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Abstract

Recent genomic studies have highlighted the important role of admixture
in shaping genome-wide patterns of diversity. Past admixture leaves a popu-
lation genomic signature of linkage disequilibrium (LD), reflecting the mixing
of parental chromosomes by segregation and recombination. The extent of this
LD can be used to infer the timing of admixture. However, the results of in-
ference can depend strongly on the assumed demographic model. Here, we
introduce a theoretical framework for modeling patterns of LD in a geographic
contact zone where two differentiated populations are diffusing back together.
We derive expressions for the expected LD and admixture tract lengths across
geographic space as a function of the age of the contact zone and the dispersal
distance of individuals. We develop an approach to infer age of contact zones
using population genomic data from multiple spatially sampled populations by
fitting our model to the decay of LD with recombination distance. We use
our approach to explore the fit of a geographic contact zone model to three
human population genomic datasets from populations along the Indonesian
archipelago, populations in Central Asia and populations in India.
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1 Introduction1

Populations frequently undergo periods of relative isolation that are followed by2

secondary contact. During isolation, the evolutionary processes of genetic drift, mu-3

tation, and selection act to differentiate populations at many markers throughout4

the genome. When these populations come back into contact, the restoration of5

gene flow generates admixed populations, which start as an assemblage of differ-6

entiated parental genomes that are broken up every generation by segregation and7

recombination between chromosomes.8

Under this process, linked alleles of the same ancestry will tend to be co-inherited9

until separated by recombination. Because the parental populations are differenti-10

ated with respect to each other, this co-inheritance leads to a nonrandom associa-11

tion of alleles, referred to as linkage disequilibrium (LD). This admixture-induced12

LD (or admixture-LD) initially extends over a much larger genomic scale than LD13

does in either parental population and is a signature of relatively recent admixture14

(Chakraborty and Weiss 1988; Cavalli-Sforza and Bodmer 1971). One can15

also think of this signature as the persistence of parental haplotypes in admixed16

populations which, rather than being measured directly, is measured as the extent17

of co-occurrence along a chromosome of alleles that are diagnostic of parental origin.18

Recombination acts every generation to gradually break apart long tracts of ancestry19

into smaller tracts, and so the association between nearby alleles lasts many genera-20

tions. The physical scale over which admixture-LD breaks down is determined by the21

timescale over which parental populations have been interbreeding; the conservation22

of many ancestral haplotypes over large physical distances would imply very recent23

admixture, whereas a longer history of admixture produces many smaller parental24

tracts.25

Data from many (potentially weakly) differentiated markers allows for the iden-26

tification and quantification of admixture in individuals (e.g. Pritchard et al.27

2000) and the inference of the ancestral origin of a given chromosomal region (e.g.28

Falush et al. 2003; Price et al. 2009; Hellenthal et al. 2014). The continued29

mixing of differentiated genotypes, as described above, produces predictable popula-30

tion genomic patterns that change through time, and these signals can be used to not31

only detect past admixture in extant population, but also to learn about the timing32

and history of these admixture events (e.g. Hellenthal et al. 2014; Loh et al.33

2013; Harris and Nielsen 2013). Such inferences have been used to reconstruct34

historical population movements, highlighting the importance of admixture in shap-35

ing patterns of diversity in human populations (Hellenthal et al. 2014; Reich36
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et al. 2009; Patterson et al. 2012; Loh et al. 2013; Moorjani et al. 2013). These37

studies have utilized powerful methods that first identify stretches of chromosome38

inherited from a particular parental population (admixture tracts Gravel 2012;39

Hellenthal et al. 2014), or measure the covariance, over spatial scales, of vari-40

ants that are diagnostic of parental populations (admixture-LD Patterson et al.41

2012; Loh et al. 2013), and then infer the genetic scale over which this measured42

coancestry decays. Commonly this is done by assuming a model of admixture in43

which one isolated population is formed by a single admixture event in time, with44

subsequent random mating. Under this simple model, the distribution of admix-45

ture tract lengths and the decay of admixture-LD with respect to genetic distance46

is approximately exponential, with the rate parameter corresponding to the time in47

generations since admixture. However, violations of the assumptions of the single-48

pulse model can result in substantial departure between expected and observed rates49

of decay of coancestry with respect to time.50

Models incorporating multiple admixture times, or sustained, migration (Pool51

and Nielsen 2009; Gravel 2012; Liang and Nielsen 2014; Hellenthal et al.52

2014) have been built to address more complex admixture scenarios in single pop-53

ulations. However, these do not incorporate the fact that admixture often occurs54

in a geographic context – beginning at a given point in time, then spreading across55

space. Most current models treat each admixed population as an independent event,56

not accounting for this spatial context, even when admixture in spatially distributed57

populations are potentially attributable to a single historical event.58

In this paper we build an alternative model of diffusion of ancestry across geog-59

raphy in time. Specifically, we consider a scenario in which two populations spread60

back into contact, generating a gradient of admixture across space with the greatest61

degree of admixture at the point of initial contact. We refer to this mixture across62

space, where migration is sustained through both time and space, as a contact zone.63

This geographic mixing leads to departures from a simple model of exponential decay64

of admixture-LD as there is exchange of migrants between neighboring populations65

with different admixture proportions. We describe the expected ancestry-LD in con-66

tact zones accounting for migration in continuous space. This model provides a67

framework to simultaneously examine admixture patterns over a set of geograph-68

ically distributed populations, and a potential geographic null model for studying69

historical movements of populations. Inference under this model provides a means70

to estimate both the time at which populations spread back into contact, as well as71

some measures of dispersal. We analyze several potential human contact zones under72

our model and show that simpler ‘point’ models of admixture can infer unreasonably73
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recent admixture dates.74

2 Methods75

2.1 Outline of neutral model76

Consider two differentiated populations along a transect in space, formerly sepa-77

rated by a barrier that completely prevented migration (at position x = 0) that was78

removed τ generations ago (Fig. 1). We imagine the barrier as a physical obstruc-79

tion to migration; however, in practice the two previously isolated populations could80

come into contact through a variety of means. We use a continuous-space limit of81

randomly mating (Wright-Fisher) populations on a line, made formal in e.g. Shiga82

(1980) that can be described informally as follows:83

Since time τ , individuals have moved without restrictions following a Gaussian84

dispersal kernel, in such a way that the distribution of displacements between an85

ancestor and descendant separated by t generations is Gaussian with mean zero and86

variance σ2t. This forms a gradient of admixed populations across space, whose87

degree of admixture depends on the time that has passed and the distance to the88

point of initial contact. Over time, genotypes of different ancestries diffuse across89

the entire range, and recombination breaks down tracts of continuous ancestry. We90

aim to describe this diffusion of ancestry throughout time and space.91

To determine the typical degree of admixture at a location, we follow the lineage92

of a sampled individual back through time, tracing the spatial location of the ancestor93

of today’s sample back to the initiation of secondary contact. The ancestral type of94

today’s sample is determined by the geographic position of its ancestor τ generations95

ago: we say that a sampled individual whose lineage falls to the left of the barrier96

(i.e. some point where x < 0) is of ancestry A, and is otherwise of ancestry B. This97

represents the alleles belonging to ancestral population A or B before the initiation98

of secondary contact. We treat time and space as continuous variables, and the99

time-reversible properties of Brownian motion allow us to model the movement of100

lineages as a continuous Brownian process.101
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2.2 Behavior of a single locus102

We start by describing the properties of a single lineage, A, that is sampled at103

position ` relative to the center of the contact zone (at x = 0), τ generations after104

initial contact. Since we assume the movement of the lineage to be Brownian, the105

probability that A is of ancestry B is equal to the probability that the Brownian106

motion begun at x is to the right of zero after τ generations, i.e.107

E[1B(A)] =

∫ ∞
− `
σ
√
τ

1√
2π

exp

(
−x

2

2

)
dx = Φ(`/σ

√
τ). (1)

