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Abstract  

Background 

RNA sequencing (RNA-seq) is a powerful tool for genome-wide expression profiling of 

biological samples with the advantage of high-throughput and high resolution.  There are 

many existing algorithms nowadays for quantifying expression levels and detecting 

differential gene expression, but none of them takes the misaligned reads that are mapped 

to non-exonic regions into account.  We developed a novel algorithm, XBSeq, where a 

statistical model was established based on the assumption that observed signals are the 

convolution of true expression signals and sequencing noises.  The mapped reads in non-

exonic regions are considered as sequencing noises, which follows a Poisson distribution.  

Given measureable observed and noise signals from RNA-seq data, true expression 

signals, assuming governed by the negative binomial distribution, can be delineated and 

thus the accurate detection of differential expressed genes. 

Results 

We implemented our novel XBSeq algorithm and evaluated it by using a set of simulated 

expression datasets under different conditions, using a combination of negative binomial 

and Poisson distributions with parameters derived from real RNA-seq data.  We 

compared the performance of our method with other commonly used differential 

expression analysis algorithms.  We also evaluated the changes in true and false positive 

rates with variations in biological replicates, differential fold changes, and expression 

levels in non-exonic regions.  We also tested the algorithm on a set of real RNA-seq data 

where the common and different detection results from different algorithms were 

reported. 
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Conclusions 

In this paper, we proposed a novel XBSeq, a differential expression analysis algorithm 

for RNA-seq data that takes non-exonic mapped reads into consideration.  When 

background noise is at baseline level, the performance of XBSeq and DESeq are mostly 

equivalent. However, our method surpasses DESeq and other algorithms with the 

increase of non-exonic mapped reads.  Only in very low read count condition XBSeq had 

a slightly higher false discovery rate, which may be improved by adjusting the 

background noise effect in this situation.  Taken together, by considering non-exonic 

mapped reads, XBSeq can provide accurate expression measurement and thus detect 

differential expressed genes even in noisy conditions. 
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Background  

Next-generation sequencing (NGS) has been widely used in biological studies.  RNA 

sequencing (RNA-seq) is the most commonly used NGS technologies to investigate the 

aberration of mRNA expression in disease and normal condition comparison.  Unlike 

microarray technology, which uses a short section of a gene as a probe to determine the 

gene’s expression, RNA-seq provides measurement across entire exonic region, enabling 

accurate expression quantification and discovery of novel isoforms and splicing 

junctions.  With RNA-seq technology, thousands of novel coding and non-coding genes, 

alternative splice forms of known genes have been discovered. 

 

Differential expression (DE) analysis using RNA-seq is commonly employed to 

interrogate changes between different experimental conditions.  While enormously 

successful, DE analysis also suffers from systematic noise and sequencing biases, such as 

sequence quality bias, wrong base calls, variability in sequence depth across the 

transcriptome, and the coverage depth differences of replicate samples [1]. There are 

already many statistical testing methods for RNA-seq differential expression analysis.  

One is to normalize the read counts of target transcripts, converting them into reads per 

kilobase per million mapped reads (RPKM) and then perform linear modeling methods 

that are used in microarray experiments [2].  However, the method designed for 

microarray measurement may not fit the characteristics of sequencing data properly. In 

past years, algorithms have been developed specifically for RNA-seq data analysis.  

Among them, two popular software packages implemented the negative binomial (NB) 

model that account for genome-wide read counts and moderate dispersion estimates with 
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different statistical methods [3, 4].  EdgeR [4] uses a trended-by-mean estimate to 

moderate dispersion estimates, whereas DESeq [3] takes account of the maximum of a 

fitted dispersion mean or the feature-wise dispersion estimate, as reviewed in [5].  

However, neither of these methods considered the misaligned reads existing in the 

sequencing data, which may play a significant role in detecting the significance of target 

transcripts. 

 

Here we propose a novel DE analysis algorithm – XBSeq, which is derived from DESeq, 

where we take the non-exonic reads of RNA-seq data into consideration.  In conventional 

RNA-seq analysis, reads mapped to the exons are counted as the expression of a gene, 

whereas reads aligned to the intronic and inter-genic regions are generally ignored.  

Those non-exonic hits exist because of: sequencing error, mapping error, contamination 

by genomic DNA, unannotated genes, and nascent transcription and co-transcriptional 

splicing [6].  Our model treats these sequence reads as sequencing noises that exist across 

the entire genome, both exonic and non-exonic regions.  Therefore, the observed read 

counts can be decomposed into two components: true signals that are directly derived 

from transcripts expression, and the others from the random noises.  We model true 

expression signals by a negative binomial distribution and assume sequencing 

background noises possess a Poisson distribution.  With non-exonic read counts, we can 

estimate the parameter λi of the Poisson distribution of each gene.  Afterwards, we 

remove sequencing noise effect from observed signals and retrieve the background-

corrected mean and variance parameters for the NB model of true expression signals.                               
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To study the robustness of the algorithm, we have built a simulation framework that 

generates RNA-seq data by combining the true signals in NB distribution with different 

levels of non-exonic reads from Poisson distribution.  We demonstrate our method by 

applying it to the simulated data and examine how it performs comparing with other 

common DE analysis algorithms. 

