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Abstract

Background: We perform the theoretical analysis of a gene network sub-system,
composed of a feed-forward loop, in which the upstream transcription factor

regulates the target gene via two parallel pathways: directly, and via interaction
with miRNA.

Results: As the molecular mechanisms of miRNA action are not clear so far, we
elaborate three mathematical models, in which miRNA either represses
translation of its target or promotes target mRNA degradation or is not re-used,
but degrades along with target mMRNA. We examine the feed-forward loop
dynamics quantitatively at the whole time interval of cell cycle. We rigorously
proof the uniqueness of solutions to the models and obtain the exact solutions in
one of them analytically.

Conclusions: We have shown that different mechanisms of miRNA action lead to
a variety of types of dynamical behavior of feed-forward loops. In particular, we
find that the ability of feed-forward loop to dampen fluctuations introduced by
transcription factor is the model and parameter dependent feature. We also
discuss how our results could help a biologist to infer the mechanism of miRNA
action

Keywords: dinamic behavior; feed-forward loop; miRNA; noise filtering;
non-linear equations

Background

An important role in regulation of gene expression in higher eukaryotes, plants
and animals belongs to miRNAs, the endogeneous small non-coding RNAs that
bind to partially complementary sequences in target mRNAs. The miRNAs are
involved in regulation of development, differentiation, apoptosis, cell proliferation
[1, 2, 3, 4], as well as in the progression of numerous human diseases, such as chronic
lymphocytic leukemia, fragile X syndrome, and various tumor types [5, 6, 7, 8,
4]. Each miRNA molecule may target hundreds of mRNAs, and, vice versa, some
targets are combinatorially affected by multiple miRNAs [9, 10, 11]. Comparative
phylogenetic studies uncovered the conserved miRNA-binding sequences in more
than one third of all genes, that lead to a suggestion that the miRNA regulation
may be relevant to a large portion of cellular processes [12, 13].

However, it should be noted that there is no common notion about mechanisms
of miRNA action. There are experimental evidences that miRNAs regulate gene ex-
pression through translational repression, mRNA deadenylation and decay, however
the contribution and timing of these effects remain unclear [14, 15]. Although some
studies show translational repression without mRNA decay [16], others point to
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decay as a primary effect [17, 18]. It was also demonstrated in several papers that
the destabilization of target mRNA is accompanied by degradation of a miRNA
molecule [19, 18].

It is well known that transcription networks contain several biochemical wiring
patterns called network motifs. One of the most significant recurring motifs is the
feed-forward loop (FFL) [20, 21, 22], in which the upstream transcription factor
(TF) regulates the target gene via two parallel pathways: directly, and by interaction
with a second molecule, which also regulates the target gene. An assigned value for
a pathway is defined as positive, if the total number of negative interactions in the
pathway is even, and negative otherwise. The FFL is named as ” coherent” if the sign
of direct regulation path coincides with the overall sign of the indirect regulation
path, and ”incoherent” otherwise.

Recent computational analysis demonstrated that FFL, containing TF and miR-
NAs, are overrepresented in gene regulatory networks, assuming that they confer
useful regulatory opportunities [23]. There are two possible structure configurations
in each coherent and incoherent FFL, containing miRNA, as shown in Figure 1. We
will specify these configurations as the type 1 or 2 coherent FFLs, and the type 1
or 2 incoherent FFLs, respectively.

The role of miRNA in gene regulatory networks becomes currently a subject of
wide speculations. In general, it is expected that FFLs with miRNA can buffer
the consequences of noise action in gene expression in order to confer a robustness
to environmental perturbation and genetic variation [12, 24]. The anti-correlative
expression of miRNAs and their target mRNAs was documented in many cases
[25, 12], where it points out that while transcription primarily controls target gene
expression, the miRNAs lend further reinforcement to gene regulation by attenu-
ation any unwanted transcripts. The second class of genetic buffering by miRNA
emerges in cases, where both the miRNA and the target are coexpressed at interme-
diate levels [26, 27, 28]. It was proposed that intermediate miRNA quantities and
low target avidity (the result of a single "seed” binding site) intentionally provide
the target protein synthesis, but place a burden on this process, which, most likely,
provides an approach to buffer stochastic fluctuations in the mRNA level [12]. How-
ever, it should be noted that up to date there is the only direct observation that
miRNA buffers gene expression against perturbation [29].

A simple mathematical modeling was used recently to explore the capability of
FFLs with miRNA to buffer fluctuations in gene expression. Osella et al. introduced
the model [30], describing a target gene regulation in the type 1 incoherent FFL,
however, solved analytically the coupled algebraic equations only, obtained by triv-
ial reduction of the coupled 1st order ordinary differential equations (O.D.E.) to a
steady state. For stochastic statement of the problem in [30] O.D.E. were solved
numerically. It was shown that with respect to the simple gene activation by TF, the
introduction of the miRNA-mediated repressing pathway can significantly dampen
fluctuations in the target gene output for essentially all the choices of input param-
eters and initial conditions. Moreover, this noise buffering function was expected to
be direct consequence of the peculiar topology of the FFL.

There is a critical imperfection in any mathematical model based on the steady
state data analysis. Firstly, recent measurements [31, 32] of protein abundance and
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turnover by parallel metabolic pulse labeling for more than 5,000 genes in the NIH
3T3 mouse fibroblasts showed that the half live times of many proteins in these
cells are longer than the cell cycle duration of 27.5 hours. For proteins, which half
life time is comparable or longer than the cell cycle, the genuine steady state is
not reached before the cell division. As a consequence, quantities per cell are not
only defined by synthesis and degradation, but also by an initial number of protein
molecules at the beginning of cell cycle. Secondly, an absence of time derivatives (as
it is in the steady state approximation) is provided by simple replacement of the
initial coupled kinetic non-linear equations with corresponding algebraic equations,
avoiding any information about the temporal behavior of cell components. A variety
of the cell process models usually demonstrate versatile dynamics at early stages
even in case of coincidence of stationary values. For these reasons it is much more
faithful and informative, however difficult, to study coupled ODEs at every time
moment, aiming to decipher mechanisms underlying its dynamics.

Another challenge in mathematical modeling of biological systems consists in the
non-uniqueness of solutions to model equations governing a biological problem. This
non-uniqueness is partly caused by imperfections of current experimental methods,
which are often unable to provide the measurements of all the parameters required
to describe the system dynamics. As a result the parameter values have usually
to be found by a numerical fitting of the solutions to data. This task, called ”an
inverse problem”, is, in a way, tricky, because there are usually several parameter
sets in good agreement with data. It means that within a given accuracy there are
several models, which are, in a sense, equivalent in the data description. This non-
uniqueness provided by numerical simulations represents a crucial problem for con-
temporary mathematical modeling in biology, and usually an appropriate solution
may be found by invoking additional information from complicated experiments.
On the other side, an intrinsic non-uniqueness may have transparent biological rea-
sons, as living systems are robust and can tolerate large parameter variation, as long
as the core network topology is retained [33, 34]. Therefore, mathematical treat-
ment and refinements are still required to better understand how the component
interactions result in the system complex behavior.

Exact mathematical solutions to biological problems are free of many imperfec-
tions mentioned, however, most of problems are quite complex and cannot be treated
analytically without significant simplifications. A few successful quantitative solu-
tions to problems of mathematical biology are known, that do not require the pa-
rameter fitting. These solutions are, in fact, the exact solutions to corresponding
differential equations. Also, it is worth to mention the importance of analytical so-
lutions, which are valid for every parameter and coefficients set, and, for this reason,
provide a genuine ’check point’ for any numerical simulation obtained by means of
different methods.