Here 1B(A) is the indicator function:

1B(A) =

{
1 A has ancestry B
0 A has ancestry A

Eq. 1, follows from the assumption that the displacement between parents and off-108

spring is Gaussian with variance σ2, allowing us to describe the movement of the109

lineage after τ generations by the Brownian process Bτ . The probability then that110

an individual sampled at geographic position ` inherits at a given locus from ances-111

tral population B is the probability that xτ > 0 where xτ ∼ N (`, τσ2). This is also112

the expected frequency of ancestry B at position `, τ generations after contact, and113

provides an expectation of the cline in ancestry proportion. Although this derivation114

assumes continuous time, the expression also holds in the case of non-overlapping115

generations since, if dispersal is Gaussian, the position of an allele at time τ is simi-116

larly described by a normal distribution.117

Under this model, we expect the zone of significant admixture to extend over118

distance roughly 2
√
τσ in either direction so, to fit our model using the inference119

framework we describe below, we will need samples on this spatial scale.120

2.3 Ancestry LD between linked loci121

In our model, all chromosomes begin as unbroken tracts of ancestry prior to initial122

contact. As time progresses, recombination between haplotypes of different ancestry123

breaks down these associations. To model this effect, we consider two linked loci124

separated by a recombination fraction r, on a single chromosome sampled at geo-125

graphic position ` (see Fig. 1 and legend), and denote the ancestral lineages at these126
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to loci as A1 and A2, respectively. The recombination fraction between the loci is127

the per generation probability of observing a recombinant haplotype as the product128

of meiosis. For close pairs of markers it may suffice to use the genetic distance d in129

Morgans that separates markers, but for more distant markers we use the probability130

of an observed recombination event, which is the probability of an odd number of131

recombination events between focal loci, accounting for interference when possible.132

We measure ancestry-LD as the covariance in ancestry between the alleles at the133

two loci134

Cov(1B(A1),1B(A2)) = E[1B(A1)1B(A2)]− E[1B(A1)]E[1B(A2)] (2)

Since A1 and A2 are exchangeable, the second term is simply E[1B(A1)]2, which by135

Eq. 1 is Φ
(

`
σ
√
τ

)2

.136

The first term of Eq. 2 is the probability that both A1 and A2 are of ancestry B,137

which we can compute by considering the Brownian movement of the two lineages.138

At the time of sampling, and until the first recombination event between the two loci,139

the two lineages follow an identical path back through time. We assume that after140

the first recombination event the two lineages never coalesce back onto the same141

chromosome and therefore pursue independent Brownian paths for the remaining142

time back to τ (Fig. 1). This assumption ignores drift since secondary contact.143

This assumption of no drift will be good if
√
τ is much smaller than Wright’s144

neighborhood size Nσ, i.e. the number of individuals within a region of width σ145

(Wright 1943). This is because in one dimension, assuming Gaussian dispersal,146

the number of generations that two randomly moving lineages that start in the same147

place spend within distance σ of each other across τ generations is of order
√
τ ; the148

chance that they coalesce each time they are is proportional to 1/Nσ, and so the149

chance of coalescence is negligible if
√
τ/Nσ � 1. (For more discussion of scaling see150

e.g. Barton et al. (2002).)151

To find an expression for this covariance, observe that the random time T since152

the first recombination event between the two loci is exponentially distributed with153

rate parameter r. Given that the most recent recombination along this lineage oc-154

cured T generations ago, with T < τ , the joint spatial positions (X1,X2) of the two155

lineages (A1,A2) at time τ generations ago is bivariate normally distributed with156

covariance Tσ2, variance τσ2 and mean (`, `), the probability density of which we157

denote ft(x1, x2).158
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The probability that both lineages are to the right of zero τ generations ago, and159

hence are both of ancestry B, is therefore given by:160

E[1B(A1)1B(A2)] = e−rτΦ

(
`

σ
√
τ

)
+

∫ τ

0

re−rt
∫ ∞
`

∫ ∞
`

ft(x1, x2) dx1dx2 dt (3)

The first term of Eq. 3 corresponds to the probability that there is no recombination161

multiplied by the probability that the path of our single ancestral lineage is on the162

right side of the barrier when the barrier was removed. The second term integrates163

the probability that two lineages that recombined t generations ago are both to the164

right of of the barrier, i.e. the bivariate normal density integrated over the quadrant165

x1 > 0 and x2 > 0, over all possible times of first recombination. Rescaling t so that166

u = t/τ , equations 2 and 3 come together to give:167

Cov[1B(A1),1B(A2)] =

∫ 1

0

e−ruτ
1

2π
√

1− u2
exp

(
− `2

τσ2(1 + u)

)
du

=: D(r, `, τ, σ)

(4)

To obtain this expression, we integrate by parts, make use of the identity in168

Eq. A3, and rescale (0,τ) onto (0,1) (see Appendix A for more detail). We denote169

this covariance as a function D(r, `, τ, σ), which expresses the expected covariance170

in ancestries of two loci in a randomly sampled individual from a given geographic171

location (`) as a function of recombination fraction (r) between the loci, time since172

admixture (τ) and rate of dispersal (σ). In Appendix B we also develop analogous173

results for arbitrary migration schemes in discretized space, for both continuous and174

discrete time.175

2.4 Admixture block lengths.176

An extension to the above approach for describing admixture-LD between two loci is177

to consider how ancestry along the chromosome is partitioned into unbroken genomic178

tracts of ancestry drawn from one parental population. This is a natural way to179

think about coancestry in admixed populations, and the genome-wide distribution180

of ancestry tract length can contain information about admixture.181
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We again examine a chromosome drawn at random at geographic position `, this182

time considering the probability that between physical positions P and Q, separated183

by genetic distance d, the chromosome is only of ancestry B. As above, we assume184

that after linkage is broken by recombination, the products of recombination move185

independently with respect to each other. This again assumes that τ is small relative186

to the timescale of coalescence. Further, it ignores the correlation structure imposed187

by the pedigree (Liang and Nielsen 2014; Wakeley et al. 2012), the impact of188

which we return to in the discussion.189

We note that our measure of recombination rate d will differ from the earlier190

definition of recombination fraction as we will be tracking all recombination events191

between P and Q. We now assume that recombination events occur as a Poisson192

process with rate d, which reflects genetic distance on the genetic map between our193

two endpoint loci, and assume no chromatid interference.194

If there have been K recombination events that occurred along the tract of chro-195

mosome over the last τ generations, then this region has K+1 genetic ancestors from196

time τ that have spatial locations X = (X1, · · · , XK+1). As we neglect coalescence,197

we assume these ancestors are distinct. The segment contains only ancestry from198

population B if all Xi > 0 (i.e. all K+1 ancestors are to the right of 0 at time τ , see199

Fig. 1 for an example of K=2). We denote the probability of our segment containing200

only ancestry from population B as:201

Ud(τ, `) = E

[
k∏
i

1B(Xi)

]
(5)

This is the expected value averaging over both the number and timing of recom-202

bination events, and the locations of the ancestral lineages at time τ ago (denoted203

X). We now outline one approach to obtain an expression for Ud(τ, `), and give a204

complementary approach in Appendix D.205

2.4.1 Obtaining block length distributions by summing over the number206

of recombination events.207

Since we assume no coalescence, the branching order of the ancestral lineages via208

recombination specifies a labeled tree structure, S, with K + 1 tips and a vector of209

splitting times T = (T1, · · · , TK) (where these times satisfy the constraints imposed210

