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Abstract: 
 
In order to characterize the dynamics of adaptation, it is important to be able to quantify how a 
population’s mean fitness changes over time.  Such measurements are especially important in 
experimental studies of evolution using microbes.  The Long-Term Evolution Experiment (LTEE) 
with Escherichia coli provides one such system in which mean fitness has been measured by 
competing derived and ancestral populations.  The traditional method used to measure fitness 
in the LTEE and many similar experiments, though, is subject to a potential limitation.  As the 
relative fitness of the two competitors diverges, the measurement error increases because the 
less-fit population becomes increasingly small and cannot be enumerated as precisely.  Here, 
we present and employ two alternatives to the traditional method.  One is based on reducing the 
fitness differential between the competitors by using a common reference competitor from an 
intermediate generation that has intermediate fitness; the other alternative increases the initial 
population size of the less-fit, ancestral competitor.  We performed a total of 480 competitions to 
compare the statistical properties of estimates obtained using these alternative methods with 
those obtained using the traditional method for samples taken over 50,000 generations from 
one of the LTEE populations.  On balance, neither alternative method yielded measurements 
that were more precise than the traditional method. 
 

Introduction: 
 
The concept of fitness is central to evolutionary biology.  Genotypes with higher fitness will tend 
to produce more offspring and thereby increase in frequency over time compared to their less-fit 
competitors.  Fitness, however, is often difficult to measure, especially for long-lived organisms.  
Unlike traits such as color, fitness cannot be observed at a single point in time, but instead it 
must be measured and integrated across the lifespan of the individuals.  Thus, researchers 
typically measure fitness components – such as the number of seeds produced or young 
fledged – and use them as proxies for fitness. 
 
These limitations can be overcome in experimental evolution studies using microorganisms.  
Microbial systems typically have rapid generations and require little space, making them 
attractive for laboratory-based studies.  Replicate populations founded from a common ancestor 
allow researchers to examine the repeatability of evolutionary changes.  Environments can be 
controlled, reducing uninformative variation between samples or populations and allowing 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2015. ; https://doi.org/10.1101/016121doi: bioRxiv preprint 

https://doi.org/10.1101/016121
http://creativecommons.org/licenses/by-nc/4.0/


 2 

precise manipulations of conditions of interest.  Also, one can often freeze microbial populations 
at multiple points along an evolutionary trajectory and revive them later, allowing direct 
comparisons between ancestral and derived populations [1,2].  Owing to these advantages, 
evolution experiments with microbes are becoming increasingly common [3–5].  Thus, it is 
important to be able to accurately quantify fitness in these experiments, in order to understand 
the evolutionary dynamics at work. 
 
One commonly employed method of quantifying microbial fitness is to calculate the maximum 
growth rate (Vmax) of a culture growing on its own [6–10], usually by measuring the optical 
density of the culture over time.  These measurements have the advantages of being simple 
and fast; a spectrophotometer can measure many samples in a multi-well plate in quick 
succession, and systems can be programmed to take measurements over the full growth cycle 
of a culture. However, maximum growth rate is typically only one component of fitness even in 
the simplest systems [11], and hence it provides, at best, only a proxy for fitness.  
 
A second type of fitness measurement comes from studies where microbes are adapting to 
stressful compounds, such as antibiotics.  In these situations, researchers typically quantify the 
Minimum Inhibitory Concentration (MIC) of the compound, and those organisms with higher 
MICs are considered to be more fit in environments that contain that compound, as it takes 
more of the substance to inhibit their growth [12,13]. 
 
A third approach for quantifying fitness in microbial systems—and the approach that most 
closely corresponds to the meaning of fitness in evolutionary theory—uses a competition assay.  
The basic approach is to compete one strain or population against another and directly measure 
their relative contributions to future generations.  This approach typically produces a measure of 
relative, rather than absolute, fitness.  Relative fitness is more important than absolute fitness 
when considering the evolutionary fate of a particular genotype, provided that absolute fitness is 
high enough to prevent extinction of the entire population [14,15]. Competitive fitness assays, by 
measuring the net growth of two different populations, incorporate and integrate differences 
across the full culture cycle, which may include such fitness components as lag times, 
exponential growth rates, and stationary phase dynamics in batch culture [11,16].  
 