Here we consider a gene network sub-system composed of a FFL mediated by TF
and miRNA. We perform the analysis of three mathematical models, which describe
the dynamics of gene expression in FFL under an assumption of different mecha-
nisms of miRNA action. In contrast to recent considerations [30] we examine the
FFL dynamics quantitatively at the whole time interval of cell cycle. We rigorously
proof the uniqueness of solutions to these models and obtain the exact solutions in
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one of them analytically. We show how different mechanisms of miRNA action lead
to distinctive dynamical behavior of FFLs. In particular, we find that the ability
of FFLs to dampen fluctuations introduced by TF is the model and parameter de-
pendent feature. We also discuss how our results could help a biologist to infer the

mechanism of miRNA action.

Results and Discussion
Mathematical models of FFLs
The biological system under study will be described with 5 variables, representing
the number w of mRNA molecules transcribed from the TF gene, the number ¢ of
TF molecules, the number s of miRNA molecules, the number r of mRNA molecules
transcribed from the target gene, and the number p of target protein molecules.
We shall use the models proposed in [30] and consider 4 conventional configura-
tions of FFLs with miRNA (see Figure 1. For each gene in FFL we consider tran-
scription, translation, degradation and interactions between genes in the regulatory
network.
As molecular mechanisms of miRNA action are not clear so far we consider three
different models:

e the model, in which miRNA represses translation of its target — Stop model,

e the model in which miRNA promotes target mRNA degradation —Target
degradation model and
e the model in which miRNA is not re-used but degrades along with target
RNA —Dual degradation model.
where the 'working titles’ for the models introduced above will be used for brevity.
Thus we write, the five coupled differential equations proposed in (1) for a feed-
forward loop (FFL).

d

d—l: = ky — guWw, (mRNAof TF)

dg

E = kqw — 949, (TF)

ds .

= = Fs(a) = g5, (miRNA) : (1)
dr

O k@-gr.  (mRNA)

dp .

i kp(s)r — gpp. (target protein)

Here k,, and k, are rates of TF mRNA and TF synthesis, k;(q) and k,(g) are rates
of transcription of the regulated gene, k,(s) is the rate of target protein synthesis;
Jw, 9q:9s.9s and g, represent the degradation rates of the corresponding species.

Before to specify the types of production functions in (1-4) let us remind that
various dynamic processes in a complex system can be described as a progression
from an initial quantity that accelerates (or decelerates in case of repression) and
approaches a plateau over time. When a detailed description is lacking, a sigmoid
function is used, that is based on an idea by A.V. Hill (1910) to describe the
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sigmoidal Oz binding curve of haemoglobin. The general form of the Hill function
is written as:

y(z) = o

/BC + Ic7

where both «, 8 are arbitrary given parameters of the process. The rate ¢ represents
either production (¢ > 2) of a quantity x or repression of it (¢ < —2) in time.
Consequently, the Hill function will be represented by either uprising or falling
down graph, and its slope depends on the value of ¢. The easiest way to get a non-
trivial regulation type is to prescribe the rate values ¢ = 2 and ¢ = —2 for activation
and repression, respectively, however, even in this case the mathematical problem
becomes the non-linear one.

In our problem the production functions ks(q) and k,(¢) are assumed to be the
classical Hill functions in the form k(q) = (kmazq®)/(h® + ¢¢). The parameters hy
and h, specify the amount of TF, at which the transcription rate of the miRNA or
target gene reaches one half of its maximal value (ks or k), and a number c is the
Hill coefficient, representing the steepness of the regulation curve, see expressions
(2) below.

Therefore for the type 1 coherent FFL (see Figure 1) the Hill functions will have
the following form:

ksq? ke, h2

ks(q) = W; kr(q) = @2+ h%; (2)

while for type 1 incoherent FFL the production function for target mRNA will be
different:

krq?

= EEwe

kr(q) ()

The difference between two types of each of coherent or incoherent loops is in
form of the production functions for both target mRNA and miRNA (see Figure
1).

We shall consider three different mechanisms of the miRNA action, following a
formalism introduced in [30]. To model the effect of direct translational repression of
target mRNA we consider the translation rate of the target k,(s) to be a repressive
Hill function of the number of miRNA molecules: k,(s) = (kps©)/(h¢ + s°). The
parameter h specifies the quantity of miRNAs, at which the translation rate reaches
one half of its maximal value k,, and ¢ = —2 is again the Hill coefficient.

To model miRNA action in the destabilization of target mRNA we add to the basal
rate of mRNA degradation g, (in absence of miRNAs), a term, which represents an
increasing Hill function of a copy number of miRNAs, where ¢4, is the maximal
value of the degradation rate in case of high miRNA concentration, hgeq is the
dissociation constant of miRNA-mRNA interaction, and ¢ = 2 is the Hill coefficient.

Following [30], we shall discuss also a tentative destabilization of target mRNA,
accompanied by the miRNA degradation. The miRNA forms a complex with its
target, which degrades with it, instead of being re-used. This complex degradation
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constant will be denoted as ks, and the resulting non-linear (due to the multiplica-
tive term rs) equations will have a form:

dw dq ds
i kw — Guw; i kqw — 944; i ks(q) — gss — krsrs; W
dr

prie kr(q) — grr — kpsrs; % = kpr — gpD-

Details of mathematical analysis of the coupled ODE are given in Additional file
1. For the Stop model we obtained the exact solutions to the non-linear O.D.E.,
which coefficients explicitly depend on initial values. Main advantage of exact solu-
tions to corresponding non-linear differential equations is that they do not require
any parameter fitting and provide also a reliable basis for verification of numerical
results. For the Target and Dual degradation models the numerical solutions to
the problem are obtained. For each model considered we proved also the unique-
ness of solutions, i.e., the one-to-one correspondence between given parameters and
solutions.

Comparative analysis of FFL temporal behavior under different models
The mechanisms underlying miRNA-mediated repression are not clear so far, and
for this reason we consider three models of the miRNA action described in section .

Four different topologies of FFLs mediated by TF and miRNA are possible in
theory, as in Figure 1. We shall analyse the dynamical behavior of all these net-
work topologies in frame of the models described above, that leads, in total, to
consideration of 12 different variants of regulation in FFLs.

Further we shall use for brevity the following abbreviations for FFL identification:
1C will mean the type 1 coherent loop, 1In - type 1 incoherent loop, 2C' - type 2
coherent loop and 2In - type 2 incoherent loop, resp.

We assume that the initial number of molecules in a loop is equal to one half of that
obtained just before cell division, which often (however, not necessarily) corresponds
to the steady state level. The results for the Stop model are based on exact and
explicit solutions obtained to the non-linear O.D.E. 1 (see Additional file 1), and,
therefore are free of any data fitting procedure and numerical approximations. For
this reason exact solutions may provide also a reliable base and ”check points” for
numerical solutions in those (Target and Dual degradation) models, where an exact
solution is hardly obtainable.

We begin with brief description of the temporal variation of the molecule quantity
of each player and in each of three models. To simplify comparison we shall use one
and the same parameter set (see section ) for all FFL and models.