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2015. ; https://doi.org/10.1101/016337doi: bioRxiv preprint 

https://doi.org/10.1101/016337
http://creativecommons.org/licenses/by/4.0/


by the tree topology). Since, looking backwards in time, each lineage moves as an in-211

dependent Brownian motion once it has split from the others, the (K+1)-lengthvector212

X of geographic positions at time τ is distributed as a (K+1)-dimensional multivari-213

ate normal with mean (`, · · · , `) and variance-covariance matrix Σ. The entries of Σ214

reflect the shared path of tips i and j, so that Σi,j = σti,j , where ti,j is the time of215

the recombination that separates tip i from tip j, and the diagonal entries Σi,i = σ2τ .216

Conditioning on K = k recombinations and the matrix Σ, the probability that all217

k + 1 tips are of ancestry B is given by the integral of the k + 1-dimensional normal218

density over the space for which all Xi > 0:219

U(τ, `|Σ) =

∫ ∞
`

· · ·
∫ ∞
`

exp
(
−1

2
xTΣ−1x

)√
(2π)k|Σ|

dx1 · · · dxk+1. (6)

The integrand is the density for the multivariate normal which is determined by the220

timing and ordering along the chromosome of recombination events.221

This needs to be averaged over possible trees; to do this, we sum over possible tree222

topologies, and for each tree topology integrate over possible split times (Ti ∈ [0, τ ]).223

For a given tree topology T , the term we need is the following (also rescaling spatial224

and temporal variables so that Σ′ = Σ/(σ2τ) and T ′i ∈ (0, 1)):225

U(τ, `|T ) =

∫
t′
U

(
1,

`

σ
√
τ

∣∣∣∣Σ′) v(t′1)dt′1 · · · v(t′k+1)dt′k+1 (7)

The set of possible times, t′, over which we integrate depends on the tree topology,226

and correspondingly, each topology has a weight, or probability conditioning on k227

recombinations that is given by
∏k+1

i=1 v(ti). (See Appendix C for a further description228

of t′ and v(t′).)229

Finally, we sum across k and T ki in the set T k of all topologies given k recombi-230

nation events.231

Ud(τ, `) =
∞∑
k=0

(dτ)ke−dτ

k!

∑
T ki ∈T k

Pr(T ki )Ur(τ, `|T ki ). (8)

Where Pr(T ki ) is the probability of the ith unlabeled topology given that there are232

k + 1 tips (we describe the calculation of Pr(T ki ) in the Appendix C.) We note233

that Eq. 8 is a Wild sum expansion for Ud(τ, `) (Etheridge 2000). We outline234

an approach using differential equations to obtain an equivalent expression in the235

Appendix D.236
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In practice, we approximate this sum by conditioning on k∗ or fewer recombina-237

tion events in τ generations:238

Uk∗
d (τ, `) =

1

Pr(k ≤ k∗ | dτ)

k∗∑
k=0

(dτ)ke−dτ

k!

∑
T ki ∈T k

Pr(T ki )Ur(τ, `|T ki ). (9)

Fig. 2 shows the convergence as k∗ is increased, to the distribution of tract lengths239

obtained by simulating under the model (see below for description for simulations240

under the model). Summing over the large number of topologies for large k∗ is241

computationally expensive, but terms in the sum can be reused over some parameter242

values.243

2.5 Simulations244

We developed two classes of simulations to (1) evaluate the accuracy of our analytic245

results, and (2) to explore the consequences of realistic violations of our model that246

likely occur under the specified biological process. For the first class of simulations,247

simulations under the model, we consider chromosomes moving in continuous248

space and time, with recombination modeled as a Poisson process through contin-249

uous time and independent movement of all products of recombination. This is an250

explicit simulation of the model described above. We simulated 10000 chromosomes251

under the model.252

253

In the second class of simulations, simulations under the process, we follow a254

finite number of chromosomes migrating across discrete demes with non-overlapping255

generations forward in time. In these simulations we maintain the complete recom-256

bination history of a chromosome. As these features allow genetic drift, enforce a257

pedigree structure onto local ancestry, and occur in discrete time and space, our sim-258

ulations under the process present a biologically realistic challenge to many of our259

major modeling assumptions. We consider 200,000 diploids (400,000 chromosomes)260

evenly spread across 20 demes. Demes are connected through nearest-neighbor mi-261

gration with a per-generation, per individual probability m of migration (this migra-262

tion rate is reduced to m/2 on demes at the edges of one-dimensional space). We263

sample the number of recombination events from a Poisson distribution with mean264

of one, corresponding to a 1 Morgan chromosome, and recombination events are265

uniformly placed along a chromosome (i.e. no recombinational interference). Every266
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generation, migration, random mating, and recombination take place, and we follow267

the positions of all tracts of ancestry. After τ generations, we can sample chromo-268

somes where the ancestor from the initial population of each locus is known. We269

then assign ancestry along each individual’s chromosome based on whether ances-270

tors originated in population 1–10 (ancestry B) or in populations 11–20 (ancestry271

A).272

2.6 Inference of parameters in human admixture data273

While the distribution of continuous-ancestry tracts necessarily contains more infor-274

mation than LD alone, there are limits to the precision of the measurement of tract275

length over short recombination distances (which would reflect old events). This,276

combined with the relative ease of obtaining LD measurements from genomic data,277

motivates our use of LD in our analysis of human admixture contact zones. A variety278

of methods, including ALDER (Loh et al. 2013) and Globetrotter (Hellenthal279

et al. 2014) estimate some measure of ancestry-LD. We use the weighted LD curves280

generated by ALDER, which estimates a quantity analogous to the covariance in281

ancestry by computing the statistic:282

a(d) =
1

|S(d)|
∑

(M,N)∈S(d)

̂Cov(M,N)(pA(M)− pB(M))(pA(N)− pB(N)) (10)

for a set of pairs of autosomal loci, S(d), that are a genetic distance d apart.283

Here, (M,N) is a locus pair, pA(.) and pB(.) are sample allele frequencies in284

the parental populations A and B, and ̂Cov(M,N) is the sample covariance be-285

tween alleles at the two loci within the target population. If r is large enough286

that background LD in the ancestral populations can be ignored, and that the287

allele frequencies in the parental populations are known, then E[a(r)] = 2α(1 −288

α)F2(A;B)2Cov(1B(A1),1B(A2)|r), where Cov(1B(A1),1B(A2)|r) is the expected289

covariance in ancestry between pairs of loci a recombination fraction r apart, α is290

the ancestry proportion of population A in the admixed population, and the constant291

F2(A;B)2 measures differentiation in allele frequency between the two parental pop-292

ulations. Often, the designated parental populations for analysis are proxies for the293

true parental populations, in which case F2(A;B)2 is a measure of the differentiation294

between the true parental populations that is shared by the proxy populations.295
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Admixture at a single-time point. Under a basic model of admixture, decay296

in ancestry-LD can be described by the parameters F , t and G in the exponential297

model298

E[a(r)] = Fe−rt +G (11)

corresponding to a single pulse of admixture t generations ago. The term, G, repre-299

sents admixture LD between unlinked markers, possibly due to substructure in the300

sampled individuals with respect to their ancestry proportions. The value F + G/2301

corresponds to 2α(1−α)F2(A;B)2 (Loh et al. 2013), where α is the admixture pro-302

portion, and therefore is a compound parameter reflecting both admixture proportion303

and differentiation between parental populations.304

Fitting to a geographic contact zone. We take a set of admixed samples drawn305

from n populations, who fall at positions `1, · · · , `n along a linear geographic tran-306

sect. The geographic location of the center of the zone along this transection is C,307

such that sample 1 is a distance `1 − C from the zone. We specify a pair of proxy308

parental populations A and B, to represent the end points of the contact zone. Us-309

ing ALDER we generate the statistic aj(ri) for the jth population sample for each310

genetic distance bin (i), giving us a set, a, of weighted-LD decay curves (as defined311

in Eq 10). We use the minimum inter-SNP distance determined by ALDER based312

on LD in the parental populations.313

To assess the uncertainty in a, we estimate the variance in ALDER’s statistics314

using the jackknife (which is an output of ALDER). For each of the c = 22 iterations,315

one chromosome is removed before recalculating a for the remaining 21 chromosomes.316