 

Methods 

Non-exonic sequence read count 

For a typical transcriptome profiling by RNA-seq, we detect read count of each gene by 

using HTSeq algorithm [7].  Given exons’ locations of every gene, HTSeq counts 

sequence reads aligned to the genic regions.  In order to capture the reads in non-exonic 

regions, we preserved the structure information of each gene (transcript length, exon size, 

etc) by shifting start and end positions of each exon to a nearby intronic or inter-genic 

region (See Fig. 1A).  We have defined non-exonic regions for each species by the 

following steps:  

1) Download refFlat table from UCSC database (http://genome.ucsc.edu) and create 

the preliminary list of gene-free regions, 

2) Download tables of (a) all_mrna; (b) ensGene; (c) pseudoYale60Gene; (d) 

vegaGene;, (e)xenoMrna, and (f) xenoRefGene from UCSC database and remove 

regions appear in any of them from the gene-free regions, 

3) To guarantee gene-free regions are far enough from exonic regions, trim 100 bps 

from both sides of intronic regions and 1,000 bps from both sides of inter-genic 

regions, 
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4) Shift each exon of a gene to the right nearest gene-free region.  Most of the shifted 

genes remain the same as the original structures of the genes, 

5) If the nearby gene-free region is too short, we may only preserve the exon size 

features but not the whole gene structure. The priority of shifting a region is: i) 

nearest right gene-free region, 2) nearest left gene-free region; 3) the second right 

nearest gene-free region and so on until the shift region of the original exon fits, and 

6) At last, we considered the shifted regions as the non-exonic regions for each gene 

and a final .gtf file was created.  

To extract non-exonic read counts, HTSeq was performed second time to generate an 

equivalent read count for each gene over an exactly same length of non-exonic region.  

By doing so we guarantee an equivalent read count from non-exonic region for each 

gene. 

   

The histogram of a RNA-seq data in RPKM unit was plotted in Fig. 1B.  The blue 

histogram was derived from the observed read counts genome-wide, while the red one 

was derived from the non-exonic read counts after shifting the exons’ position.  As 

illustrated in the figure, the hump of the red histogram overlaps with the left tail of the 

blue histogram, indicating the existence of sequencing noises in commonly reported gene 

expression levels, particularly when gene expression level is low. Based on this 

observation, we hypothesize that the read count of ith gene (e.g., observed by HTSeq), 

defined as Xi, is composed of true signal Si (not measurable directly) and background 

noise Bi (measured over our uniquely defined non-exonic regions). 
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Poisson-Negative Binomial model 

We assume that read count of ith gene can be decomposed into two components: true 

signal Si that directly derived from transcript expression, and background noise Bi due to 

sequencing error or misalignment.  Therefore, the observed signal Xi is 

 �� � �� ���   

 ��~���	� , ��� (1) 

 ��~
����������  

where ri, pi are parameters (number successes and probability of success, respectively) of 

NB distribution and λi is the rate parameter of Poisson distribution.  We further assume 

that the true expression signal Si and background noise B are independent.  Given the 

observed signal Xi to be the sum of a NB and a Poisson, the probability distribution of Xi 

is governed by a Delaporte distribution, which is the convolution of a NB distribution 

with a Poisson distribution [8, 9]. When there is no background noise (which is the 

assumption of many other RNA-seq algorithms), the observed signal is simply governed 

by a NB distribution, 

 

Estimation of distribution parameters 

The two NB parameters ri and pi can be estimated by the background corrected mean and 

variance of gene i; and with the non-exonic read counts, the Poisson parameter λi can be 

determined easily. We further assume that genes are independent to each other, 

acknowledging that some genes are dependent within pathways or other reasons.  Hence, 

the objective is to estimate all parameters of each gene in order to obtain the NB model 

fitted to the true expression signals. 
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The estimation of Poisson parameter λ is relative simple, we assume that the read count 

derived from the non-exonic regions representing the background component B and 

independent of S.  Therefore, we can obtain λ of each gene, being the average of total 

non-exonic read counts across all m replicates. 