Stop model

In the Stop model the behavior of target mRNA and protein is different in all
FFLs because miRNA stops translation of the former and does not promote its
degradation. Both 1C and 2In loops form the identical bell-shaped target mRNA
profiles due to repression by TF, in both 1In and 2C' loop the target mRNA profiles
are also identical and increase in time to a steady state value (Figure 2). In both 1In
and 1C loop, in which TF activates miRNA gene, the target protein shows pulse-
like behavior due to repression mediated by miRNA (Figure 2A ,B,E,F). However at
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steady state in the 1C loop the number of target protein molecules is much lower
than in the 1In loop.

In 2C loop the number of target protein molecules firstly slightly rises, than
falls down due to miRNA action), but with continuous repression of the miRNA
synthesis, the target protein begins to rise up to the steady state level (Figure
2H,D).

In 2In loop the target protein profile also exhibits the wave-like behavior (Figure
2C,G). Firstly, it rises to almost stationary level, after that it slightly decreases due
to repression of mRNA synthesis by TF and repression of mRNA translation by
miRNA, and eventually grows again to the stationary level due to decrease of the
miRNA molecules number.

Target degradation model
Contrary to the Stop model in the Target degradation model the temporal dynam-
ics of both target mRNA and protein is similar. In this model the target protein
production is a linear function of the target mRNA molecules number, and miRNA
promotes the degradation of target mRNA. In 1C loop two mechanisms are ac-
tive, namely, mRNA degradation under miRNA action, and the repression of target
mRNA synthesis. In 2In loop TF represses miRNA production. This explains the
difference in dynamics of target RNA and protein in these loops (Figure 3B,F,C,G).
In both loops the dynamics shows pulse-like behavior, however in the 1C loop the
numbers of target mRNA and protein molecules are smaller (about 1300 vs. 1500
molecules) at steady state, and the steady state level is reached later (about 4000
sec vs. 3000 sec) in comparison with 2In loop.

The dynamics of target mRNA and protein in both the 1/n and the 2C loops has
a form of increasing function, tending to a constant value (Figure 3A,D,E,H). The
loops behavior differs in time, when the steady state levels of the target mRNA and
protein are reached, as well as in numbers of target mRNA and protein molecules
at steady state. In 1In loop these numbers are smaller (about 3000 molecules vs.
3500 molecules) than in 2C loop, that can be explained by promotion of the target
mRNA degradation by miRNA in the 1/n loop.

Dual degradation model
In this model both miRNA and target mRNA degrade due to the duplex formation,
and the miRNA molecules are not re-used. As in the Target degradation model
both target mRNA and protein show similar dynamical behavior. The dynamics of
target mRNA and target protein both in 1C' and 21n loops shows pulse-like behavior
(shown in Figure Al of Additional file 2), similar to that observed in these loops in
the Target degradation model (as shown in Figure 3B,C,F,G). In this model in 2In
loop the steady state level is approached earlier (3000 sec vs 4000 sec), than in 1C
loop. The target protein molecules number at steady state in 2In loop is also higher
than in 1C loop (1800 molecules vs 1400 molecules). Moreover, all these numbers in
the Dual degradation model are higher than in Target degradation model (Figure
A1 of Additional file 2).

In both 17n and 2C' loops the dynamics of target mRNA and protein takes a form
of increasing function, tending to constant value (Figure Al of Additional file 2). As
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in target degradation model in 17n loop the steady state is reached earlier (2500 sec
vs. 4000 sec) and the level of target protein at steady state is lower (3000 molecules
vs. 4000 molecules) than in 2C loop. Again, in the Dual degradation model these
numbers are bigger than in the Target degradation model.

Dynamical behavior of FFLs

In this section we shall describe the behavior of each type of FFL in the framework
of each model under consideration. We shall demonstrate that FFLs mediated by
miRNA and TF may have many possible outcomes, depending on the nature of the
relationships between the loop elements.

The study of dynamical behavior of FFLs is based on the variation of initial
conditions, and model coefficients with subsequent analysis, how these changes affect
the target protein molecules number. To simplify comparison in each numerical
experiment we use one and the same parameter set, described in the ) section,
except of the coefficient value, which effect on the loop behavior is analyzed.

The efficiency in control of the target protein synthesis in all three models depends
upon the quantity of TFs (which, in turn, is a function of k,, and k,), the number
of miRNA copies (i.e., the function of ks and hs defining the affinity of TF to the
promoter of miRNA gene), as well as the strength of the miRNA action. In the
Stop model the strength of repression of mRNA translation by miRNA is defined
as 1/hy. In the Target degradation model the degradation of the target mRNA is
described by a term, which represents an increasing Hill function of a copy num-
ber of miRNAs, while 1/h, represents the strength of miRNA action. In the Dual
degradation model the degradation constant of the mRNA-miRNA complex k, is
introduced. Therefore, in short, the idea of an analysis given below is to fix a type
of FFL and investigate how the target protein molecule number p will vary in all
models considered.

Type 1 incoherent (1In) loop
This FFL is characterized by direct activation and indirect repression pathways, in
which TF acts on target protein production.

Variation of synthesis and degradation parameters. Mathematical analysis showed
that the increase of i, in the Stop model and h, coefficient in the Target degradation
model results in the increase of the target protein quantity (Figure A2 of Additional
file 2). The difference in target protein production is the largest for big values of
these coefficients. The increase of the k,; coeflicient in the Dual degradation model
results in the fall of the target protein quantity. Noteworthy, at early times (up to
about 1000 seconds) the variation of hy or ks coefficients has little influence on
target protein production. In all models the difference in target protein production
at different values of coefficients increases with time, as shown in Figure A2 of
Additional file 2.

In all models the increase of hg leads to increase in the target protein quantity
(Figure 4). In both Target and Dual degradation models at early times (up to ca.
1000 seconds) the target protein production does not depend on hg variation; at
later times the difference between two bounding k¢ values in the Target degradation

Page 8 of 23


https://doi.org/10.1101/016162

bioRxiv preprint doi: https://doi.org/10.1101/016162; this version posted March 10, 2015. The copyright holder for this preprint (which was

Duk et al.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

model is much smaller than in other models. In all models the largest difference in
target protein production is observed for large hs values (Figure 4).

In all models the increase of k, results in the increase of the target protein pro-
duction, the effect of the k, variation being larger at a later time (Figure A2 of
Additional file 2). In all models the profiles nearly coincide up to a moment ca.
250 seconds and diverge afterwards. Later in the Stop model the profiles form a
peak, which amplitude rises as k, increases. Both the Target and Dual degradation
models exhibit similar behavior: the profiles firstly tend to a minimum and increase
to a constant value afterwards. In both models the steady state is achieved faster
(around 2000 seconds) than in the Stop model (around 5000 seconds) (Figure A2
of Additional file 2).

In both the Target degradation and Dual degradation models applied to the 1In
loop the increase of the TTF translation rate k4 leads to increase of target protein
quantity, the difference in target protein being the largest for small values of the
coefficient (Figure 4). In Dual degradation model the steady state is reached earlier
that in Target degradation model. In Stop model for this loop the largest number
of target protein molecules is observed at intermediate values of the k, coefficient
(Figure 4).