Despite their relevance to evolutionary theory, competitive fitness assays sometimes have 
practical limitations.  In particular, and the focus of our paper, these measurements are more 
precise when the two competitors have similar fitness than when one is substantially more fit 
than the other.  When one competitor is markedly less fit, its abundance will decrease over the 
course of the competition assay, potentially reaching values low enough that measurement error 
has a large impact.  Thus, as the duration of an evolution experiment increases, and the fitness 
of the evolved organisms increases relative to the ancestral competitor, the measurement error 
also tends to increase, as we will show in this study. 
 
We used a population from the Long-Term Evolution Experiment (LTEE) with Escherichia coli to 
investigate whether changes in the methods of performing competition assays – changes meant 
to reduce the discrepancy in the final abundances of the competitors – would yield more precise 
fitness measurements.  The LTEE has been described in detail elsewhere [1,17–19], and a brief 
summary is provided in the Materials and Methods section below.  Previous work in this system 
has established that changes in Vmax explained much, but not all, of the improvement in relative 
fitness in this system, at least in the early generations [11]. 
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Materials and Methods: 
 
Experimental conditions:   
 
The LTEE is an ongoing experiment that began in 1988, and which has now surpassed 50,000 
bacterial generations.  The experiment uses a Davis Minimal salts medium with 25 µg/mL 
glucose (DM25), which supports densities of ~3-5 x 107 bacteria per mL.  Each population lives 
in 10 mL of DM25 in a 50-mL glass Erlenmeyer flask incubated at 37C and shaken at 120 rpm.  
Every day, a member of the research team dilutes each population 1:100 into fresh media.  This 
dilution sets the number of generations, as the regrowth up to the carrying capacity allows log2 
100 ≈ 6.64 cell divisions per day. 
 
Bacterial strains:  
 
The LTEE has 12 populations of E. coli [1].  Six populations were founded by a strain called 
REL606 [20] and six by the strain REL607.  REL606 is unable to grow on the sugar arabinose 
(Ara–); REL607 is an Ara+ mutant derived from REL606.  The DM25 medium does not contain 
arabinose, and the arabinose-utilization marker is selectively neutral in the LTEE environment 
[20].  In this study, we use both ancestral strains as well as samples taken from one population, 
called Ara-1, at generations 500, 1000, 1500, 2000, 5000, 10,000, 15,000, 20,000, 25,000, 
30,000, 35,000, 40,000, 45,000, and 50,000.  We also use a strain called REL11351, which is 
an Ara+ mutant of a clone isolated from the 5000-generation sample of population Ara-1. 
 
Fitness measurements:   
 
We quantify fitness in this system as the ratio of the realized growth rates of two populations 
while they compete for resources in the same flask and under the same environmental 
conditions used in the LTEE.  This calculation is identical to the ratio of the number of doublings 
achieved by the two competitors.  In all cases, we compete samples from the Ara-1 population 
(including the ancestor REL606) against an Ara+ competitor (either REL607 or REL11351).  We 
distinguish the two competitors on the basis of their arabinose-utilization phenotypes; Ara– and 
Ara+ cells produce red and white colonies, respectively, on Tetrazolium Arabinose (TA) agar 
plates [1,21].  
 
We employ three different methods for measuring fitness in this study.  For all three methods, 
we begin by removing aliquots of the competitors from the vials in which they are stored at –80C 
into separate flasks containing Luria-Bertani (LB) broth.  The cultures grow overnight at 37C and 
reach stationary phase.  We then dilute each culture 100-fold into 0.86% saline solution and 
transfer 100 µL into a flask containing 9.9 mL of DM25.  These cultures grow for 24 h under the 
same conditions as the LTEE, so that all competitors are acclimated to this environment.  We 
then jointly inoculate 100 µL in total of the Ara-1 population sample and the Ara+ competitor into 
9.9 mL of DM25.  We immediately take an initial 100-µL sample of this mixture, dilute it in saline 
solution, and spread the cells onto a TA plate.  The competition mixture is then incubated in the 
same conditions as the LTEE for 24 h, at which point we take a final 100-µL sample, dilute it, 
and spread the cells onto a TA plate.  We count each competitor on the TA plates, and multiply 
the numbers by the appropriate dilution factor to determine their initial and final population sizes.  
We calculate fitness as  
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where w is fitness, A and B are the population sizes of the two competitors, and subscripts i and 
f indicate the initial and final time points in the assay. 
   
