good solution to this problem has not yet been proposed, and we urge a

770  healthy skepticism of any result based on a trait that has evolved only a few times.

771 There are other practical concerns in empirical applications of the HiSSE model.
772  While it could be used over a set of trees (i.e., bootstrap or Bayesian post-burnin tree

773  samples), the model assumes that the branch lengths, topology, and states are known
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without error. Certain kinds of phylogenetic errors, such as terminal branch lengths that
are too long (as may occur with sequencing errors in the data used to make the tree) can
result in particular biases in estimates of speciation and/or extinction (also see Beaulieu
and O’Meara 2015). Similarly, if one clade were reconstructed to be younger than it
actually is, due to a substitution rate slowdown caused by some other trait (e.g., life-
history; Smith and Donoghue 2008), it could be interpreted as having a faster
diversification rate, perhaps even inferred to have its own hidden state. For trees that
come from Bayesian dating analyses, whether a birth-death or Yule prior was used may
affect results unless the data is strong enough to overwhelm the prior (Condamine et al.
2015). Future simulation studies will focus on better understanding the impact that these
and other branch length error scenarios can have on the interpretation and estimation of
various model parameters. Also, we point out that the HiISSE model assumes discrete
characters, whether they be hidden or observed, but it could be that a continuous
parameter is the cause of a diversification rate difference (e.g., perhaps extinction risk
varies inversely with mean of the dispersal kernel). However, this may only enter the
model as an unseen discrete character, perhaps corresponding to low and high values of
the continuous character.

Our HiSSE model is part of a long tradition in comparative methods of
identifying, and then addressing, perceived shortcomings. For instance, Felsenstein
(1985) pointed out the pitfalls of treating species values as independent data points and
provided two alternatives (i.e., independent contrasts and dividing a tree into pairs of tips)
to address those issues. Maddison (2006) realized the issue of not accounting for

diversification in transition-based methods (i.e., Pagel 1994) and not accounting for
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differential transitions in diversification models, which led to the development of state-
dependent speciation and extinction models (Maddison et al. 2007; FitzJohn et al. 2009).
Recently, Rabosky and Goldberg (2015) pointed out a serious problem with
interpretations in state speciation and extinction analyses in general, and our work
largely, but not entirely, addresses these concerns. We caution users that it is important to
keep a perspective: all methods have flaws, and all will fail given a strong enough
violation of their underlying assumptions. For example, it appears difficult for HiSSE to
adequately estimate different transition rates when the model assumes any number of
hidden states, and so many estimates will be biased. Even with the increasing efforts to
test new methods (in our case, over 17,000 computer-days were devoted to conducting
simulations and analyses) there will be flaws that may have gone undetected. We urge
skepticism towards all models, but also skepticism towards statements of fatal flaws in
some models while leaving newer, competing models relatively untested.

There is no question that state-dependent speciation and extinction models are an
important advancement for understanding characters’ impact on diversification patterns.
They have greatly improved statistical power over older, simpler sister-clade
comparisons, and the explicit inference of differences in speciation and extinction has the
potential for a much more fine-grained analysis of diversification. But, in a way, these
models have also allowed us to retreat to the old comforts of reducing complex organisms
into units of single, independently evolving characters, and offering adaptive
interpretations to each (c.f., Gould and Lewontin 1979). To be fair, of course, it is
unlikely that any trait of great interest to biologists has exactly zero effect on speciation

and/or extinction rates, but it is certainly unlikely that this trait acts in isolation. Thus, we
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hope HiSSE is viewed as a step away from this line of thinking, as we no longer have to
necessarily focus analyses, or even interpret the results, by reference to the focal trait by
itself, but can instead estimate how important it is as a component of diversification
overall. It is in this way that analyses focused on “hidden” factors promoting
diversification will afford us a more refined understanding of why certain clades become
extraordinarily diverse, while still allowing us to examine our hypotheses about effects of

observed traits.
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TABLE 1. Summary of model support for simulated scenarios with and without a hidden trait, where calculating the average Akaike weight (w;) for all
models assessed the fit. We also calculated a null expectation of the Akaike weight as the average Akaike weight if we assumed an equal likelihood across

all models. Thus, the null expectation is based solely on the penalty term in the AIC calculation.