Variations in initial data. In all models the variation of the initial number of TF
and miRNA molecules does not change the number of target protein molecules at
steady state. In both Stop and Dual degradation model the form of target protein
profile changes from the bell-shaped to the U-shaped one as the initial number of
miRNA molecules rises (Figure 4G, I). In Target degradation model all profiles have
a form of increasing curve tending to a steady state and show moderate dependence
on the change of the initial number of miRNA molecules (Figure 4H). The increase
of the initial number of TF molecules results in the change of the target protein
profile from the U-shaped form to the bell-shaped one in both the Target degradation
and the Dual degradation models (Figure A2H, I of Additional file 2). In the Stop
model all the target protein profiles have the bell-shaped forms, and their amplitudes
decrease with the TF molecules number growth (Figure A2G of Additional file 2).

Type 1 coherent (1C') loop
This FFL is characterized by a synergetic action via both the direct and indirect
pathways (see Figure 1).

Variation of synthesis and degradation parameters. The increase of both h, and
hg coefficients results in the increase of the target protein quantity p (Figure A3 of
Additional file 2). In the Stop model the difference in target protein production is
the largest for large values of h,. In the Target degradation model only large values
of hg have a noticeable effect on the target protein production. The increase of k¢ in
the Dual degradation model results in the fall down of the target protein quantity.
At the very early times (up to about 500 seconds) the variations of either h, or k.
have a small influence on target protein production (Figure A3 of Additional file
2).

In all models for 1C' loop the increase of hg or k, leads to increase in the target
protein molecules number (Figure 5, Figure A3 of Additional file 2). In the first
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half of the whole time interval each profile forms a peak, which amplitude rises with
k., increase. In the Target and Dual degradation models the steady state quantities
are reached faster than in the Stop model.

The increase of the TF translation rate £, in all models applied to the 1C loop
results in decrease of the target protein molecules number (Figure 5). Initially the
difference in target protein production is not quite evident, later it becomes remark-
able at small values of kq.

Variations in initial data. In all models for the 1C loop behavior the variations of
the initial miRNA or TF molecule numbers do not influence the number of target
protein molecules at steady state, see (Figure 5 and Figure A3 of Additional file 2).
The increase in the initial number of miRNA molecules leads to the transformation
of the bell-shaped target protein profile to the U-shaped profile in the Stop model
(see Figureb). In contrast to it, in the both Target degradation and Dual degradation
models all profiles are bell-shaped, and their amplitudes decrease as the miRNA
initial number increases (Figure5). The gradual increase of the initial number of TF
molecules results in the transformation of the bell-shaped target protein profile into
uprising curve, tending to a constant value in all models (Figure A3 of Additional
file 2).

Type 2 coherent (2C') loop
This FFL is characterized by coherent activation of a target via direct and indirect
pathways (see Figure 1).

Variation of synthesis and degradation parameters. The increase of both hy, and hy
results in the increase of the target protein quantity p (Figure 6), while the increase
of the miRNA-mRNA complex degradation coefficient ks leads to the opposite
effect. In all models the profiles first tend to minima, then diverge. At very small
time (up to about 500 seconds) the variation of the hy or k., coefficients has a little
influence on the target protein production. In all models the difference in target
protein production is the largest for large values of the coefficients.

In all models applied to the 2C loop the increase of dissociation constant h, leads
to decrease in target protein molecules number (Figure 6) and the largest difference
in target protein quantities is observed at large values of this coefficient. In both
Target and Dual degradation models the effect of hy variation becomes especially
evident at later times (after 1200 seconds).

In all models the increase of the maximal rate of transcription for target mRNA k.
results in the increase of the target protein quantity p, the effect of the k, variation
being larger at a later time (Figure A4 of Additional file 2). In the Stop model for
this loop the target protein profiles firstly approach a maximum, then a minimum,
and grow afterwards.

The increase of the TF translation rate k, in all models of 2C loop leads to
increase of target protein quantities, see Figure A4 of Additional file 2.

Variation in initial data. The variation of the initial miRNA and TF molecules
number does not affect the steady state dynamics. In Stop model as the miRNA
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molecules initial number rises, the target protein profiles are transformed from wave-
like to U-shaped pulse (Figure 6) and the difference in target protein dynamics
corresponding to different initial miRNA quantities becomes almost negligible at
later times. In both Target degradation and Dual degradation models the target
protein profile has a form of U-shaped curve, however the difference between all the
profiles is small at all times.

In all models of 2C loop the graph for the target protein quantity exhibits U-
shaped profile when the initial number of TF molecules is small and bell-shaped
profile when this number is large (Figure 6).

Type 2 incoherent (2In) loop
This FFL describes an indirect pathway of activation and direct pathway of the
target repression (see Figure 1).

Variation of synthesis and degradation parameters. The increase of the hj, coeffi-
cient in the Stop model and h coefficient in the Target degradation model result in
the target protein quantity growth. At very early time (up to about 500 seconds) the
variation of hy has small influence on target protein production, while at later time
the larger values of h, result in larger difference in target protein quantity (Figure
A5 of Additional file 2). Growth of the miRNA-mRNA complex degradation coeffi-
cient k¢ results in fall of the target protein quantity in the Dual degradation model
(Figure A5 of Additional file 2).

In all models for the 2In loop the increase of the hy value results in decrease
of the target protein molecules number (Figure A5 of Additional file 2). At small
values of hy the difference in target protein production is invisible in both Target
and Dual degradation models at very early times and in all models at the second
half of the whole time interval.

In all models the increase of the maximal rate for the target mRNA synthesis
results in the increase of the target protein quantities, the effect of the &, variation
being larger at later time in the Stop model (Figure A5 of Additional file 2). For
two other models the maximal effect of k, variation is observed at the first half
of the time interval. The pattern of dependence of the target protein profiles on
k. in the Stop model differs from that in two other models, namely, in the Stop
model the target protein profile firstly approaches a maximum, than a minimum
and grows afterwards (”wave-like” pattern), while in both the Target and the Dual
degradation models the profiles form a peak (”pulse-like” pattern), which height is
larger in the later model (Figure A5 of Additional file 2).

The increase of the rate k, of the TF translation in the Target degradation and
Dual degradation models of the 2In loop results in diminishment of the target
protein molecules number (Figure A6 of Additional file 2). In the Stop model for
this loop the largest number of target protein molecules at steady state is observed
for intermediate values of k,, while the large values of k, lead to almost cut off of
protein production.

Variations in initial data. In all models the variation of initial number of TF
or miRNA molecules does not change the number of target protein molecules at
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steady state. When the initial number of miRNA molecules gradually increases,
the wave-like target protein profile is transformed to the U-shaped one in the Stop
model applied to the 2In loop (Figure A6 of Additional file 2). In both Target
degradation and Dual degradation models all profiles have bell-shaped form, and
their amplitudes slightly decrease as the miRNA initial quantity grows.

In the Target and Dual degradation models for 2In loop the increase of initial
number of TF molecules leads to the target protein profile changes from the bell-
shaped to the U-shaped form (Figure A6 of Additional file 2). In the Stop model
the variation of initial number of TF molecules weakly influences the target protein
quantity: the profiles take a form of either wave-like or uprising curve and all of
them tend to a steady state.