 �� �
1
�� ���

�

���
 (2) 

where bij is the non-exonic read count of ith gene from jth sample. After the estimation of 

Poisson parameter, we can calculate the true expression signals’ mean μSi and variance σSi 

of each gene as follows, 

 ���
� ����� � ����� � ����� (3) 

 ���

� � ���

� � �	�

� � 2����
�	�
, (4) 

where ���

� � ��. Note that observable X and background B are not independent. As we 

mentioned earlier, observed read count X follows a Delaporte distribution, which has no 

closed form [8, 9]. The parameters of Delaporte distribution, D(λ, α, β), however, is 

known as � � � � �� , and �� � � � ���1 � �
 , where �  can be considered as the 

parameter of Poisson distribution. When � � 0, the Delaporte reduces to NB distribution, 

similar to what we have in Eqs. (3) and (4). The same variance correction method in 

DESeq is subsequently used to adjust ���

�  in order to get precise estimate of the variance 

when the number of replicates is small [3]. After obtaining the adjusted true expression 

signal mean and variance, μS and ���

� �,  from Eqs. (3) and (4), the two NB parameters ri 

and pi are further estimated by, 

 
 	� � ���

� /����


 � � ���
� (5) 
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 �� � ���
/���


 � (6) 

 

Testing for differential expression 

After estimating the NB parameters in both experimental conditions, differential 

expression analysis between the two conditions can be tested.  Designed similarly to 

DESeq method, we use a Fisher’s exact test approach to estimate the P value of each 

gene [3].  In short, suppose we have x and y reads of a gene in each condition, we 

compute every possible p(a, b), where the sum of the variables a and b equal to Ktotal  

(Ktotal = x + y). By assuming the independence of two test conditions, we have p(a, b) = 

Pr(a) Pr(b), where Pr(a) and Pr(b) are the probabilities in NB distribution that we have 

estimated for each condition.  Therefore, the P value is the proportion of the sum of 

possible probabilities less than the probability of actual read counts among the sum of all 

probabilities as follows, 

  � � ∑ ��!, ���
�,����
�,��

∑ ��!, �����

 

(7) 

Equation 7 is evaluated gene-wise, and for simplicity, we omitted subscript i. 

 

Simulation 

In order to evaluate the performance of different RNA-seq algorithms, we generated a set 

of simulated data where we could control the differential expression status for a given set 

of genes, as well as noise level for all genes. In this study, true signal S and background 

signal B were simulated based on a negative binomial distribution and a Poisson 

distribution, respectively, with parameters estimated from real RNA-seq data. 
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We followed a similar simulation framework used by edgeR-robust [5].  Firstly, genes 

from real RNA-seq data were filtered based on the expression intensity across all 

replicates.  The genes with top 10% dispersion were discarded.  Then 5,000 genes were 

randomly selected with replacement among the filtered genes. Based on the mean and 

dispersion estimated from real RNA-seq data, the true signal S was simulated for each 

gene from the negative binomial distribution.  Different proportions of genes (10% and 

30%) were randomly selected as differentially expressed genes with various fold changes 

(1.5, 2, 3, and 5).  To simulate baseline background signal Bbaseline, firstly, the mean value 

was calculated using the non-exonic mapped reads of its corresponding gene.  Then 

Bbaseline was generated from a Poisson distribution with parameter λ equals to the 

calculated mean value from the non-exonic read counts.  Observed signal Xbaseline was 

then generated as the addition of S and Bbaseline. 

  

To simulate background signal Binc with increased non-exonic mapped reads, we first 

calculated mean read count for each selected gene based on the non-exonic mapped reads 

from real RNA-seq data.  Then Binc was simulated by a hybrid model,  

 ����~" # ��	���, �� (8) 

where �  is from a Poisson distribution �~
�������� � ��
, NF is the noise factor, 

which we set to be 0 (low), 7 (intermediate) and 20 (high). λ equals to the mean of the 

non-exonic mapped reads of a given gene, and we set σ = 3 and multiply M = 10 for our 

simulation. Finally, we set the observed signal Xinc to be the addition of S and Binc. For 

noise models different from Poisson, we simply replaced Poisson with binomial, uniform 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2015. ; https://doi.org/10.1101/016196doi: bioRxiv preprint 

https://doi.org/10.1101/016196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 12 - 

or other distributions in Eq. 8. Simulations were performed 100 times in order to evaluate 

and plot the Receiver Operating Characteristic (ROC) curves and other statistics. 

 

RNA-seq data set for testing 

A mouse RNA-seq dataset were obtained from Gene Expression Omnibus (GSE61875) 

[10].  For this testing purpose, we selected 3 replicates of wild type mouse liver tissues 

(WT) and 3 replicates of Myc transgenic mouse liver tissues (MYC) for differential 

expression analysis to determine differential expressed genes due to the activation of 

Myc. Out of the six samples selected, on average, 12,781 (out of 22,609) genes have at 

least one non-exonic reads, and 15,973 genes have at least one exonic reads. 

  

Comparison of other RNA-seq algorithms 

We also compared XBSeq with other differential expression analysis methods, including 

DESeq (1.14.0) [3], latest version of DESeq (DESeq2, 1.2.10) [11], edgeR(3.5.15) [4], 

latest version of edgeR (edgeR-robust 3.5.15) [5], baySeq (1.16.0) [12], limma (3.18.13) 

[13], and EBSeq (1.2.0) [14]. All these evaluation were performed under R version 3.0.2 

and Bioconductor version 2.13. .  Detailed workflow of XBSeq and simulation is 

illustrated in Fig. 2. 