BiSSE HiSSE
e0=¢l 10=t1 10=t1 e0=elA=¢lB 10=t1A=t1B 10=t1A=11B
Generating Model Ntaxa Free q's equal q's equal 10=t1 q's equal £0=¢l £0=¢l Free q's equal q's equal 10=t1A=11B q's equal £0=elA=¢IB £0=elA=¢IB

Null w; expectation 0.0260 0.0708 0.1923 0.0708 0.1923 0.0707 0.1923 0.0004 0.0096 0.0708 0.0035 0.0708 0.0035 0.0260
BiSSE, transition rates vary 50 0.0416 0.0821 0.1504 0.0864 0.1639 0.0925 0.1737 0.0022 0.0179 0.0739 0.0076 0.0725 0.0010 0.0257
A0=A1=0.1 100 0.0464 0.0837 0.1322 0.0791 0.1319 0.0930 0.1641 0.0046 0.0289 0.0944 0.0123 0.0811 0.0185 0.0298
n0=p1=0.03 200 0.0499 0.0623 0.0927 0.0969 0.0982 0.0989 0.1812 0.0069 0.0374 0.0919 0.0198 0.0874 0.0313 0.0450
q01=0.015, q10=0.005 400 0.0662 0.0635 0.0578 0.1147 0.0668 0.1119 0.2116 0.0070 0.0320 0.0771 0.0227 0.0801 0.0284 0.0599
BiSSE, state 1 2x speciation 50 0.0370 0.0848 0.1896 0.0803 0.1681 0.0930 0.1339 0.0117 0.0160 0.0781 0.0075 0.0685 0.0113 0.0203
20=0.1, A1=0.2 100 0.0450 0.0918 0.1920 0.0783 0.1545 0.1066 0.0997 0.0030 0.0218 0.0933 0.0089 0.0706 0.0182 0.0163
n0=p1=0.03 200 0.0508 0.1006 0.2129 0.0820 0.1544 0.1194 0.0508 0.0069 0.0226 0.0837 0.0113 0.0643 0.0314 0.0086
q01=q10=0.01 400 0.0690 0.1172 0.2028 0.0911 0.1503 0.1324 0.0186 0.0091 0.0268 0.0637 0.0161 0.0615 0.0356 0.0057
BISSE, state 1 .5x extinction 50 0.0480 0.0866 0.1465 0.0866 0.1451 0.0958 0.1714 0.0040 0.0219 0.0769 0.0092 0.0684 0.0132 0.0264
A0=A1=0.1 100 0.0502 0.0934 0.1332 0.0879 0.1545 0.0874 0.1576 0.0039 0.0214 0.0784 0.0128 0.0779 0.0147 0.0267
10=0.06, u1=0.03 200 0.0596 0.1015 0.1219 0.0904 0.1652 0.0826 0.1324 0.0048 0.0286 0.0717 0.0101 0.0824 0.0144 0.0344
q01=q10=0.01 400 0.0710 0.1145 0.1008 0.0996 0.1605 0.0825 0.1113 0.0082 0.0325 0.0618 0.0156 0.0983 0.0163 0.0270
HiSSE, state 1B 2x speciation 50 0.0486 0.0808 0.1573 0.0936 0.1488 0.1069 0.1520 0.0030 0.0200 0.0768 0.0089 0.0621 0.0128 0.0285
A0A=A1A=0.01, A1B=0.2 100 0.0533 0.0786 0.1264 0.0777 0.1147 0.0931 0.1074 0.0095 0.0386 0.1438 0.0146 0.0957 0.0248 0.0216
HOA=p1A=p1B=0.03 200 0.0666 0.0553 0.0719 0.0726 0.0742 0.0791 0.0743 0.0134 0.0611 0.2158 0.0225 0.1263 0.0469 0.0202
q0A1A=ql1A0A=qlA1B=qIB1A=0.01 400 0.0321 0.0275 0.0359 0.0254 0.0283 0.0370 0.0236 0.0315 0.1094 0.3119 0.0420 0.1876 0.1024 0.0053
HiSSE, state 1B 3x speciation 50 0.0524 0.0796 0.1594 0.0821 0.1218 0.1124 0.1003 0.0091 0.0364 0.1295 0.0156 0.0544 0.0317 0.0153
A0A=A1A=0.01, A1B=0.3 100 0.0504 0.0604 0.0998 0.0629 0.0817 0.0893 0.0686 0.0112 0.0660 0.2250 0.0156 0.1048 0.0464 0.0177
HOA=p1A=p1B=0.03 200 0.0414 0.0316 0.0405 0.0304 0.0397 0.0556 0.0146 0.0241 0.1101 0.4102 0.0215 0.0906 0.0871 0.0026
q0A1A=ql1A0A=qlA1B=q1B1A=0.01 400 0.0220 0.0140 0.0112 0.0140 0.0090 0.0437 0.0078 0.0347 0.1654 0.4646 0.0175 0.0703 0.1244 0.0015
HiSSE, state 1B .5x extinction 50 0.0487 0.0911 0.1453 0.0918 0.1472 0.1019 0.1711 0.0023 0.0230 0.0694 0.0074 0.0667 0.0096 0.0246
AOA=AIA=AIB=0.1 100 0.0518 0.0745 0.1251 0.0939 0.1236 0.0968 0.1743 0.0068 0.0286 0.0697 0.0147 0.0728 0.0223 0.0450
H0A=pu1A=0.06, n1B=0.03 200 0.0538 0.0648 0.1002 0.0951 0.1128 0.0918 0.1402 0.0083 0.0435 0.0877 0.0207 0.1032 0.0347 0.0433
q0A1A=ql1A0A=qlA1B=q1B1A=0.01 400 0.0591 0.0461 0.0464 0.0986 0.0660 0.1018 0.1200 0.0235 0.0604 0.0920 0.0441 0.1523 0.0352 0.0546
HiSSE, state 1B 2x speciation,