Our results show that FFLs mediated by miRNA may have many possible out-
comes, depending on interaction between the loop elements. The target protein
profiles can take different forms, which are unambiguously defined by initial condi-
tions and model coefficients. In most cases the variation of model coefficients leads
to results, which could be intuitively explained by consideration of the miRNA ac-
tion in a model and the topology of a loop, however, in several cases the response
of the system is hardly predictable. This especially concerns the variation of kg,
the parameter, which defines the quantity of TF. In the Stop model in 1C loop the
TF represses and in 2C loop it activates the target protein synthesis in parallel via
direct or indirect pathways, respectively. Therefore in 2C loop the rise of k; leads
to an increase in target protein quantity, while in 1C loop the relation is opposite
(Figure 5 and Figure A4 of Additional file 2). However, in the Stop model applied
to both 1In and 2In loops the maximal number of the target protein molecules is
observed at intermediate k, values, moreover, in the last one the effect becomes
visible only after 750 seconds (Figure 4 and Figure A6 of Additional File 2). In
general, any noticeable variation in molecule quantity provided by an intermediate
value of a parameter can be explained by simple mathematical analysis of the Hill
function sigmoid, see Additional text 1.

Noise buffering by miRNA
The comparative analysis performed above shows significantly diverse reaction of
each FFL to variation of coefficients in each of the models considered.

In a wet lab it seems to be easier to identify a type of the FFL rather than to
reveal the regulation details, which will be helpful in selection of the miRNA action
model. The analysis of the temporal behavior of the FFL together with the ability
to find out a unique solution for every set of parameters may provide the way to
select the most probable mechanism of miRNA action if the type of FFL is known.
However, a noise in data can corrupt an ideal behavior of FFL in absence of any
perturbation.

It is widely believed that miRNA can buffer the consequences of noise in a cell. A
simple mathematical model based on assumption that miRNA represses translation
of its target was recently introduced to explore the ability of the 1/n FFL to buffer
fluctuations in upstream TF at steady state [30]. We demonstrated already that the
behavior of a FFL is model-dependent, and it is reasonable to study the ability of
FFLs to buffer fluctuations in upstream regulator quantity . on the assumption of
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the miRNA action, different from the translational repression. Besides, the results of
our analysis also demonstrate an imperfection of approaches based on the analysis
of model behavior at steady state only: as it is shown in Figures 5, 6 and A2, A3
of Additional file 2 the dynamical behavior of FFLs can be multivariant at early
times even when the quantity of target protein at steady state is the same.

Consequently, we decide to investigate the ability of all FFLs with miRNA to
buffer a noise caused by TF at all time moments and in all models. At each time
moment we introduce the random fluctuations in TF quantity and measure how
these fluctuations affect the target protein molecule number. We also consider how
the variation of model coefficients influences the ability of the loops in noise damp-
ing. The efficiency of the FFLs in controlling the fluctuations of the target protein
in response to noise introduced by TF depends on the number of TF molecules
(which is a function of both k,, and ky), the number of miRNA copies (depending
on ks and hy) and the strength of miRNA action on target mRNA (defined by h,,
hg and k,s coefficients in the models). We studied the ability of FFLs to buffer noise
as a function of each of these three quantities, changing a corresponding coefficient
and keeping fixed all others. For each combination of a model, loop and coefficient
value we performed 100 numerical simulation runs to estimate the average value of
the parameter ¢ and the number of experiments with positive value of this param-
eter as described in section . Positive values of € mean that a loop cannot dampen
noise introduced by TF, and vice versa negative values of this coefficient testify the
ability of the loop to reduce TF noise.

The 1In FFL shows the best ability to buffer noise introduced by TF: the noise
is strongly decreased at the level of target protein production in all models and
within a wide range of parameter variation Figure 7, Table 1. In all models the
noise buffering increases with k, parameter for TF translation rate. At small values
of k, the Stop model is more effective in noise reduction than two other models,
while at large values of this parameter all models show similar ability to reduce
noise. The variation of parameters that define the miRNA level in a loop, namely
hs and kg, has small effect on ability of this loop to buffer noise in both the Target
degradation and Dual degradation models. In the Stop model the maximal effect
is achieved at intermediate values of these coefficients, the rate of noise reduction
being the highest among all the models. Both in Target and Dual degradation
models the ability of 1In FFL to buffer noise does not significantly change when
a parameter, which defines the strength of miRNA action (h, or k), has large
variation. In the Stop model the maximal effect is achieved at intermediate values
of the h, coefficient.

The ability of the 2In loop to decrease noise introduced by TF essentially depends
on the k, coeflicient values: all the models are not able to efficiently buffer noise for
large values of this coefficient (at k, = 0.16 the € coefficient was positive in 9 — 14%
of experiments), however, in the Stop and Target degradation models this effect
becomes evident at larger k, values that in the other model (Table 2). In the Target
degradation and Dual degradation models the variation of other coefficients has
small effect on the ability of the loop to reduce noise. It is worth to note, that for
larger values of both kg and h, the Stop model is more effective in noise buffering,
than two other models. In frame of the Stop model the higher are h, values, the
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higher is the ability of 2In loop to reduce TF noise. On the contrary, the strongest
noise reduction in this loop is achieved at intermediate values of the ks and h,
coefficients.

Both 1C and 2C loops are bad buffers in frame of the Stop model but generally
reduce the TF noise under both the Target and Dual degradation models (Figure
7). In the frame of the Target and Dual degradation models the variation of all
coefficients (except of k; in both loops) exposes to the ability of these loops to
buffer noise weaker than in the Stop model (Tables 3 and 4). In this model the
behavior of the 2C' loop and, to smaller extent, of the 1C loop shows a strong
dependence on parameters. Below we address the ability of coherent loops to buffer
noise in detail.

In the Stop model the 1C loop is inefficient in reduction of TF noise at any value
of the k, coefficient, showing the worst reduction at intermediate values (k;=0.04)
(Table 3). For large k, values (k,=0.08 and higher) and in both the Target and
Dual degradation models this loop loses the ability to efficiently reduce noise and
starts to deal with the noise as in the Stop model.

The 1C loop is able to effectively buffer noise only for very small values of hs and
ks coefficients in the Stop model: the larger are these coefficients, the less efficient
is the noise reduction (Table 3). The loop shows non-ability to reduce noise in small
number of experiments at hy = 400 in both Target and Dual degradation models,
as well as at intermediate ks = 0.25 value in the Target degradation model and at
ks = 0.75 in the Dual degradation model.

In the Stop model the h, increase improves the ability of the loop to buffer noise
as both the average € value and the number of experiments, in which TF noise was
not dampen (positive € value) decrease (Table 3). In the Dual degradation model
the 1C loop shows non-ability to buffer TF noise in 2-5% of experiments.

The ability of 2C' loop to reduce TF noise increases with the value of k, in the
Stop model (Table 4). For large values of it (k;=0.08 and higher) the TF noise was
reduced in all numerical simulations. In two other models the TF noise is always
dampen (with one exception of k, = 0.02 in the Dual dagradation model, see (Table
4), however the efficiency of noise buffering increases as the value of the k, rises.

The dependence of the efficiency of noise damping on h, variation in the 2C loop
and in frame of Stop model is complex: noise is efficiently reduced for very small
hs values, while the efficiency of noise reduction decreases as the hg value grows,
however the worst noise reduction happens at intermediate hs values (hs=200). In
the Stop model the ability of 2C' loop to buffer noise decreases with the growth of
ks: at small kg < 0.25 values the noise damping was observed in all simulations,
while for higher %k, values the fluctuations of the target protein molecules number
are not reduced in many simulation runs (Table 4).