For the Traditional method, we measure the relative fitness of the evolved population samples 
against the Ara+ ancestor, REL607.  We inoculate the competition flasks with 50 µL (an equal 
volumetric ratio) of each competitor.  This method has been used extensively in evaluating 
fitness in the LTEE [1,2]. 
 
The Altered Starting Ratio (ASR) method also uses the ancestral Ara+ strain as the common 
competitor.  However, we inoculate the competition flasks with 20 µL of the evolved population 
and 80 µL of the ancestral population, leading to an initial 1:4 volumetric ratio.  This difference in 
the starting ratio increases the population size of the ancestor at the end of the competition 
assay, which reduces the problem of small numbers when the ancestor is much less fit than the 
evolved population.  The initial ratio is not so extreme, however, that it is difficult to enumerate 
the evolved population at the start of the competition assay.  We attempted to keep total plate 
counts around a few hundred colonies, with at least 20 of the minority competitor, to reliably 
estimate population densities [22], and we chose this initial ratio with that objective in mind. It 
seemed particularly important to increase the final count of the ancestral population in the 
context of our fitness measurements; smaller numbers are subject to increased sampling error, 
and the realized growth rate of the ancestor is the denominator when calculating the relative 
fitness of the evolved population, which can magnify the measurement error. 
 
Using the Different Common Competitor (DCC) method, we compete the evolved population 
samples against the marked clone from generation 5,000, rather than against the marked 
ancestor.  We chose a 5,000-generation clone because its fitness was near the geometric mean 
of fitness values spanning generations 0 to 50,000, and thus might reduce the overall disparity 
in population counts across the full time series being considered.  We inoculate the competitions 
with equal volumes (50 µL each) of the Ara-1 population sample and reference competitor.  We 
considered that this method might increase the precision of our fitness measurements because 
the ratios used in the fitness calculation tend to be more precise as they approach 1. 
 
We selected 15 time points from the focal population Ara-1 to evaluate these three methods: 
generations 0, 500, 1,000, 1,500, 2,000, 5,000, 10,000, 15,000, 20,000, 25,000, 30,000, 35,000, 
40,000, 45,000, and 50,000.  We ran competitions as complete blocks; each block included one 
competition for each time point using each method, plus an additional competition (see below) 
used as a scaling factor to compare the methods.  We performed a total of 10 replicate blocks, 
and so there were a total of 450 competition assays to measure fitness (3 methods x 15 time 
points x 10 blocks) plus an additional 30 assays to generate the scaling factors. 
 
A scaling factor was necessary for comparing the DCC method with the Traditional and ASR 
methods, because the DCC method measured fitness relative to a different competitor than the 
ancestor used for the other two methods.  To calculate this scaling factor, we performed an 
additional competition between the Ara– ancestor (REL606) and the Ara+ reference competitor 
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(either REL607 or REL11351) for each method in every block.  We then divided the fitness 
values from all of the competition assays for a given method and block by the fitness value that 
served as the scaling factor. We did not otherwise include the scaling-factor competitions in our 
data analysis.  We applied the same procedure to all three methods to ensure consistency, 
although adjusting for the scaling factor was not otherwise required for the Traditional and ASR 
methods. 
 
The data and analysis scripts are available at the Dryad Digital Depository (doi pending 
acceptance). 
 
Statistical methods:  
 
We performed statistical analyses in R version 2.14.1.  We fit the fitness trajectories using 
nonlinear least-squares regression, as implemented with the nls() function.  We performed 
ANOVAs using the aov() function.  For the single-generation ANOVAs, Method was a fixed 
factor and Block was a random factor. For the combined ANOVA, Generation was included as a 
fixed factor. 
 
Bootstrapping:  
 
We employed a bootstrap procedure to compare the differences between the coefficients of 
variation in our three methods to a null distribution.  We sampled the total dataset with 
replacement, to produce 3 datasets of equal size, each containing 10 measurements at each 
generation.  We then fit a linear regression of the coefficient of variation against time (i.e., 
generation) to each of the 3 datasets.  We then summed the squares of the differences between 
each pairwise combination of the 3 linear regressions over all 15 time points when fitness was 
measured.  We repeated this entire procedure 1,000,000 times, and we compared the observed 
sum of the squared differences to this distribution. 
 