 

Results  

Implementation of XBSeq algorithm 

XBSeq requires two inputs, the observed measurement from exonic regions and the 

background noise from non-exonic regions. Both read counts can be obtained by 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2015. ; https://doi.org/10.1101/016196doi: bioRxiv preprint 

https://doi.org/10.1101/016196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 13 - 

submitting mapped sequence reads to HTSeq twice with coding gene annotation (e.g., 

gene.gtf) and shifted gene annotation (shift-gene.gtf) as discussed in Methods Section 

(Fig. 2). As the first step, the true signal for each gene is estimated by using Eq. 3. The 

read counts of genes with negative true signals will be automatically assigned to 0. We 

apply a similar method as DESeq to normalize the true signal based on size factors 

calculated from each sample, and we then estimate the variance of the true signal for each 

gene by using Eq. 4. A similar framework for variance correction and the differential 

expression significance testing as DESeq (Eqs. 5-7) is applied to generate p-values for 

each gene. The output of XBSeq contains p value, adjusted p value for multiple test 

correction, log2 fold change and other statistical merits for each gene.   

 

To optimize the performance of XBSeq, we applied variance correction procedure either 

at observed signal level or at estimated true signal level. After examining the 

performance of these two choices based on simulated datasets, we concluded that 

variance correction at estimated true signal level yields the best performance with larger 

area under the ROC curve. We also investigated the performance of LOWESS as well as 

locfit R package for fitting variance-mean relationship. Locfit was proven to generate 

more robust variance-mean relationship based on simulated datasets. Therefore, we 

selected locfit package to estimate variance-mean relationship and carry out variance 

correction procedure at estimated true signal level in the current XBSeq implementation.   

 

Discrimination between DE and non-DE genes  

To compare the performance of XBSeq with other statistical methods, including DESeq, 

we generated synthetic data where the variability and fold change of differential 
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expression genes could be controlled.  To simulate RNA-seq data with baseline 

background noise, we generated signal and background read counts (non-exonic region 

mapped reads) with distribution parameters (negative binomial distribution for true 

expression signal and a Poisson distribution for background noise) estimated from a set 

of real RNA-seq data. After removing not expressed genes, we randomly selected 5,000 

genes and the number of differentially expressed (DE) genes were set to be 500, 1500, 

with 1.5 fold, 2 fold, 3 fold or 5 fold changes.  To compare XBSeq and DESeq under 

circumstances with increased non-exonic mapped reads, we carried out the simulation to 

generate low, intermediate, and high levels of non-exonic mapped reads (see Methods 

section for detailed simulation procedure and parameter settings). We select DESeq 

algorithm to compare due to the similarity of statistical evaluation of differential 

expression levels. 

  

The ability to discriminate between DE and non-DE genes was evaluated by area under 

the Receiver Operating Characteristic (ROC) curve (AUC). As shown in Fig. 3a and 

Table 1, when the non-exonic mapped reads are at baseline level, the performance of 

XBSeq is indistinguishable with DESeq in terms of AUC. Specifically, when the fold 

change was set to 1.5 with 500 DE genes, both XBSeq and DESeq have equivalent 

performance with either 3 (AUC = 0.90 and 0.90, respectively) or 6 replicates (AUC = 

0.96 and 0.97, respectively). As shown in Table 1, the number of differentially expressed 

genes had little effect over the performance of XBSeq and DESeq, and both XBSeq and 

DESeq performed equivalently at different fold changes.  When fold change is set to 3 or 

5, both methods had no difficulty in detecting virtually all DE genes, with AUC almost 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2015. ; https://doi.org/10.1101/016196doi: bioRxiv preprint 

https://doi.org/10.1101/016196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 15 - 

equals to 1 (Supplementary Table S2).  Overall, under baseline level, the performance of 

XBSeq and DESeq is comparable.  

 

With increased background noise, as shown Table 2, as we expected, more replicates per 

test group performed better in terms of AUC, but the performance decreased as with the 

increase of the background noise level, but overall, XBSeq has a larger AUC comparing 

with DESeq in various conditions (AUCXBSeq – AUCDESeq ~ 0.11, on average. See Table 

2).  For instance, with 6 replicates per test condition, XBSeq achieved AUC of 0.89 with 

lower background (lower non-exonic read count), while AUCDESeq was only 0.77. Figures 

3b depicts the ROC under 3 different background level and with 3 replicates per test 

group, and XBSeq evidently outperformed DESeq as we expected when XBSeq utilized 

additional non-exonic read count information to estimate the true signal. Further 

examination under highly expressed (>75% quantile) (Fig. 3c, Supplementary figure S1) 

and lowly expressed genes (<25% quantile,) (Fig 3d, Supplementary figure S1) condition 

revealed that among highly expressed genes XBSeq performs only slightly better than 