The 2C loop is unable to effectively buffer TF noise in all experiments when the
values of the h, coefficient are small (below or equal to 60), at larger coefficient
values this loop starts to efficiently buffer noise (Table 4). The noise is effectively
reduced in the Dual degradation model of 2C' loop for all values of the k.5 coefficient,

however the ability of dampening decreases as the value of this coefficient rises.

Page 14 of 23


https://doi.org/10.1101/016162

bioRxiv preprint doi: https://doi.org/10.1101/016162; this version posted March 10, 2015. The copyright holder for this preprint (which was

Duk et al.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Conclusions

We performed here the theoretical analysis of a gene network sub-system, containing
a FFL mediated by TF and miRNA. We have shown that different mechanisms of
miRNA action lead to a variety of types of dynamical behavior of FFLs during cell
cycle and govern their ability to dampen noise caused by TF fluctuations.

The molecular mechanisms of miRNA action are not clear so far, and we elaborate
three mathematical models introduced in [30], that describe the gene expression in
miRNA mediated FFL under the assumption of different mechanisms of miRNA
action. In the Stop model miRNA represses translation of its target mRNA | in the
Target degradation model miRNA promotes the target degradation, and in the Dual
degradation model miRNA is not re-used, but degrades along with target mRNA.

Due to an intrinsic complexity and non-linearity of biological systems it is a hard
task to obtain any analytic solution to differential equations, which describe the
regulation in FFL with miRNA under the models considered. These equations are
non-linear, fortunately we were able to obtain the exact solutions to some of them,
namely, to those describing target mRNA and miRNA production in the Stop model
and for several biologically relevant values, i.e.,

- for slow degradation of miRNA (when miRNA is degraded two times slower than
TF or its mRNA),

- fast degradation of miRNA (when miRNA is degraded two times faster than TF
or its mRNA) and

- very fast degradation of miRNA (when miRNA is degraded three times faster
than TF) (see Additional file 1 for details).

Despite of the fact that miRNAs are generally stable molecules, it was shown
recently that individual miRNAs may be exposed to an accelerated decay [18].

We used the exact solutions to check the results of numerical simulations obtained
for all other coefficient sets and initial conditions, and proven the validity of these
results. In general, the exact solutions obtained could be used as a genuine check
point in numerical simulations of larger networks with miRNA embedded into a
FFL motif.

We have rigorously proven the uniqueness of solutions to all the models under
consideration, i.e., in the models considered there is the one-to-one correspondence
between the given parameter set and the solution, describing the dynamics of target
protein production in FFL.

Study of cell components behaviour at steady state is conventional, however it is
worth to note that the steady states are not completely informative even in non-
biotic systems, consisting of almost identical clusters of several atoms/molecules. In
biology the steady states are not unique: very different pathways may lead to the
same stationary position. From the general viewpoint of dynamic control theory an
early time seems to be the most promising one for tentative control/influence onto
the loop dynamics, either by noise or by any external factor. That is why we first
examined the FFL dynamics quantitatively, and at the whole time interval of cell
cycle, alternatively to recent qualitative consideration [30].

Our results show that FFLs mediated by miRNA and TF may have many pos-
sible outcomes, depending on interaction between the loop elements. The target
protein profiles can take different forms, which are unambiguously defined by initial
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conditions and model coefficients. This can be illustrated, when we consider the
behavior of one and the same FFL under different models, and when both initial
conditions and the level of a target protein at steady state are the same. Due to the
difference in mechanisms of miRNA action the behavior of a FFL in time will be
quite different in frame of different models. This situation is reconstructed for the
1C loop in Figure 8. It is evident that the behavior of the models at early times
is different: the maximum of target protein production is the smallest in the Dual
degradation model, while the time, at which this protein reaches the steady state is
the largest one for the Stop model. It is noteworthy that these graphs correspond
to models with different degradation coefficients of the target mRNA and protein,
i.e. to different biological situations.

Contemporary experimental set up seems not be able to capture many facets of
miRNA function. Indeed, in spite of a bunch of publications, describing the crucial
role of miRNA in control of many biological processes and in progression of various
diseases, the molecular mechanisms of miRNA action are still not evident [14, 15].
In a wet lab it is easier to identify a type of FFL, rather than to reveal the details
of regulation, which will be helpful in selection of the miRNA action model. The
analysis of the temporal behavior o f the FFL together with the ability to find out
a unique solution for any set of parameters might help to select the most feasible
mechanism of miRNA action for the type of FFL given.

The results obtained allow us to propose the following strategy for an ideal FFL:
let us consider how a miRNA acts, having an information about the FFL topology
and a given set of quantitative measurements of each player in the loop. If the
initial quantities of molecules for each player in FFL are not known, we should
firstly determine them in experiments. Using our analytical results, we shall be able
to calculate in detail the temporal dependence for each player in the FFL and in
each possible model for various values of coefficients. Next, we identify that graph,
which passes through the given set of the (molecule quantities) points among all
others. By virtue of the uniqueness theorem this graph will correspond to most
feasible regulation type in the FFL among all models considered.

However FFLs are subjected to noise influence, and for this reason we studied the
noise buffering in both coherent and incoherent FFLs, that led to conclusion that
incoherent FFLs are better noise buffers than coherent ones (Figure 7). Moreover,
even the parameter variation does not seriously affect the noise buffering ability of
incoherent FFLs. Therefore the selection strategy proposed seems to be suitable to
predict a model for incoherent FFLs.

The FFL dynamic behavior analysis performed for different models and parameter
sets shows that an extremal value of target protein quantity (max or min, depending
on a loop) may be accomplished for intermediate values of coefficients. This is valid
also for the noise buffering problem, that required a simple analysis of the Hill
sigmoid behavior, see Additional file 1.

In general, an action of any disturbance, e.g., a noise, having sufficiently small
amplitude, (ca. 10 — 15% ; otherwise it would prevail over a signal in FFL) depends
on the Hill function type and can be described as follows. For the Hill sigmoid func-
tions, governing either an activation or a repression, the noise will be recognizable
for intermediate molecule quantity. By virtue of analysis in the whole time interval
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we found that when the noise amplitude is high, but the total amount (the regular
one plus the noise associated fluctuations) of miRNA is intermediate (the Hill func-
tion is far from any of almost constant limits), then the noise is translated directly
into the protein production process and will not be suppressed by a loop.

When the noise amplitude is still high, however, the total amount of miRNA is
sufficiently high, too (the Hill function is close to any of limits), then the noise level
is relatively small to disturb the protein production and will be suppressed by a
loop.

Methods

Many details of mathematical analysis are given in Section and in the Supporting
Information files; here we briefly describe the numerical simulations. The coefficients
used in mathematical modeling were mostly taken from [30], and for the Stop model
they are, as follows:

ku) = OOG,gw = 0004, kq = 00479(1 — 0002, ks — 057 hs — hr — 200’
9s = 0'0027 k?' = 0-087 gr = 0-0047 kp = 0.8, 9p = 0.0027 hp = hp = 60, (5)
Imax = 0004, kfrs = gr/200

The other coefficients used in both the Degradation and the Dual degradation mod-

els are:
hg =60, gmas = 0.004, k., = 0.00002. (6)

Numerical simulation of dynamics in each loop was made for the time period of ¢
= 5000 seconds. The initial numbers of components in each loop were equal to one
half of their steady state values.The dynamics of solutions at early stages depends
not only on coeflicients, but on initial values, too. To analyze how the quantity of
target protein molecules depends on the numbers of TF and miRNA molecules at
initial time moment these numbers were changed from 0 to one quarter and one
half, as well as to the values of two and four times higher, than at steady state (in
normalized quantities).