We use this to calculate the variance Vi,j = Var(aj(ri))
c−1
c
. We then conduct a least317

squares fit of the ALDER output to our prediction given by Eq. (4) for values of τ ,318

σ, F (corresponding to F in Eq. 11 and C. We fit all n populations simultaneously),319

calculating:320

L
(
a; τ, σ, C, F

)
=

n∑
i=1

∑
j

1

Vi,j
(ai(rj)−D(rj, `i − C, τ, σ)F )2 (12)

Our choice of L( ) would be the negative log-likelihood of our parameters if our321

aj(ri) were normally distributed, a reasonable approximation given the large number322

of pairs of markers contributing to each value of ai(ri). We refer to L( ) as the323

log-likelihood, and because we are mainly interested in τ and σ we generate profile324

surfaces of τ × σ. Specifically, we set a value for L based on a fit of Eq. 1 to325

ancestry proportion, generate a likelihood surface over a grid of τ × σ × F and for326
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each combination of τ and σ we defined the profile log-likelihood as the maximum327

log-likelihood across all of our coresponding F grid-points.328

We note that, although Eq. 11 includes an affine term to account for LD that329

could be generated by an unspecified model of population substructure, our model330

does not. This is because a source of long-range LD is incorporated into our model331

via gene flow from neighboring populations with different admixture proportions.332

3 Results333

3.1 Simulation results and comparison to exponential model334

Figure S1 shows the decay in LD at various points in time and space, and shows335

the exact correspondence between the analytic expression of Eq. 4 and the output of336

simulations under the model. To evaluate the consequences of of fitting a single pulse337

model to data generated by our spatial model of continuous admixture, we fit the338

exponential decay of Eq. 11 to a set of simulated populations from a 50-generation old339

contact zone. The comparison, shown in Fig. S2, of best fit parameters indicates that340

the simple exponential tends to underestimate the age of the admixed populations341

by as much as a factor of 2, presumably because of the continuous introduction of342

migrants bearing long ancestral haplotypes. In other words, the poor fit of the single343

pulse model to these LD decay curves, especially close to the center of the contact344

zone, is due to the heterogeneous mixture of recombination times. Consistent with345

this interpretation, the effect diminishes in populations far from the center of the346

zone, as the difference in ancestry composition between neighboring populations347

decreases as the distance to the center increases.348

To demonstrate our inference method as described above, we fit our model (Eq. 4)349

to the curves generated under the process. Because we simulated single chromosomes,350

we could not use the jackknife estimator of variance, and therefore modified Eq. 12 by351

removing the denominator. We removed populations with no detectable admixture352

from the fit, limiting our analysis to populations close to the center of the contact353

zone. The profile likelihoods of these surfaces are shown in Fig. 3). The inferred τ354

and σ are (2, 0.17), (38, 0.12) and (93, 0.11) for zones simulated under τ = 5, τ = 50355

and τ = 100 respectively, under σ = 0.1356

Compared to the true values we use to simulate under the process our inference357

method tends to slightly underestimate the age of the contact zone. We expect that358
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this is in part due to the discrete nature of the simulation. These estimates are closer359

to the true simulated ages than those obtained by fitting an exponential (Eq. 11)to360

each population, which return values of 1.9 < τ̂ < 4.2 for τ = 5, 20.4 < τ̂ < 25.6 for361

τ = 50 and 40.0 < τ̂ < 59.5 for τ = 100 compared to our values of (τ̂ = 2, σ̂ = 0.17)362

for (τ = 5, σ = 0.1), (τ̂ = 38, σ̂ = 0.12) for (τ = 50, σ = 0.1) and (τ̂ = 93, σ̂ = 0.11)363

for (τ = 100, σ = 0.1).364

3.2 Application to human datasets365

We applied our model to three independent sets of populations that potentially rep-366

resent admixture in a spatial context: Populations along the Indonesian archipelago,367

populations in Central Asia and populations in India (Table S1). Genetic distances368

between SNPs were inferred using sex-averaged recombination rates from deCODE369

(Kong et al. 2010).370

3.2.1 Indonesian archipelago371

Populations along the Indonesian archipelago show a longitudinal cline of admix-372

ture between East Asian and Papuan autosomal ancestry (Xu et al. 2012; Lipson373

et al. 2014; The HUGO Pan-Asian SNP Consortium 2009). The decrease in374

proportion of Asian ancestry with longitude has been interpreted as evidence of the375

Austronesian expansion from the West through Indonesia. Xu et al. (2012) fit sim-376

ple admixture models independently to each of the populations to infer admixture377

times of 120–200 generations, such that populations with higher Papuan ancestry378

have more recent admixture times. A more recent analysis using ALDER estimated379

single admixture dates for populations in the region in the range of 30–60 genera-380

tions, suggesting that this in part is the result of subsequent waves of gene flow from381

populations with varying levels of Asian ancestry (Lipson et al. 2014).382

We obtained the genotypes for seven population samples in Indonesia (shown in383

Table S1 ) from The HUGO Pan-Asian SNP Consortium (2009) and a Papuan384

population from the HGDP dataset (Li et al. 2008). We first ran STRUCTURE385

(Pritchard et al. 2000) with k = 2 on these nine samples. The admixture propor-386

tions obtained from STRUCTURE confirm the east to west cline (shown in Fig. 4).387

We then ran a least squares fit for Eq. 1 on these admixture proportions, which388

estimated the cline center at X = 124◦9′E and σ2τ = 50.9. Based on ancestry pro-389

portions, we chose the Mentawai population and the Papua New Guinean population390
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(with ∼55k shared SNPs) as proxy source populations to generate ALDER curves.391

Simultaneously fitting our model to the six admixed populations, we generated the392

profile-log likelihood surface shown in Fig. 4. The maximum likelihood parameters393

best fitting these curves were an approximate contact time of ∼200 generations or394

5800 years ago (given a generation time of 29 years, Fenner 2005), σ = 0.63 and395

F = 0.0045. The fit to LD decay curves under these estimates is shown in Fig. 4 and396

Supplementary Fig. S3.397

We also explored the fit to LD decay curves of the single pulse model, fitting398

Eq. 11 by least squares (weighted by jack knife variance as in Eq. 12). Unsurpris-399

ingly, the fit of our model is not as good as a model in which all admixed populations400

are considered as having a single admixture time but allowed different values of F401

(L = 100370.1 compared to L = 94147.7) since independently fitting the y-intercept402

to each population allows for many more parameters while these intercepts in our403

model are constrained by geographic distances between the populations. The fits to404

each population are presented in Table S2 and are in good accordance with those405

found by Lipson et al. (2014) using similar methods.. With this approach, the mean406

timing among the admixed populations is 60.8 generations (we ignore the Javanese407

population which has little admixture and an estimated admixture time of 665 gen-408

erations which as this is far older than all the other populations.)409

410

Additionally, we considered fitting all populations simultaneously for a single411

time under the exponential model (Eq. 11), allowing each population to choose their412

own F parameter to account for differences in admixture proportions. Under this413

model we obtain an estimated age of τ ≈ 63 generations with minimum least squares414

of 98706. Again, this better fit is not surprising given that we are allowing each415

population to fit its own intercept.416

Linguistic evidence suggests that the Austronesian expansion through Indonesia417

dates to ∼ 2000 BCE (Gray et al. 2009). As noted by Lipson et al. (2014) these418

single pulse dates (Table S2) are too recent to reflect this, consistent with our earlier419

observation (and that of other authors) that admixture times may be underestimated420

by a simple exponential model if admixture has been ongoing. Our estimate of tim-421

ing based on fitting a geographic contact zone (∼200 generations) is much older422

than dates estimated by single pulse models, but is also considerably older than the423