DESeq, while XBSeq has much better AUC than DESeq among lowly expressed genes 

(Supplementary table S3), indicating the importance of background estimation for true 

signal estimation. We also compared the performance of XBSeq with DESeq (DESeq2), 

edgeR and edgeR (edgeR_robust), baySeq, limma and EBSeq (Figs 3e and 3f) under high 

background (high non-exonic read count). As demonstrated in Fig. 3e (3 replicate RNA-

seq per test group) and 3f (6 replicate RNA-seq per test group), XBSeq outperformed all 

the other methods (AUCXBSeq = 0.73, other methods around 0.64, Supplementary Table 

S4). Overall, XBSeq and DESeq performs comparable at baseline level. When the 
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background noise increases, XBSeq is more robust than DESeq and some other 

differential expression analysis methods, especially when expression level of the gene is 

low.   

 

Control of the false discoveries  

We examined the number of false discoveries encountered among the top-ranked genes 

based on p values of different statistical methods. Under baseline level, XBSeq performs 

comparable with DESeq with similar number of false discoveries (Fig. 4a). Under the 

scenarios of increased background noise, XBSeq has much less false discoveries 

compared with DESeq (Fig. 4b). Taking the similar approach, we examined the 

performance of XBSeq and DESeq among highly expressed (>75% quantile) (Fig. 4c) 

and lowly expressed genes (<25% quantile) (Fig 4d) with 3 replicates per test group. 

Even through that DESeq picks up similar number of false discoveries among highly 

expressed genes compared with XBSeq, it has more false discoveries among lowly 

expressed genes. Comparisons with some other differential expression methods under 

high background noise level showed that XBSeq is more robust against false discoveries 

(Figs. 4e and f). At the pre-selected threshold (p-value equals to 0.05), XBSeq has a false 

discovery around 0.3 which is much less than other statistical methods (around 0.75, Fig. 

S2).  Overall, XBSeq is more robust against false discoveries compared to other 

statistical methods especially for lowly expressed genes.  

 

Statistical power in detecting DE genes  
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We compared the performance of XBSeq and DESeq as well as other statistical methods 

in terms of statistical power at pre-selected threshold (p = 0.05) in detecting DE genes 

(Fig. 5). At baseline level, XBSeq and DESeq perform comparable (statistical power = 

0.58 and 0.91 under 1.5 and 2.0 fold change, respectively) (Fig. 5a and Supplementary 

Tables S1&2). With the increase of the background noise, both methods have decreased 

statistical power (Fig. 5b and Supplementary Table S3). Even so, XBSeq still has better 

statistical power at low, intermediate or high background noises. However, different from 

the result of AUC and false discovery, the statistical power difference between XBSeq 

and DESeq algorithms among highly expressed genes (>75% quantile, Fig. 5c) and lowly 

expressed genes (<25% quantile, Fig 5d) are relatively same: both methods perform 

relatively well (XBSeq is slightly better), and both methods have difficulty in detecting 

lowly expressed DE genes (with statistical power for XBSeq and DESeq a merely 0.05 

and 0.06 respectively, with high background noise). When comparing with some other 

statistical methods, XBSeq is one of the best methods in terms of statistical power along 

with algorithms such as edgeR-robust and DESeq2 (Figs. 5e and 5f, Supplementary Table 

S4). However, with more samples per test group, DESeq2, edgeR and edgeR-robust 

outperformed XBSeq, due to their robust (or moderate) dispersion estimation. Overall, 

XBSeq remains one of the best algorithms in terms of statistical power in detecting DE 

genes compared to other statistical methods.  

 
Application to differential expression analysis for MYC induced gene expression 

in mouse liver tissues 

We have applied a real mouse RNA-seq dataset to different algorithms to test the 

performance of XBSeq [10].  The mouse RNA-seq dataset includes 3 replicates of wild 
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type mouse (WT) and 3 replicates of Myc transgenic mouse (MYC).  Fig. 6 shows a 

Venn diagram of overlapping and total number of genes detected using XBSeq, DESeq, 

DESeq2, edgeR, and edgeR_robust with the criterion of p-value less than 0.05.  XBSeq 

and DESeq detected similar number of DE genes (446 and 452, respectively, and 414 of 

them in common, Supplementary Table S5), even if a 1.5 fold change cutoff was added.  

This is reasonable since the two algorithms share similar differential expression 

significant test statistics, other than non-exonic read count incorporated into XBSeq.    In 

order to see the different results of XBSeq comparing with others, we listed the exonic 

and non-exonic read counts in Table 3, which show genes exclusively found by XBSeq 

(Table 3a) and genes that are not detected by XBSeq but by other algorithms (Table 3b).  

The venn diagram with 1.5 fold change cutoff added is shown in Fig. S5 and the numbers 

of overlapped DE genes between XBSeq and other methods are listed in table S5. 