For the noise simulations we introduced a vector z with the correlation function

K(7) = exp(—|7]), that was obtained in a form:

z(i) = exp(—0.1)z(i — 1) + /1 — exp(—0.2)&(4), (7)

where £ is another vector, obtained by the MATLAB procedure, which contains the
Gaussian white noise. The vector z represents the model of a stationary Markov
process, and we may add its values at the moments ¢; to the number of molecules
of TF, which is used in equations for the quantities of miRNA and target mRNA,
and solve these equations numerically. In fact, the procedure mentioned is based on
the Uhlenbeck-Ornstein process (1930), the only one , which is stationary random,
Gaussian and Marcovian simultaneously. The process is widely used now in mathe-
matical modelling of noise instead of any numerical version of the so called ” white
noise”. The particle velocity in this process is finite, and taking into account the
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difference between a random force and the idealised white noise, one may provide
a finite acceleration of the particle, too.

We calculated the numbers ¢ of TF molecules, of miRNA (s), of the target mRNA
(r) and of target protein (p) with the noise component and without it, and after-
wards we found the values Ng = max:|q(t) — ¢n(t)|, Ng = mazx|p(t) — pn(t)| to
estimate the relative power of noise. Here ¢(t), p(t) are the numbers of molecules of
transcription factor and target protein without the noise component, respectively,
while ¢, (t), pn(t) are corresponding quantities with noise. Therefore we may find
the value of the estimation parameter ¢ :

e =(Np—Na)/Na, (8)

to conclude whether the relative noise level in target protein quantity is higher or
lower, than in TF. Consequently, ¢ < 0 means that the noise level in target protein
is lower than in TF, and the noise is buffered in the loop.

We performed calculations with 100 different noise vectors z for each loop and
each model, estimated ¢ in every calculation, studied and calculated an average
value of €, as well as the number of calculations with positive € value. We used the
Wilcoxon test for these averaged values of € to compare results for the same loops
and same models under variation of the model coefficients.
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Figures

Figure 1 The incoherent and coherent feed-forward loops. Arrows mean activation, the turned
over T-bars indicate repression. TF -transcription factor, miR -miRNA, Target - target protein. A:
1In - type 1 incoherent FFL, TF activates both target mRNA and miRNA synthesis. B: 1C - type
1 coherent FFL, TF represses traget mMRNA and activates miRNA synthesis. C: 2In - type 2
incoherent FFL, TF represses both target mMRNA and miRNA synthesis. D: 2C - type 2 coherent
FFL, TF activates target mMRNA and represses miRNA synthesis.

Figure 2 The solutions to the Stop model in various FFLs. 1In - type 1 incoherent FFL, 1C-
type 1 coherent FFL, 2In - type 2 incoherent FFL, 2C - type 2 coherent FFL; w, ¢, s, 7 and p
denote graphs of solutions for TF mRNA, TF, miRNA, target mRNA and target protein
correspondingly. A - D: temporal dynamics of absolute number of each molecule species is
presented. E - H: molecules numbers for each species are normalized on steady state values to
better visualize the behavior of RNA species.
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Figure 3 The solutions to the Target degradation model in various FFLs. 1In - type 1
incoherent FFL, 1C- type 1 coherent FFL, 2In - type 2 incoherent FFL, 2C - type 2 coherent FFL;
w, q, s,  and p denote graphs of solutions for TF mRNA, TF, miRNA, target mRNA and target
protein correspondingly. A - D: the temporal dynamics of absolute number of each molecule
species is presented, E - H: molecules numbers for each species are normalized on steady state
values to better visualize the behavior of RNA species.

Figure 4 The behavior of 117 loop in response to variation of hs, kg and initial miRNA
molecules numbers. The values of hg coefficient defining the amount of TFs, at which the
transcription rate of miRNA gene is half of its maximum value, were within 0 — 400 mol. interval,
the translation rates kq for TF were taken from 0 — 0.16sec™! interval, initial quantities of
miRNA were changed as described in section . Left column - Stop model, central column - Target
degradation model, right column - Dual degradation model. A - C: In all models the quantity of
target protein increases as hs rise. D: In the Stop model the largest number of target protein
molecules is observed at intermediate values of the k4 coefficient. E -F: In the Target and Dual
degradation models kg increase leads to increase of target protein quantity. G and I: In both Stop
and Dual degradation models the form of target protein profile changes from the bell-shaped to
the U-shaped one as the initial number of miRNA molecules rises. H: In the target degradation
model all profiles show moderate dependence on the change of the initial number of miRNA
molecules.

Figure 5 The behavior of 1C loop in response to variation of hs, kq and initial miRNA
quantities. The parameter values are the same as of Figure 4. Left column - Stop model, central
column - Target degradation model, right column - Dual degradation model. A -C: The
dependence of target protein profiles on hg variation. D - F: The dependence of target protein
profiles onkg variation. G - I: The dependence of target protein profiles on initial miRNA
quantities. Initial quantities of miRNA were changed as described in section .

Figure 6 The behavior of 2C loop in response to variation of hy, hg, ks and hs coefficients,
and initial miRNA and TF quantities. Parameters hp, hg, ks define the action of miRNA on
target mMRNA, hg is the dissociation coefficient. The miRNA and TF initial quantities were
changed as described in section . Left column - Stop model, central column - Target degradation
model, right column - Dual degradation model. A: In the Stop model the quantity of target
protein increases as the value of h; increases from 0 to 240 molecules. B: In the Target
degradation model the quantity of target protein increases as the value of hgy increases from 0 to
240 molecules. C: The increase of the k,s coefficient value from 0 to 8 x 102 mol lsec™!
results in the fall of the target protein quantity in the Dual degradation model. D - F: In all
models the increase of hs from 0 to 400 leads to decrease in target protein quantities. textbfG - I:
The dependence of target protein quantities on initial miRNA molecules number in the models. J -
L: The patterns of dependence of target protein quantities on initial TF quantities in the models.

Figure 7 The ability of FFLs to buffer noise introduced by TF in frame of different models. In
each panel the values of parameter € calculated in 100 experiments are shown as narrow vertical
lines. £ < 0 means that the noise is buffered in a loop, £ > 0 means non-ability of the loop to
dampen noise. The coefficients and initial conditions for each experiment are given in section. A
-C: Type 1 incoherent loop is able to buffer noise introduced by TF in all models. D - F: Type 2
incoherent loop buffers TF noise in all models. G: Type 1 coherent loop is a bad buffer in frame of
the Stop model. I, H: Type 1 coherent loop is able to dampen TF noise in frame of the Target and
Dual degradation models. J: Type 2 coherent loop is a bad buffer in frame of the Stop model. K,
L: Type 2 coherent loop is able to buffer TF noise under the Target and Dual degradation models.

Figure 8 The target protein profiles in 1C FFL in different models. Both initial conditions and
the steady state level of a target protein are identical. Solid line - Stop model, dashed line -Target
degradation model, dotted line - Dual degradation model.

Additional information
Additional file 1 (pdf) contains details of mathematical analysis of the coupled ODE
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Table 1 The ability of 1In loop to buffer TF noise under variation of parameters in all three models.