Austronesian expansion. Considering that it is constrained by having to fit all pop-424

ulations simultaneously, our model provides a good fit. One possible explanation for425

our overestimate of admixture time is the assumption of a continuous rate of diffu-426

sion after initial contact. Despite this, our model may be a more realistic depiction427
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of ongoing gene flow than a single pulse model and demonstrates that, in instances428

such as this where there is a gradient of admixture, incorporating a spatial model of429

admixture can provide additional insights into the history of these populations.430

3.2.2 India431

Population structure in India is complex and multilayered. While the precise history432

of human movement in this region is unclear, work by Moorjani et al. (2013) and433

Reich et al. (2009) suggests that many modern Indian populations are descendants434

of an admixture event between differentiated Ancestral North Indian (ANI) and An-435

cestral South Indian (ASI) populations, with a cline in the extent of ANI ancestry436

across the subcontinent ((Moorjani et al. 2013), Fig. 5). While it is difficult to437

identify modern proxies of the parental populations, the ANI population appears to438

be most closely related to Western Eurasian populations (such as Georgia) and the439

Onge population of the Andaman Islands seem to draw much of their ancestry from440

the ASI population. Moorjani et al. (2013) broadly grouped their samples into441

Indo-European or Dravidian samples, and under this classification, found that the442

decay in ancestry-LD in their samples were consistent with two historical admixture443

events, one approximately 108 generations ago giving rise to the Dravidian popula-444

tions, and a second wave of admixture from the north taking place 36 generations445

later that contributed to the ancestry of Indo-European populations.446

We obtained the genomic data used in Moorjani et al. (2013), Reich et al.447

(2009), Metspalu and Romero (2011) and Li et al. (2008), yielding approximately448

83, 000 shared SNPs, and focus on the populations represented in Table 1 of Moor-449

jani et al. (2013) (See our Table S1). Following Moorjani et al. (2013), we ran the450

F4 ratio tool in the ADMIXTOOLS package (Patterson et al. 2012) on Georgian,451

Basque, Yoruba, Onge and the focal Indian population to estimate ANI ancestry452

proportions in these populations (Fig. 5). We fit a latitudinal cline to these ancestry453

proportions (Eq. 1) returning a cline center at 24◦4′N and σ
√
τ = 25.4. Because454

the gradient of ancestry could run along any geographic axis, we also tried to fit455

ancestry proportion clines to various transects using linear combinations of latitude456

and longitude. Since these did not produce substantially better fits than latitude457

alone, we chose to use latitude as our geographic axis (results not shown).458

459

We then generated co-ancestry decay curves in ALDER for each of these samples,460

using weightings from Basque and Onge parental populations as proxies for the ANI461
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and ASI populations, see Moorjani et al. (2013). We consider three possible contact462

zone scenarios: One in which all population samples form a contact zone and, based463

on the earlier studies, one that comprises only of the Indo-European and one that464

comprises only of the Dravidian populations. We initially attempted to fit the τ ,465

σ and F parameters in Eq. 12 simultaneously, but faced some difficulty as there466

appears to be limited information about F . This results in wide range of values467

fitting the data equally well, but give rise to very different surfaces for σ and τ . We468

attributed this to a deficit of information in the curves, leading to non-identifiability,469

due to relative low levels of differentiation and relatively rapid decay of ancestry-470

LD. The difficulty in estimating the intercept of admixture-LD curves had been471

noted before (Loh et al. 2013), and can reflect the fact that very close pairs of472

markers are discarded to remove the effects of LD in the ancestral populations. This473

results in the fitted curve being relatively unconstrained near r = 0. To remedy474

this, we estimated F using an approach similar to that taken by Moorjani et al.475

(2013). Using MIXMAPPER (Lipson et al. 2013), we estimated the value of F476

as F2(ANI;ASI)2 using the Onge and Basque populations as present day proxies,477

and fit values of σ and τ under the range of F2 values computed by MIXMAPPER478

((0.015, 0.042)). We also use the value estimated above as the cline center for all three479

fits. We first fit our LD curves to all populations, under a model in which all Indo-480

European and Dravidian populations are the outcome of a single admixture contact481

zone. The best fit was approximately 220 generations since contact (Fig. 5). Fits482

to the subset of populations classified as Indo-European yielded a contact zone age483

of approximately 200 generations (Fig. S5). Finally, we fit the subset of Dravidian484

populations (Fig. S5), which found a best fit of 460 generations on a relatively flat485

surface. This is likely because there is very little information in the decay of LD in486

this subset given there are so few Dravidian populations, and that the LD curves are487

relatively flat.488

Several aspects of the data indicate potential mis-estimation of dates. Some pop-489

ulations, presumably the oldest, have very little admixture-LD, which may prevent490

an accurate fit to the decay. Secondly, it is possible that the absence of ‘edge’ popu-491

lations that are further away from the zone center makes it difficult to obtain a good492

fit, as we only have populations with intermediate levels of admixture where the493

decay of LD is not strongly related to the age of the zone. Substructure within pop-494

ulations, due to practices such as endogamy, may also influence ancestry-LD within495

a population and cause a deviation from expectations under a null model of random496

mating. We take these challenges, and the uncertainty in our results, as a reflection497

of the complicated demographic histories of these populations, and the fact that it498

is poorly described by the model which we are trying to fit. These challenges also499
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likely apply to other analyses of these data, meaning that caution is warranted in500

judging the age of this zone.501

3.2.3 Central Asia502

Populations in central Eurasia show varying levels of East Asian ancestry. In a global503

analysis, Hellenthal et al. (2014) identified a signal of admixture, using Mongo-504

lian and Iranians as proxy source samples, in Turkish, Uzbek, Hazara and Uygur505

samples. The proportion of Mongolian ancestry decreases with longitudinal distance506

from Mongolia, with the Turkish populations harboring the lowest proportion of507

Mongolian ancestry. The estimated admixture dates in these populations of 20-30508

generations in the past found by Hellenthal et al. (2014) is consistent with the509

timing of the westward military movement of Mongolians during the 13th century.510

We took the genomic data for the four admixed populations and the two proxy511

source populations from the dataset of Hellenthal et al (500k SNPs). A STRUC-512

TURE analysis of these populations, with k = 2, is consistent with a gradient in513

Mongolian ancestry across Central Asia (Fig. 6). We used ALDER to generate514

weighted covariance curves, using the Mongolian and Iranian samples as the two515

proxy source populations. For the four admixed populations, the best fit (Eq. 18)516

under our simple contact zone model is approximately 49 generations, or 1421 years517

ago (29 years per generation), with σ = 3.7 (see Fig. 6 for the profile likelihood518

surface). This admixture date predates the Mongolian invasion of Central Asia that519

took place approximately 800 years ago. However, it is known that human movement520

in Central Asia was complex, and preceded the Mongolian invasions by centuries, and521

it is possible that our estimated date is capturing a signal of these earlier migrations.522

This is supported by recent analyses of Central Asian populations by (Yunusbayev523

et al. 2014).524

525

ALDER identified a large extent of long-range LD in the Hazaran population,526

possibly due to population substructure within this sample with respect to Mongolian527

ancestry. Because this could potentially influence our inference, we refit the LD528

curves to the set of admixed populations exculding the Hazara. This produced a529

best fit of 37 generations.530

One consideration in our applications is our assumption that the populations531

spread back into contact and then simply passively diffused into each other. This is532

obviously likely a poor description of the movement of Mongolian genotypes across533
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Asia during the 13th century invasions, which could result in a discrepancy between534

expected and predicted decay in ancestry-LD. We therefore proposed an alternate535

model that allows for an initial fast pulse of Mongolian migration into central Asia,536

followed by diffusion through local geographic dispersal (i.e. our Brownian motion).537