 

Specifically, in Table 3a, from only exonic mapped reads, there are no significant 

difference between WT and MYC samples for genes Nat1 and Brca2 (fold change is 1.3, 

and 0.9 respectively). After subtracting the non-exonic mapped reads, the predicted true 

signals was significantly differentially expressed between MYC and WT for the two 

genes (p-value = 0.0495, 6×10-6 for Nat1 and Brca2,  respectively) with fold change 

increased to 1.6 and 4.3 for Nat1 and Brca2, respectively, along with shrunken standard 

deviation.  From Brca2, we can even see that the high dispersion in WT samples are 

possibly caused by sequencing noises, the gene is barely expressed in WT group as 

predicted by XBSeq.  
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On the other hand, with the information in non-exonic regions, XBSeq avoided picking 

genes that are potentially falsely identified as DE genes because of the background 

noises.  The estimate of the true signal, after considering the non-exonic read counts, may 

decreased the differential expression and diminish the significance probability. In Table 

3b, the two genes, Calcr and Adh7, were detected by all other four methods, except 

DESeq for Adh7 (p-value = 0.06), whereas XBSeq tested on the true expression signals 

and considered them as insignificant changes (p-value = 1 and 0.53, respectively).   

 

Discussion  

Sources of non-exonic mapped reads  

Previous studies have shown that non-exonic mapped reads account for about 4~6% of 

all uniquely mapped reads in mammals [15, 16].  Sequence reads that mapped outside of 

exonic regions might be originated from different RNA sources depending on the RNA-

seq experimental protocol selected for sequencing library preparation.  In addition, these 

non-exonic reads might be derived from experimental artifacts, like genomic DNA 

contamination, sequencing errors, or unprocessed RNAs, like pre-mRNAs [17], or even 

non-coding RNAs [18].  van Baker, et al [19] has also demonstrated that most of the non-

exon mapped reads are associated with the nearby known genes, which suggests that non-

exon mapped reads are contextually specific to the corresponding gene.  Besides, 

Hebenstreit,  et al [20] has shown that all genes from RNA-seq can be classified into two 

distinct groups, and one of them is the the lower expressed group that consists of putative 

non-functional mRNAs. All these suggested the biological relevance of incorporating 

information from non-exonic regions. We have carefully evaluated the aforementioned 
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biological relevance of RNA species in non-exonic regions, and thus necessary steps 

have been taken for identifying non-exonic regions as discussed in the Methods Section.  

As we showed in Fig. 1B in one of our real RNA-seq data set, the non-exonic read counts 

for all genes are mostly less than 0 (log2 RPKM unit), indicating little or no influence 

from high-expression. We also examined the correlation between the reads mapped to 

exonic regions and the reads mapped to non-exonic regions in a real RNA-seq 

experiment. The average correlation is 0.32 which potentially indicates that the non-

exonic reads are not ‘functional’ reads which can be used to represent the background 

noise. By measuring the reads mapped to the non-exonic regions of its corresponding 

gene but carefully avoid those functional relevant regions, we are able to gain a more 

reliable estimation of true expression level by eliminating the impact of background 

noise. 

 

Compare of XBSeq and DESeq at baseline level 

Our simulation at baseline level suggests that XBSeq and DESeq’s performance are 

virtually indistinguishable in terms of AUC, number of false discoveries and statistical 

power at baseline level.  Not surprisingly, comparison with 6 replicates per test group 

performed better than 3 replicates per test group even with low level of fold change (fold 

change at 1.5).  Also at baseline background level, the number of truly differentially 

expressed genes has little effect on the performance of XBSeq and DESeq except with 

the number of false discoveries.  As expected, simulation of 30 percent of true DE genes 

is more likely to generate false positives than those of 10% true DE genes.  However, this 

effect is dampened with increased number of replicates per test group for differential 

expression analysis (Table S2).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2015. ; https://doi.org/10.1101/016196doi: bioRxiv preprint 

https://doi.org/10.1101/016196
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 21 - 

 

Comparison of statistical methods with increased non-exonic mapped reads 

To further demonstrate the robustness of XBSeq at different background levels, we 

simulated genes with low, intermediate or high levels of non-exonic mapped reads.  

XBSeq outperform DESeq with larger AUC (Figs. 2b-2d), and with better controlling of 

false discoveries (Figs. 3b-3d). While we achieved excellent true positive detection, we 

also examined the false negative rate for XBSeq and DESeq, or the statistical power. As 

shown in Figs. 4b-4d, XBSeq outperform DESeq’s statistical power in detecting DE 

genes in all three increased background levels. All these suggest that XBSeq is more 

robust in detecting DE genes in noisy NGS-seq samples. 