Results and Discussion: 
 
There are two fundamental ways in which these different methods could produce meaningfully 
different results.  One way is that different methods could produce significantly different fitness 
estimates.  In that case, we would need additional information or another criterion to determine 
which method was superior.  The other way is that different methods could have different levels 
of precision; that is, one method may have significantly less variation in measured values across 
replicate assays than another.  In this case, the method with the greater precision would clearly 
be preferred. 
 
Fig. 1 shows the results of our fitness assays for all three methods, with trajectories fit to the 
data obtained using each method.  These trajectories are in the form of an Offset Power Law:  
 
w = (bT + 1)a,  
 
where w is fitness, T is time in generations, and a and b are model parameters, as derived in 
[2].  All three methods produce virtually identical fitness trajectories.  S1 Table shows the results 
of ANOVAs performed at each generation to test for variation among the three methods in the 
mean fitness values they produce; the effect of Method was not significant in any of the 15 tests, 
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even without accounting for multiple tests.  From these results, we conclude that the three 
methods do not produce meaningfully different estimates of mean fitness. 
 
Figure 1: Fitness trajectories over time 

 
 
Figure 1: Fitness trajectories for each method, shown separately, have the form w = (bT +1)a, 
where w is fitness, T is time in generations, and a and b are model parameters.  Black circles 
and curve show the Traditional method; blue squares and curve show the ASR method; red 
triangles and curve show the DCC method. 
 
Next, we calculated the coefficient of variation (i.e., the standard deviation divided by the mean) 
for each method at each time point to determine whether they differed in their precision.  We 
then constructed a linear model of the coefficient of variation as a response to time (i.e., 
generation) and method.  Fig. 2 shows the data and linear model fit to the coefficients of 
variation for all three methods.  Table 1 presents the ANOVA table for this model.  There is a 
highly significant tendency for the coefficient of variation to increase in later generations, as the 
evolving bacteria become progressively more fit, as discussed in the Introduction.  However, the 
effect of Method was not significant as a predictor of the coefficient of variation, although a p-
value of 0.0762 is suggestive.  On inspection of the data (Fig. 2), it is clear that any difference 
between the methods is driven by the ASR method having a higher coefficient of variation – and 
thus lower precision – in early generations.  Consistent with that appearance, when we removed 
the ASR method from the analysis and performed an ANOVA on the remaining data, there was 
no suggestion of any difference between the Traditional and DCC methods (Table 2, p = 
0.8802). 
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Figure 2: Coefficient of variation over time. 
 

 
 
Figure 2: Lines are linear regressions on the relevant data.  Black circles and line show the 
Traditional method; blue squares and line show the ASR method; red triangles and line show 
the DCC method.  S1 Fig. shows the confidence bands associated with each regression line. 
  
Table 1: ANOVA on the coefficient of variation across time and comparing the three methods 
used to estimate fitness.   
 

	   df	   SS	   MS	   F	   p	  
Time	   1	   0.03672	   0.03672	   69.664	   <0.0001	  
Method	   2	   0.00289	   0.00145	   2.743	   0.0762	  
Residuals	   41	   0.21610	   0.00053	   	   	  
 
 
Table 2: ANOVA on the coefficient of variation across time and comparing the Traditional and 
DCC methods.   
 
	   df	   SS	   MS	   F	   p	  
Time	   1	   0.03068	   0.03068	   70.035	   <0.0001	  
Method	   1	   0.00001	   0.00001	   0.023	   0.8802	  
Residuals	   27	   0.01183	   0.00044	   	   	  
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We can also express the differences between these methods as follows. The regression line for 
the coefficient of variation based on the ASR method is always higher than at least one of the 
other two methods (Fig. 2), and therefore it is never the best method, at least for the system and 
generations analyzed here.  By contrast, the Traditional and DCC methods yield coefficients of 
variation, as inferred from the regression lines, that are very similar and always within the 95% 
confidence interval of one another (S1 Fig).  Which of these two methods gave a lower point 
estimate of the coefficient of variation varied over time, but the difference was not significant 
(Table 2). 
 