transition rates vary 50 0.0432 0.0743 0.1452 0.0834 0.1338 0.0981 0.1403 0.0070 0.0391 0.1095 0.0156 0.0682 0.0212 0.0209
A0A=A1A=0.01, A1B=0.3 100 0.0379 0.0518 0.0737 0.0594 0.0672 0.0778 0.0835 0.0181 0.0701 0.2457 0.0222 0.0823 0.0886 0.0216
HOA=p1A=p1B=0.03 200 0.0399 0.0184 0.0190 0.0399 0.0202 0.0500 0.0535 0.0310 0.1267 0.3259 0.0229 0.1090 0.1323 0.0111
q0A1A=0.015,q1A0A=q1A1B=0.005, 400 0.0098 0.0027 0.0048 0.0108 0.0067 0.0233 0.0118 0.0883 0.1706 0.3261 0.0291 0.0596 0.2545 0.0019
qlB1A=0.01 800 0.0020 0.0002 0.0004 0.0022 0.0004 0.0021 0.0038 0.1040 0.1647 0.3156 0.0230 0.0638 0.3172 0.0005

Bold italics indicate significance based on 95% confidence intervals
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TABLE 2. Summary of the model support for simulated scenarios that tested the performance of the general HiSSE model and two CID models (CID-2,

CID-2; see text). All data sets tested contained 400 species, and calculating the average Akaike weight (w;) for all models assessed the fit. As with Table 1,

we calculated a null expectation of the Akaike weight as the average Akaike weight if we assumed an equal likelihood across all models.