Explicitly, we construct a model which defines two additional parameters: X1, a point538

in space to the east of which some proportion, Ψ, of the population is replaced by539

Mongolian genotypes τ generations ago (see Appendix E for mathematical details).540

In specifying this model, we are trying to capture a scenario in which, at least initially,541

unadmixed Mongolian genotypes were making a rapid westward movement. However542

we acknowledge that this is at best a very crude approximation of a possible sequence543

of events.544

While this alternate model provides a better fit to admixture proportions (Fig. 6545

shows fit with Ψ = 0.55 and X1 = 62.7), given the few populations, this good fit546

may reflect over-parameterization of the model. Furthermore, a search for the best547

fit to the LD decay curves returned parameters that were effectively identical to the548

initial basic model proposed (Ψ ≈ 1, cline center around 71◦E), indicating that this549

is not a likely alternative model (profile likelihood curves for each fitted parameter550

are shown in supplemental figure S8). Given the early estimated admixture date, it is551

possible that admixture across Central Asia is not a product of a single event as our552

models, and those of others (Hellenthal et al. 2014), assume, but rather a result553

of complex human migrations throughout time. Despite the limitations imposed554

on inference of parameters by the small number of populations, broad patterns of555

ancestry-LD across space are nevertheless somewhat consistent with our proposed556

model of ancestry-LD decay across space along an admixture gradient.557

Discussion558

The generation and subsequent of decay of admixture-LD as an outcome of inter-559

breeding between differentiated populations provides a population genetic signature560

that is a valuable tool for understanding the nature and timing of admixture. Exist-561

ing methods for modeling decay in admixture-LD consider the expected rate of decay562

in one population at a time, and often assume a simple one-time ‘pulse’ of admixture563

without subsequent gene flow from neighboring admixed populations. Here, we have564

described a neutral model under which individuals diffuse across space. Based on this565

model, we derive an analytic expression for the expected decay in ancestry-LD as a566

function of time since contact and a population’s position in space. We consider this567
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an alternate model to one in which admixed populations are independently formed by568

a single-pulse event with potential subsequent gene flow from parental populations.569

In contrast to previous analyses of spatial admixture which treated populations as in-570

dependent admixture events (e.g. Xu et al. 2012), we consider data from all sampled571

populations simultaneously to build a model that incorporates all available informa-572

tion and accounts for the movement of individuals between populations. Compared573

to the expression for ancestry-LD derived here, a simple exponential model tends to574

underestimate the time since admixture, as it does not account for the introduction575

of long ancestral haplotypes from neighboring populations.576

Additional sources of covariance. In developing tractable approximations to577

spatial admixture contact zone we have ignored genetic drift and the genealogical578

structure imposed by the pedigree.579

Genetic drift is not problematic if population densities, and dispersal rates, are580

high enough that coalescence between geographical close lineages is unlikely over the581

time-scale τ (as is likely the case in our human applications). Otherwise, a theoretical582

approach incorporating coalescence will be needed (see Barton et al. 2013, for583

recent progress). However, in that case, background LD and admixture LD will be584

on comparable genomic scales, making the the job of separating the two much more585

challenging.586

The other form of correlation structure that we have ignored is that imposed by587

the genealogy (Wakeley et al. 2012; Liang and Nielsen 2014). When there are588

multiple crossovers during meiosis within the stretch of chromosome we are consid-589

ering, the recombinants trace their ancestry to one of the two parents one genera-590

tion back in time. When considering the chromosome tracts between recombination591

events, odd numbered recombinant segments come from one parent (say the mother),592

and even number segments from the other parent (the father). Therefore, the re-593

combinants are not independent of each other as one generation back as all odd (or594

all even) recombinants are found in one parent. This additional covariance from the595

pedigree structure does not impact our pairwise model of ancestry-LD if r is strictly596

defined as a recombination fraction, as an odd number of recombinations between597

our pair of loci means that the two alleles are present in different parents in the598

proceeding generation and there after follow independent trajectories back in time.599

Our block length calculations ignore this form of covariance, as we assume that frag-600

ments follow independent spatial paths backward in time after recombination events.601

This assumption will only be problematic for long regions (where more than one re-602

combination can happen per generation) and for short time intervals (i.e. small τ).603
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However, in such cases, ignoring genetic interference may present a greater source of604

error than the ignoring of this additional source of covariance.605

3.3 Application of the model to human admixture data606

To explore our model we used our approximate model to estimate contact times607

and dispersal variance from genomic data from admixed human populations. We608

present our fit to the output of weighted-LD from ALDER, but similar information609

about the extent of ancestry-LD can be obtained from alternative methods such as610

Chromopainter (Lawson et al. 2012).611

Our spatial model provided a good fit to admixed populations along the Indone-612

sian archipelago, consistent with a relatively straightforward history of admixture613

across space. Our estimated time of initial contact is somewhat consistent with the614

work of Xu et al. (2012), and is older than reported by Lipson et al. (2014). Our615

deeper admixture time estimate likely reflects the fact that inference under single-616

population admixture models will produce estimates of timing of initial admixture617

that is more recent than estimates under our contact zone model. Our estimate of618

≈ 6000 years ago is older than estimates obtained from linguistic analysis (Gray619

et al. 2009). This could be in part due to the simplifying assumptions of our model,620

which requires dispersal to be constant in time and space. One could imagine, for621

example, that if there were pulses of human movement followed by a slowing down622

of dispersal this would impact our estimate.623

Our spatial model provided a poor fit to the Indian and Central Asian popula-624

tions. This is likely due, in part, to deviations from a simple model of instantaneous625

removal of a barrier to contact and continuous diffusion thereafter. In India, a com-626

plex population structure, caste system, and potentially two waves of contact may627

have all contributed to difficulties in finding parameters that fit under our model. In628

particular, the need to separately estimate the y-intercept meant that there was rela-629

tively little information in the decay curves about the timing and mode of admixture.630

This is especially problematic for older admixture such as this (particularly in the631

Dravidians), as there is relatively little admixture-LD over larger scales and conse-632

quently much of our information relies on LD over short genetic distances (< 1cM).633

Given this paucity of information, it is likely that many, and quite different, admix-634

ture models would fit these data nearly equally well. As such, our fit and estimate635

of timing, and indeed the estimates under alternate models, should be interpreted636

with caution.637
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The limited number of populations in Central Asia places a limit on the confidence638

for the fit to the data under any dispersal model. Furthermore, it is known that639

human movement in the region spans many centuries and is unlikely to be simple.640

While earlier attempts to date admixture in these populations estimate admixture641

times of ≈ 30 generations, corresponding to the Mongolian invasions (Hellenthal642

et al. 2014), our estimated time is much older, at ≈ 50 generations. It is unlikely643

that our demographic model is a good approximation to historical human movement644

in the area, and this is likely to have impacted our inference. However, it is possible645

that our estimate of earlier admixture is in part reflecting older human movements646

in the region, and this is in part supported by the findings of (Yunusbayev et al.647

2014).648

3.4 Extensions of the simple neutral model and other appli-649

cations650

The assumption of Brownian movement, and the ignoring of drift and pedigree struc-651

ture have enabled the derivation of a relatively simple expression to describe ancestry-652

LD. The examples of human admixture zones provides above indicate, however, that653

alternative models may be need to describe patterns of LD, given different demo-654

graphic scenarios. We therefore consider the basic Brownian model to be a neutral655

framework and acknowledge that, while it may be a good approximation for some656

scenarios of admixture and secondary contact, in many cases individuals may not657

diffuse continuously in space and time. Because of the simplicity of our model, mod-658

ifications can be made with relative ease to describe different geographic scenarios.659