 

We also compared performance of XBSeq with some other RNA-seq algorithms, 

including DESeq2 and edgeR-robust.  XBseq excelled in overall performance (better 

AUC, Figs. 3e & 3f) and false discovery control (Figs. 4e and 4f). XBSeq is also one of 

the best algorithms in terms of statistical power (Figs. 5e and 5f), indicating a modest 

trade-off in false negative while maintaining overall performance in DE detection. 

Moreover, XBSeq performed better with higher non-exonic mapped reads (in all three 

simulated increased background noise level above baseline). Further examination of 

algorithms performance among higher (> 75% percentile) or lower expressed genes (< 

25% percentile) revealed that false positive genes were mostly generated among lower 

expressed genes. Among lower expressed genes, XBSeq outperformed than DESeq with 

better AUC and false discovery. However, both XBSeq and DESeq performed poorly 

among low-expression genes.  
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Simulations were carried out with the assumption of NB model for gene expression and 

Poisson model for background noise (or non-exonic read counts), which is the model 

XBSeq is built on. While we demonstrated the validity of the assumption in one of our 

RNA-seq data set (Fig. 1B), we also tested the XBSeq under the uniform or normal 

model for background read counts while keeping the same NB model for gene 

expression. As shown in Fig. S2A, for all 3 background distributions (including Poisson 

model), XBSeq performed better than DESeq, indicating the robustness even when 

underlying assumption is deviated from Poisson distribution. Another way to examine 

model bias is by examining the distribution of p value under null hypothesis (with no DE 

genes). As shown in Fig S3, the p values generated by most differential expression 

analysis algorithms are close to uniform distribution from 0 to 1 (showed only 0 to 0.2 in 

Figs S3), with the exception of EBSeq.   

 

Execution time of XBSeq algorithm. 

XBSeq algorithm complexity is similar to DESeq. However, XBSeq will not only take 

read counts from each gene, but also read counts from non-exonic read counts for each 

gene, and then perform true signal prediction before evaluating differential expression 

significance. We benchmarked a set of differential analysis algorithms for their 

computational times with different number of samples in each condition (Fig. S4). 

BaySeq algorithm requires the most computational time, followed by DESeq and XBSeq.  
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Conclusions  

We have developed an approach to take into consideration of non-exonic mapped reads 

as sequencing noise for precise differential expression analysis.  When there is no or very 

low background noise, the performance of XBSeq is similar to DESeq.  However, XBSeq 

excels when background noise (non-exonic read counts) are higher due to the model 

estimation of true signal by removing the noise impact. Overall, XBSeq algorithm is 

shown to be more robust than existing differential expression analysis methods 

particularly when sequencing noise is a concern.  

Availability of supporting data 

The R package of XBSeq, the shift-gene gtf files as well as reproducible scripts for 

simulation are available from GitHub, https://github.com/Liuy12/XBSeq. 
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Figure Legends 

Figure 1. (A) Illustration of exonic and non-exonic reads.  (B) Histogram of 

sequence read counts in RPKM.  The histogram of observed signal (X) is plotted in 

blue and the histogram of non-exonic read counts (B) in pink. 

 

Figure 2. Block diagram of the XBSeq and simulation process. 

 

Figure 3. ROC curves of simulated RNA-seq data in different scenarios.  ROC 

curves in the scenarios of baseline background noise (a); Increased background noise (b); 

Increased background noise but only with highly expressed genes above 75% quantile of 

intensity (c); Increased background noise but only with lowly expressed genes below 

25% quantile of intensity (d); Comparison with other differential expression analysis 

methods (under increased background noise) with either 3 samples per condition (e), or 6 

samples per condition (f). The diagonal black dash-line indicates performance under 

random events (0.5 AUC). The light blue line in (b,c,d) indicates the theoretically optimal 

ROC when the background noise can be estimated exactly. Simulation for (a, b, c and d) 

was carried out 100 times. Simulation for (e and f) was carried out 10 times.   3 replicates 

per test condition, with 10% DEGs and 1.5 fold change were used for (a, b, c, and d).  

 

Figure 4. False discovery curves of simulated RNA-seq data in different scenarios.  

False discovery curves in the scenarios of baseline background noise (a); Different 

background noises (b); Different background noises with highly expressed genes above 
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75% quantile of intensity (c); Different background noises with lowly expressed genes 

below 25% quantile of intensity (d); Comparison with other statistical methods, under 

high background noise, with either 3 samples per test condition (e), or 6 samples per test 

condition (f).  3 replicates per test condition, with 10% DEGs and 1.5 fold change were 

used for (a, b, c, and d). 

 

Figure 5. Statistical power of simulated RNA-seq data in different scenarios. 

Statistical power at pre-selected threshold (p = 0.05) in the scenarios of baseline 

background noise with 1.5 and 2 fold change, with 10% DEGs and 3 replicates per test 

group (a); Different background noises (b); Different background noises with highly 

expressed genes above 75% quantile of intensity (c); Different background noises and 

only lowly expressed genes below 25% quantile of intensity (d); Comparison with other 

statistical methods, under high background noise, with either 3 samples per test condition 

(e); or 6 samples per test condition (f). 3 replicates per test condition, with 10% DEGs 

and 1.5 fold change were used for (a, b, c, and d).   