Parameter values S_top Model D_egr. Model Dual Degr. Model
€ n € n € n
hs =1 —0.66 0 —-0.67 0 —0.66 0
hs =100 -0.84 0 —0.68 0 —0.69 0
hs =200 -0.84 0 —0.71 0 —0.74 0
hs =400 —0.66 0 —0.76 0 —0.75 0
kq = 0.02 —0.80 0 —0.48 0 —0.50 0
kq = 0.04 —0.84 0 —0.71 0 —0.74 0
kq = 0.08 —0.92 0 —0.88 0 —-0.91 0
kq =0.16 —0.97 0 —0.96 0 —0.97 0
ks =0.01 —0.70 0 —0.71 0 —-0.70 0
ks = 0.25 -0.89 0 —0.72 0 —0.72 0
ks = 0.50 —0.84 0 —0.70 0 —0.75 0
ks = 0.75 —0.80 0 —0.70 0 —0.74 0
hp(hg) = 30;krs = 1-1072 —0.78 0 —0.68 0 —-0.73 0
hp(hg) = 60;krs = 2-107° —0.83 0 —0.70 0 —0.74 0
hp(hg) = 1205 krs = 4-107° -0.90 0 —0.73 0 —0.76 0
hp(hg) = 240; krs = 8- 107 —0.82 0 —0.73 0 —0.77 0
For each model and for each parameter value we present the average ¢ value (left column) and the
number n of experiments with positive value of this coefficient (right column). The method for
calculation of ¢ is described in section . Negative £ values mean that TF noise is dampen in a loop.
The extremal e values achieved at intermediate parameter values are shown in bold. The Wilcoxon
Rank-Sum Test was used to test for significance of difference between the values of & for adjacent
parameter values. The differences which are statistically insignificant at the e = 0.05 level are placed
in parentheses.
Table 2 The ability of 2In loop to buffer TF noise under variation of parameters in all three models.
Parameter values %top Model Qegr. Model Dual Degr. Model
€ n € n € n
hs = —0.50 0 —0.49 0 —0.48 0
hs =100 —0.65 0 -0.57 0 —0.54 0
hs = 200 —-0.81 0 —0.54 0 -0.56 0
hs = 400 —0.84 0 —0.48 0 —0.52 0
kq = 0.02 —0.82 0 —-0.71 0 —0.76 0
kq = 0.04 —0.82 0 —0.53 0 —0.56 0
kq = 0.08 —0.56 0 —0.44 0 —0.39 5
kq =0.16 —0.35 9 —0.33 13 —-0.33 14
ks =0.01 —0.47 0 —0.48 0 —0.49 0
ks =0.25 —-0.73 0 -0.57 0 —0.51 0
ks = 0.50 -0.82 0 —0.54 0 —0.56 0
ks =0.75 —-0.71 0 —0.51 0 —-0.57 0
hp(hg) = 30;krs =1-107° —0.65 0 —0.48 0 —0.53 0
hp(hg) = 60;krs =2-107° -0.81 0 —0.54 0 —0.55 0
hp(hg) = 120;krs = 4- 1075 —0.74 0 —0.57 0 —0.58 0
hp(hg) = 240; kyrs = 8- 1075 —0.57 0 —0.53 0 —0.63 0

For each model and for each parameter value we present the average € value (left column) and the
number n of experiments with positive values of this coefficient (right column). The method for
calculation of ¢ is described in section . Negative £ mean that TF noise is dampen in a loop. The
extremal € values achieved at intermediate parameter values are shown in bold. The Wilcoxon
Rank-Sum Test was used to test for significance of difference between the ¢ values for adjacent
parameter values. The differences which are statistically insignificant at the e = 0.05 level are placed
in parentheses.
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Table 3 The ability of 1C loop to buffer TF noise under variation of parameters in all three models.
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Parameter values S_top Model D_egr. Model Dual Degr. Model

€ n € n € n

hs =1 —0.62 0 —0.47 0 —0.49 0

hs = 100 —0.47 5 —0.47 0 —0.46 0

hs = 200 —0.27 23 —0.45 0 —0.42 0

hs = 400 —-0.21 20 —0.40 7 —0.42 1

kq = 0.02 —0.37 5 —0.60 0 —0.63 0

kq = 0.04 -0.24 24 —0.45 0 —0.44 0

kq = 0.08 —0.35 14 —-0.33 10 —0.34 13

kq = 0.16 —-0.33 17 —0.29 12 —-0.25 23

ks =0.01 —0.48 0 —0.50 0 —0.48 0

ks =0.25 —-0.37 12 —0.45 2 —0.44 0

ks = 0.50 —-0.27 23 —0.45 0 —0.42 0

ks =0.75 —0.24 22 —0.45 0 —0.43 1

hp(hg) = 30;krs =1-107° —0.28 22 —0.46 0 —0.45 0
hp(hg) = 60;kps =2-107° —0.29 20 —0.46 0 —0.42 0
hp(hg) = 120;kps = 4-1075 —0.35 13 —0.44 1 —0.39 2
hp(hg) = 240; ks = 8- 1070 —0.41 2 —0.44 0 —0.40 5

For each model and for each parameter value we present the average ¢ value (left column) and the
number n of experiments with positive value of this coefficient (right column). The method for

calculation of ¢ is described in section .

Negative € mean that TF noise is dampen in a loop. The

extremal € values achieved at intermediate parameter values are shown in bold. The Wilcoxon
Rank-Sum Test was used to test for significance of difference between the ¢ values for adjacent

parameter values. The differences which are statistically insignificant at the o = 0.05 level are placed

in parentheses.

Table 4 The ability of 2C loop to buffer TF noise under variation of parameters in all three models.

Parameter values %top Model Qegr. Model Dual Degr. Model

€ n € n € n

hs = —-0.71 0 —0.69 0 —0.70 0

hs =100 —0.49 0 -0.57 0 —0.63 0

hs = 200 -0.09 34 -0.57 0 —0.57 0

hs = 400 —0.30 4 —0.64 0 —0.59 0

kq = 0.02 —0.07 43 —0.38 0 —-0.30 2

q = 0.04 —-0.17 26 —0.57 0 —0.58 0

kq = 0.08 —0.64 0 —0.75 0 —0.82 0

¢ =0.16 —0.94 0 —0.94 0 —0.94 0

ks = 0.01 —0.69 0 —0.69 0 —0.69 0

ks =0.25 —0.43 0 —0.56 0 —0.63 0

ks = 0.50 —0.13 30 —0.58 0 —0.59 0

ks =0.75 0.05 55 —0.61 0 —0.55 0

hp(hg) = 30;krs =1-107° 0.07 58 —0.64 0 —-0.63 0
hp(hg) = 60;krs = 21075 —0.14 26 -0.57 0 —0.59 0
hp(hg) = 120; ks = 4-1075 —0.42 0 -0.56 0 —0.49 0
hp(hg) = 240; kyps = 8- 1075 —0.61 0 —0.64 0 —0.42 0

For each model and for each parameter value we present the average € value (left column) and the
number n of experiments with positive value of this coefficient (right column). The method for

calculation of ¢ is described in section .

Negative £ mean that TF noise is dampen in a loop. The

extremal € values achieved at intermediate parameter values are shown in bold. The Wilcoxon
Rank-Sum Test was used to test for significance of difference between the values of ¢ for adjacent

parameter values. The differences which are statistically insignificant at the e = 0.05 level are placed

in parentheses.
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Additional file 2 (pdf) contains several figures useful for better understanding the results presented in the main text.
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