For example, we were able to apply a model in which the movement of Mongolian660

genotypes began as a pulse of migrants, followed by diffusion. In a similar vein,661

one could modify movement to contain a Brownian drift parameter to account for662

directional migration, although this would require some consideration as to how the663

dispersal kernel of an admixed individual is determined. Discrete deme models could664

also be used (as we develop in Appendix B) to model complex histories of popula-665

tions in geographic and temporal heterogeneity. However, in practice there is not666

enough information in admixture decay curves to infer detailed population histories667

with many parameters.668

We have demonstrated that inference of admixture parameters can be greatly669

influenced by the choice of demographic model. We believe that this highlights the670

need for more admixture models to be developed to test with population genomic671
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data, and for careful consideration of which model is appropriate for a given biologi-672

cal scenario. The model presented here makes some progress towards addressing the673

movement of admixed individuals, and presents a potential framework for future de-674

velopment of dispersal models. As a final point, we note that all (to our knowledge)675

admixture models to date, including ours, assume that populations undergo differen-676

tiation in relative isolation prior to secondary contact. Under this assumption, there677

is a strong appeal to fit pulse models (such as a wave of secondary contact) to human678

admixture data, with a goal to estimating the timing of a pulse, and relating it to679

particular historical events. It seems that perhaps a more appropriate null model in680

these scenarios would be one in which gene flow has been ongoing between popula-681

tions, but at a rate slow enough to allow some differentiation to occur. Testing for682

patterns of LD under this isolation-by-distance model would be a first step towards683

understanding the demographic history of spatially distributed populations, and the684

development of such a null model seems an important step in creating future tools685

for population genomic inference.686

In addition to admixture contact zones, LD has been used to characterize hybrid687

zones (Wang et al. 2011), and we see our framework as a potential null model for688

spatial models of secondary contact, whereby incipient species come back into con-689

tact. Although tension zones can maintain distinct species, reproductive isolation is690

often weak enough to allow diverged populations to exchange alleles. In such sce-691

narios, patterns of diversity that depart from expected ancestry-LD could be used to692

detect potential targets of selection relevant to speciation or local adaptation. The693

expected population genomic signatures of such loci will depend on the nature of694

selection – for example, patterns of LD around a gene under differential selection695

may differ from patterns of selection against certain hybrid genotypes. It should be696

noted, however, that good estimates of decay in ancestry-LD require reliable genetic697

maps, as overestimates of genetic distance may give the appearance of a slower rate698

of decay by inflating LD and this may be a limiting factor in many systems.699

700

The LD induced by the admixing of two differentiated populations is a powerful701

population genetic tool which, combined with genome-wide data, has enabled the702

use of decay in ancestry-LD to inform the timing of admixture events. Building on703

models that use this decay to infer admixture dates under scenarios with discretized704

migration events, we have developed a novel framework that accounts for continuous705

movements of haplotypes through time and space. We believe that this can serve as706

a good null model for understanding patterns of diversity in contact zones. Further-707

more, we see potential for this model to be further developed and tailored to fit a708
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range of demographic scenarios, including those that incorporate selection.709
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Appendix718

A Covariance in Ancestry719

By integration by parts, equation (3) becomes:720

e−rτΦ

(
`

σ
√
τ

)
+

[
−e−rt

∫ ∞
`

∫ ∞
`

ft(y, z) dydz

]t=τ
t=0

+

∫ τ

0

e−rt
∫ ∞
`

∫ ∞
`

∂ft
∂t

dydz dt,

(A1)
where ft(y, z) is the bivariate normal density for jointly distributed (Y, Z) with cor-721

relation t. The second term of (A1) is:722

Φ

(
`

σ
√
τ

)2

− e−rτΦ
(

`

σ
√
τ

)
(A2)

For the third term of (A1), we can utilize the useful identity that for a bivariate723

normal with variances 1 and correlation t (Pearson 1901):724

∂

∂t
ft(y, z) =

∂2

∂y∂z
ft(y, z). (A3)

The last term of (A1) becomes:725 ∫ τ

0

e−rtft(`, `) dt (A4)
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Combining Eq. 2 and A1, A3, A4 therefore leaves us with:726

Cov(A1,A2) =

∫ τ

0

e−rt
1

2πτσ2

√
1− ( t

τ
)2

exp

(
−

`2(1− t
τ
)

τσ2(1− ( t
τ
)2)

)
dt (A5)

B Island model727

In a discretized time and space model, with n islands and per-generation migration728

rates defined by the n × n matrix M , the expected frequency of ancestry B alleles729

in population X is730

E[1B(A)] =
∑
j∈S

M τ
X,j, (A6)

whereX is the deme from which an individual is sampled, τ is the number generations731

since admixture began, S is the set of demes that are defined as being ancestry B732

at the time of contact, and M τ
X,j is element i, j of the τ th matrix power of M . The733

covariance is derived by summing over possible recombination times and the location734

of the allele at the time of recombination (N is the set of all locations.):735

Cov(A1,A2) = (1−r)τ
∑
i∈S

M τ
X,i+

τ−1∑
t=0

(1−r)tr

∑
j∈N

M t
X,j

(∑
a∈S

M τ−t
j,a

)2
−(∑

i∈S

M τ
X,i

)2

(A7)

Note that r is the probability of any odd number of recombinations occurring,736

i.e. is the probability that a Poisson random variable with mean d is odd.737

C Unlabeled rooted topologies and their probabilities:738

To obtain the set T k and the associated Pr(T ki ), we use the following result from739

Cavalli-Sforza and Edwards (1967). Given k tips, the number of unlabeled740

topologies, ak is given by the recursion:741

ak =

{
a1ak−1 + ...+ a(k−1)/2a(k+1)/2 k odd
a1ak−1 + ...+ 1

2
ak/2(ak/2 + 1) k even
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with initial conditions a1 = 1, a2 = 1742

Intuitively, for the set of ak topologies T k =
{
T k1 ...T kak

}
, a topology T ki is generated743

by joining T jm ∈ T j with T k−jn ∈ T k−j at the root (m and n are arbitrary). Because744

each subtree is independent, the probability of a topology given k recombinations745

can be calculated using a similar intuition. The probability, p(T ki ), of topology T ki is746

the product of the probabilities of each subtree, relative to every combination that747

yields a tree of size k.748

p(T ki ) = 2

(
k − 1

j

)
p(T jm)j!p(T k−jn )(k − j)!

k!
(A8)

Where T ki is the topology made by joining topologies T jm and T k−jn at the root.749

750

The covariances for each topology representing k recombination events are depen-
dent on the order statistics for k uniformly iid sampled recombination times. The
t′ over which we integrate are conditional on these ordered recombination times.
Specifically, if t′j is the recombination time corresponding to node j on the tree,
then t′j becomes a lower bound for all subsequent recombination times associated
with nodes that are descended from node j. Correspondingly, the factor v(t′j) is a
function of the recombination times

v(tj) = (Mj + 1)
(1− t′j)Mj

(1− t′i)Mj+1
,

where node i is the parental node to j with corresponding time t′j, and Mj is the751

number of nodes descendent from node j. Here we have assumed recombination times752

are continuously distributed, and that double-recombination events do not occur (i.e.753

all nodes are unique with respect to timing.)754

D Obtaining block length distributions by a Branching Brow-755

nian Motion756

An alternative approach the multiple-recombination scenario can be taken without757

conditioning on the number of recombination events. The process of recombination758

and dispersal described above is analogous to a Branching Brownian Motion (BBM),759

where recombination is represented by a splitting event. In standard BBM, lineages760
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have a constant rate of splitting, but here the total length of the chromosome is761

constant, and so we have conservation of the total rate of splitting d. The rate of762

splitting on a lineage decreases with each recombination event, as both products of763

recombination are shorter (and therefore have a smaller probability of recombina-764

tion).765

Below, we derive an integro-differential equation satisified by U , similarly to the766

classic analysis of branching Brownian motion by McKean (1975). Starting in the767

present, we follow a single lineage backward in continuous time. The movement of768

this lineage is Brownian with variance σ2. We model recombination events between769

the two loci as a Poisson process with rate d. At the first recombination event, we770

generate a uniform random variable, r1 ∈ [0, d) to represent the genomic position of771

the recombination event. We then split the sequence into left and right fragments –772