Equal rates HiSSE
10=t1 1A, 1B 1A, 1B 1A, 1B, 1C, 1D 1A, 1B, 1C, 1D 10A=t1A=10B 10A=t1A=10B
Generating Model e0=¢l Free e0=¢l €A, B eA=¢B €A, €B, C, eD eA=eB=¢C=¢D Free e0A=e¢l A=¢0B=¢1B e0A=c¢l A=¢0B e0A=e¢l A=¢0B=¢1B
Null w; expectation 0.1426 0.0865 0.1426 0.0865 0.1426 0.0193 0.0865 0.0117 0.0525 0.0865 0.1426
BiSSE, state 1 2x speciation 0.0085 0.1995 0.3313 0.0046 0.0089 0.0001 0.0012 0.0255 0.0917 0.1298 0.1989
20=0.1, x1=0.2
n0=p1=0.03
All ¢'s=0.01
CID-2, state B 2x speciation 0.0505 0.0445 0.0568 0.1836 0.3107 0.0063 0.0656 0.0322 0.1461 0.0407 0.0631
MA=A1A=0.1, \0OB=A1B=0.2
nOA=p1 A=p0B=u1B=0.03
All ¢'s=0.01
HiSSE, state 1B 2x speciation 0.0049 0.0957 0.1327 0.0073 0.0135 0.0002 0.0032 0.0417 0.1199 0.2265 0.3544
AA=A1A=)0B=0.1, A1B=0.2
nOA=p1 A=p0B=n1B=0.03
All¢'s=0.01
"Worst-case" trait-independence 0.0005 0.0003 0.0007 0.0897 0.1562 0.0544 0.3996 0.0563 0.2213 0.0067 0.0142

Initial 2=0.1, drawn from lognormal

£=0.3, q01=q10=0.01

Bold italics indicate significance based on 95% confidence intervals that bracket the mean Akaike weight.
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TABLE 3. The fit of alternative models of achene fruit evolution in the flowering plant

clade Dipsidae. The best model, based on AAIC and Akaike weights (w;) is denoted in

bold.

Model np InLik AIC AAIC wi
BiSSE: All free 6 -1486.5 2984.9 90.3 <0.001
BiSSE: g0=¢l 5 -1488.6 2987.2 92.6 <0.001
BiSSE: q's equal 5 -1487.3 2984.5 89.9 <0.001
BiSSE: e0=¢l, q's equal 4 -1490.2 2988.4 93.8 <0.001
Null-two: g's equal 5 -1449.1 2908.3 13.7 0.001
Null-two: €', q's equal 4 -1449.7 2907.4 12.8 0.001
Null-four: q's equal 9 -1445.1 2908.1 13.5 0.001
Null-four: €'s equal, g's equal 6 -1445.3 2902.6 7.98 0.015
HiSSE: q's equal 9 -1446.6 2911.2 16.6 <0.001
HiSSE: €'s equal, g's equal 6 -1447.2 2906.5 11.9 0.002
HiSSE: 10A=11A=10B, e0A=¢1 A=¢0B, q's equal 5 -1463.3 2936.6 42.0 <0.001
HiSSE: 10A=t1A=10B, &'s equal, q's equal 4 -1471.0 2950.0 554 <0.001
HiSSE: q0B1B=0, q1BOB=0, all other g's equal6 9 -1451.7 2921.5 26.9 <0.001
HiSSE: €'s equal, g0B1B=0, q1B0B=0, all other q's equal 6 -1451.7 2915.5 20.9 <0.001
HiSSE: t0A=t1A=10B, e0A=¢1A=c0B, q0B1B=0, q1B0B=0, all 5 -1462.2 29343 39.7 <0.001
other q's equal
HiSSE: 10A=t1A=10B, ¢'s equal, q0B1B=0, q1B0B=0, all other 4 -1469.5 2947.1 525 <0.001
q's equal
HiSSE: 10A=10B, 0A=¢0B, q's equal 7 -1459.6 2933.2 38.6 <0.001
HiSSE: 10A=10B, ¢&'s equal, q's equal 5 -1466.4 2942.8 48.2 <0.001
HiSSE: 10A=10B, £0A=¢0B, q0B1B=0, q1B0B=0, all other q's 7 -1458.4 2930.8 36.2 <0.001
equal
HiSSE: 10A=10B, ¢'s equal, q0B1B=0, q1BOB=0, all other q's 5 -1464.7 2939.4 448 <0.001
equal
HiSSE: 10A=tl1A, e0A=¢lA, 's equal 7 -1446.7 2907.3 12.7 <0.001
HiSSE: t0A=tlA, &'s equal, g's equal 5 -1469.1 2948.3 537 <0.001
HiSSE: 10A=t1A, €0A=¢lA, q0B1B=0, q1B0B=0, all other q's 7 -1442.2 2898.3 3.71 0.130
equal
HiSSE: 10A=t1lA, &'s equal, q0B1B=0, q1BOB=0, all other q's 5 -1442.3 2894.6 0.00 0.848

equal
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