An alternative way to assess whether the differences in the coefficient of variation between the 
methods are statistically significant involves bootstrapping the data, as detailed in the Methods 
section. Fig. 3 shows that the observed differences in the coefficient of variation among the 
three methods are no greater than would be expected by chance if there were no differences 
among the methods. 
 
Figure 3: Histogram of bootstrap analysis. 

 
 
Figure 3: Histogram showing the distribution for the bootstrapped sums of squared differences 
in the coefficient of variation for 3 arbitrary groupings of the combined data.  The dark arrow 
indicates the difference for the actual grouping of the 3 methods employed.  The light arrow 
shows the most extreme 5% of the sums of the squared differences.   
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Over the range of fitness changes that we observed in the LTEE, neither alternative method for 
assaying fitness (ASR or DCC) outperformed the Traditional method.  Given its extensive prior 
use in this study system [1,2,17], we therefore prefer to use the Traditional method for fitness 
competitions that span this range.  It is important to note, however, that the ASR or the DCC 
method might turn out to have higher precision in systems that exhibit larger fitness changes 
than the system studied here, as suggested by the regression lines in Fig. 2.  The LTEE has, to 
our knowledge, run for many more generations than any other evolution experiment, but the 
extent of fitness improvements has been less than that seen in some other shorter-duration 
experiments. The relatively limited fitness gains that have occurred during the LTEE reflect the 
fact that the experimental environment is quite benign; also, the ancestor of the LTEE had been 
studied by microbiologists for many decade [23] and was thus probably already well-adapted to 
general laboratory conditions.  Other experiments conducted for fewer generations, but 
performed under more stressful conditions or founded by less-fit ancestors, might reach fitness 
differences where these or other alternative methods would be helpful.  Table 3 summarizes the 
duration and range of fitness improvements reported in a number of other evolution experiments 
that used a variety of microorganisms including bacteria, fungi, and viruses (see also Table 2.3 
in [24]).   
 
Table 3: Selected evolution experiments 
 
Reference	   Organism	   Generations	   Wf	  /	  Wi	   Wf	  -‐	  Wi	  
This	  study	   E.	  coli	   50,000	   1.88	   3.5	  /	  day	  
[25]	   E.	  coli	  at	  32C	   2,000	   1.10	  

	  	   E.	  coli	  at	  42C	   2,000	   1.19	   	  
[26]*	   E.	  coli	   1,100	   1.98	   0.23	  /	  h	  
[27]**	   Saccharomyces	  cerevisiae	   300	   1.80	  

	  [28]	   Aspergillus	  nidulans	   800	   1.48	  
	  [29]	   phage	  Φ6	  with	  bottleneck	  =	  10	   100	   1.26	  
	  

	  
phage	  Φ6	  with	  bottleneck	  =	  1,000	   40	   2.03	  

	  [30]	   phage	  G4	   180	   1.18	   3.8	  /	  h	  

	  
phage	  ID2	   600	   2.55	   13.5	  /	  h	  

 
* Mean calculated from four replicate populations 
** Value estimated from figure 
 

Conclusion: 
 
We performed 480 assays to compare three different methods for estimating the relative fitness 
of bacterial competitors. The three methods generated results that were not meaningfully or 
significantly different in terms of either their mean values or dispersion.  The only suggestion of 
a meaningful difference was that the ASR method appeared worse than the other two methods 
in the early generations, when the fitness gains of the evolved bacteria were still fairly small.  
Therefore, we see no compelling reason to adopt one of the alternatives to the Traditional 
method when analyzing systems that have achieved fitness gains less than or similar to those 
measured in the LTEE over its first 50,000 generations. 
  

Supporting Information Captions: 
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S1 Figure: Temporal trends in the coefficient of variation across replicate assays for the three 
different methods used to measure fitness.  Black circles show the Traditional method; blue 
squares show the ASR method; red triangles show the DCC method.  The solid colored lines 
show the linear regressions based on the corresponding data.  The dashed colored curves 
show the 95% confidence bands for the regressions for the three methods: A) Traditional, B) 
ASR, and C) DCC.  The points and regression lines are the same across all three panels, but 
the confidence bands are shown separately for clarity. 
 
S1 Table: ANOVAs of fitness for three methods, by generation.  Analyses of variance of 
measured fitness values for the three methods, analyzed separately for the various generations 
examined. 
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