[0, r1) and [r1, d), respectively. Following this, the two linages move independently773

backwards in time with respective recombination (splitting) rates of r1 and d − r1.774

This process is iterated over the time period τ .775

We consider moving back a very short time interval ∆t from the present, and776

take the expectation over the random events that could have occurred in that time777

interval. (In other words, we are writing down the infinitesimal generator of this778

Markov process.)779

With probability 1− d∆t+O(∆t2) there is no recombination during the interval780

∆t and conditioning on this, we have only to take the expectation over the small781

random change ∆x in spatial location during this time.782

Ud(τ, `| no rec.) = E∆x[Ud(τ −∆t, `+ ∆x)], (A9)

where E∆x is the expectation over all changes in position X.783

A recombination event occurs in the interval ∆t with probaility d∆t. Condi-784

tioning on recombination occurring at time trec at position ` + ∆x′, producing two785

recombinants of length d1 and d− r1:786

Ud(τ, `| rec.) =

∫ d

0

∫ ∆t

0

E∆x′ [Ur1(τ − trec, `+ ∆x′)Ud−r1(τ − trec, `+ ∆x′)] dr1dtrec,

(A10)
where Ur1 is the probability that all subsequent recombinants along the chromosomal787

fragment of length r1 are of ancestry type B.788

As ∆t→ 0, the Taylor expansion of (A9) and (A10) aboutX gives the expression:789

∂Ud
∂t

(τ, x) =
σ2

2

∂2Ud
∂x2

(τ, x)− dUd(τ, x) +

∫ d

0

Ur1(τ, x)Ud−r1(τ, x) dr1, (A11)

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2015. ; https://doi.org/10.1101/016337doi: bioRxiv preprint 

https://doi.org/10.1101/016337
http://creativecommons.org/licenses/by/4.0/


with boundary conditions Ud(0, x) = 1 for x > 0 and Ud(0, x) = 0 for x ≤ 0. This790

differential equation is solved by Ud(t, x), defined in Eq. 5, and is the probability791

that at time τ in the past, the leftmost branch of this branching process initiated792

at position x0 is at a position x > 0. This differential equation is related to that793

presented by Baird et al. (2003) to describe the survival of genomic blocks within794

a panmictic population (but the latter does not have a spatial diffusion term). The795

equation is similar to the Fisher-KPP equation, with differences arising from the796

non-constant splitting rate. The first term of Eq. A11 reflects the spatial diffusion797

of lineages, the second term reflects the loss of blocks of length d to recombination.798

The final term reflects fact that the two recombinant lineages (of size d− r1 and r1)799

independently have to be of type B, and the dependence of this probability on the800

physical location of the recombination event, which is integrated over.801

E Invasion pulse802

Suppose an invasive population displaces a subset Ψ of a resident population at τ803

generations in the past such that the frequency of ancestry B at time τ is 0 for804

−∞ < x < X1 and Ψ for x > X1. The ancestry LD at position X in this situation805

is:806

(1−Ψ)Ψe−rτΦ

(
(`−X1)

σ
√
τ

)
+ Ψ2

∫ 1

0

e−rtτ
1

2πσ2
√

1− t2
exp

(
− (`−X1)2

τσ2(1 + t)

)
dt

(A12)
As after τ generations the probability of ancestry B is the probability of both of our807

lineages being in (X1,∞) multiplied by Ψ808
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Figure 1: A: We follow backward in time the Brownian motion paths of two initially
linked lineages, represented here by two black circles located on a grey chromosome.
The paths of the two lineages are identical until the first recombination event between
them at time t, after which they follow independent Brownian paths. The red cross
indicates the position, relative to the center of the zone, where the chromosome was
sampled in the present day. The black rectangle represents a barrier to dispersal that
was removed at time τ . In this example, both alleles are of ancestry B, since they
are on the same side of the barrier to dispersal at time τ . B: Brownian motion paths
of a tract of chromosome. As in Fig. 1A, the path along chromosomal fragments are
identical until recombination breaks the fragments up. Here, the position of each
chromosomal fragment at time τ is shown. For the entire portion of chromosome to
be of uniform ancestry, all products of recombination must be on the same side of
the barrier to dispersal at time τ . Here, the green and yellow fragments constitute
an unbroken tract of B ancestry.
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Figure 2: Distribution of tract lengths, expressed as the frequency of tracts that are
at least a given length (i.e. 1-cumulative distribution of tract lengths). The following
shows the distribution for populations L units away from the center of a contact zone.
The solid lines represent the output of a simulated contact zone with no drift. For
the 5-generation contact zone the four dotted lines per geographic position represent
the predicted distribution under approximations conditioning on at most 3,4, 5 or
6 recombination events. For the 10-generation contact zone, the three dotted lines
represent approximations conditioning on at most 3,4 or 5 recombination events.
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Figure 3: Analysis of simulations under the process run with parameters τ = 5,
τ = 50 or τ = 100 and m = 0.01 under nearest-neighbor migration, corresponding to
σ2 = 0.01 in the continuous model. A: Output of simulations (solid lines), compared
to the continuous time and space model of Eq. 4 (dashed lines) and a discrete time
and space expression from Eq. A7 (dotted lines). B: Profile likelihood surfaces
describing the fit of our continuous model to simulations under the process. Green
asterisks indicate simulated values.
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Figure 4: A: Longitudinal cline in Asian ancestry. Black dotted line shows best
fit to Eq. 1. B: Sampling locations of Indonesian populations. Blue dot denotes
the representative Asian ancestral population and red dot the representative Papuan
population. Vertical yellow line shows location of the inferred cline center. C: Profile
likelihood surface for τ and σ under Eq. 12 for all admixed Indonesian populations.
The blue line represents the curve 50.9 = σ2τ , corresponding to the value of this
compound parameter that is obtained by fitting to admixture proportions alone as
shown in Fig. 4A. D: Weighted-LD curves for two populations of different distances
away from the center of the cline. Grey points represents estimates of LD generated
by ALDER, and black curves are expected LD under the estimated parameters.
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Figure 5: A: Latitudinal cline in ANI ancestry. B: Locations of Indian populations
used in the analysis. Yellow line indicates location of inferred cline center. C: Profile
likelihood surface for τ and σ under E1. 12. Blue line represents the relationship
σ
√
τ = 25.4, as obtained from the cline in ancestry proportion. Asterisk denotes

values providing best fit. D: Weighted LD curves as estimated by ALDER, for a
northwest (Kashmiri Pandit), southern (Vysya) and northeast (Kanjars) population.
Grey points are estimates generated by ALDER, and black curves are expected LD
under the estimated parameters.
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Figure 6: A: Geographic location of Mongol-Iranian admixed populations used in
the analysis. B: Ancestry proportions, with best fit under basic Brownian model
(dashed, thick line), and under pulse model (unbroken thin line) C: Best fit under
our model to LD-decay curves (Hazara not shown), and profile likelihood surface
to the set of all four populations (top right). Blue line indicates 4.2 = σ2τ , the
compound parameter estimated by fitting to admixture proportions.
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