 

Figure 6. Venn diagram to compare the results of different methods.  XBSeq, 

DESeq, DESeq2, edgeR, and edgeR_robust were applied to a set of mouse RNA-seq data 

to identify differential genes with p-value < 0.05.  
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Tables 
 

 
Replicates 
per group 

 DESeq  XBSeq 

 Fold Change  Fold Change 

DEGs (%) 1.5x 3x  1.5x 3x 

3 10% 0.90 1.00  0.90 1.00 

 30% 0.89 1.00  0.89 1.00 

6 10% 0.96 1.00  0.97 1.00 

 30% 0.96 1.00  0.96 1.00 

Table 1. Area under the ROC curve (AUC) for DESeq and XBSeq under various 

conditions with different number of replicates (3 and 6 replicates), different number of 

differential expressed genes (500, 1500) and different level of fold change (1.5 fold and 3 

fold). Fold change at 5 or higher yield AUC = 1.00 for all conditions. 

 

Replicates 
per group 

DESeq  
Different background levels  XBSeq 

Different background levels 

Low Intermediate High  Low Intermediate High 

3 0.69 0.66 0.64  0.82 0.78 0.72 

6 0.76 0.73 0.70  0.89 0.86 0.80 

Table 2. Area under the curve (AUC) of ROC in different background conditions (low, 

intermediate or high levels of non-exonic mapped reads) using DESeq and XBSeq, when 

comparing 3 or 6 replicates in each test group. Overall, XBSeq outperforms DESeq, on 

average in terms of AUC, by 0.11 and 0.12 for 3 and 6 replicates per group, respectively. 
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 Read counts of gene Nat1   

 WT (3 replicates)  MYC (3 replicates)   

 1 2 3 μ σ  1 2 3 μ σ FC1 p2 

Exonic 63 47 77 62.3 15.0  91 110 120 107.0 14.7 1.3 0.15 

Non-exonic 20 20 28 22.7 4.6  23 14 34 23.7 10.0   

Predicted  
true signal 

43 27 49 39.7 11.4  68 96 86 83.3 14.2 1.6 0.05 

 

 Read counts of gene Brca2   

 WT (3 replicates)  MYC (3 replicates)   

 1 2 3 μ σ  1 2 3 μ σ FC1 p2 

Exonic 213 88 165 155.3 63.1  132 191 188 170.3 33.2 0.9 0.57 

Non-exonic 216 77 142 145.0 69.5  90 108 101 99.7 9.1   

Predicted  
true signal 

0 11 23 11.3 11.5  42 83 87 70.7 24.9 4.3 0 

Table 3a. Two differentially expressed genes (Nat1, top table, and Brca2, bottom table) 

that are ONLY detected by XBSeq, showing the exonic, non-exonic, and predicted true 

signals (estimated by using Eq. 3), from 3 biological replicates for each WT and MYC 

mouse tissue. 1) FC denotes the fold-change of MYC vs WT, and 2) is the p-value from 

DESeq (for Exonic read only) and XBSeq (for predicted true signal).  
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 Read counts of gene Calcr   

 WT (3 replicates)  MYC (3 replicates)   

 1 2 3 μ σ  1 2 3 μ σ FC1 p2 

Exonic 22 4 20 15.3 9.9  68 68 64 66.7 2.3 3.3 0 

Non-exonic 64 4 64 44.0 34.6  193 218 199 203.3 13.1   

Predicted  
true signal 

0 0 0 0 0  0 0 0 0 0 0 1 

 

 Read counts of gene Adh7   

 WT (3 replicates)  MYC (3 replicates)   

 1 2 3 μ σ  1 2 3 μ σ FC1 p2 

Exonic 633 438 429 500.0 115.3  827 1149 708 894.7 228.2 1.5 0.01 

Non-exonic 430 241 322 331.0 95  643 771 513 642.3 129.0   

Predicted  
true signal 

203 197 107 169.0 53.8  184 378 195 252.3 109.0 1.2 0.53 

Table 3b. Two differentially expressed genes (Calcr, top table, and Adh7, bottom table) 

that are NOT detected by XBSeq, showing the exonic, non-exonic, and predicted true 

signals (estimated by using Eq. 3), from 3 biologial replicates for each WT and MYC 

mouse tissue. 1) FC denotes the fold-change of MYC vs WT, and 2) is the p-value from 

edgeR-robust (for Exonic read only) and XBSeq (for predicted true signal). Calcr was 

detected by all other four methods and Adh7 was detected by three methods except 

DESeq (p-value = 0.06). 
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Additional files 

1471-2164-16-S5-S15-S1.pdf– Supplementary Information  

Supplementary figures and tables to provide additional analysis results.  
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