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ABSTRACT 

 
Allelic expression (AE) analysis has become an important tool for integrating genome 
and transcriptome data to characterize various biological phenomena such as cis-
regulatory variation and nonsense-mediated decay. In this paper, we systematically 
analyze the properties of AE read count data and technical sources of error, such as low-
quality or double-counted RNA-seq reads, genotyping errors, allelic mapping bias, and 
technical covariates due to sample preparation and sequencing, and variation in total read 
depth. We provide guidelines for correcting and filtering for such errors, and show that 
the resulting AE data has extremely low technical noise. Finally, we introduce novel 
software for high-throughput production of AE data from RNA-sequencing data, 
implemented in the GATK framework. These improved tools and best practices for AE 
analysis yield higher quality AE data by reducing technical bias. This provides a practical 
framework for wider adoption of AE analysis by the genomics community.  
 
INTRODUCTION 
 
Integrating genome and transcriptome data has become a widespread approach for 
understanding genome function. Allelic expression (AE; also called allele-specific 
expression or allelic imbalance) analysis is becoming an increasingly important tool for 
this, as it quantifies expression variation between the two haplotypes of a diploid 
individual distinguished by heterozygous sites (Fig. 1a). This approach can be used to 
capture many biological phenomena (Fig. 1b): effects of genetic regulatory variants in cis 
1-8, nonsense-mediated decay triggered by variants causing a premature stop codon 9-12, 
and imprinting 13, 14. Standard RNA-sequencing data captures allelic expression only 
when higher expression of one parental allele is shared between individual cells (Fig. S1), 
as opposed to random monoallelic expression of single cells that typically cancels out 
when a pool of polyclonal cells is analyzed 15, 16.  

In this paper, we describe a new tool in the Genome Analyzer Toolkit (GATK) 
software package for efficient retrieval of raw allelic count data from RNA-sequencing 
data, and analyze the properties of AE data and the sources of errors and technical 
variation, with suggested guidelines for accounting for them. While most types of errors 
may be rare, they are easily enriched among sites with allelic imbalance, and can 
sometimes mimic the biological signal of interest, thus warranting careful analysis. Our 
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focus is on methods for obtaining accurate data of allelic expression rather than building 
a GUI pipeline 17 or downstream statistical analysis of its biological sources 9, 13, 18-20. The 
example data in most of our analysis is the open-access RNA-sequencing data set of the 
LCLs of 1000 Genomes individuals from the Geuvadis project 5. The scripts, tools and 
data are available in https://www.broadinstitute.org/gatk/ and https://tllab.org.  
 
RESULTS 
 
Unit of allelic expression data 
 
The biological signal of interest in allelic expression analysis is the relative expression of 
a given transcript from the two parental chromosomes. Typical AE data seeks to capture 
this by counts of RNA-seq reads carrying reference and alternative alleles over 
heterozygous sites in an individual (het-SNPs), and this is the focus of our analysis unless 
mentioned otherwise. The Geuvadis samples with a median depth of 55 million mapped 
reads have about 5,000 het-SNPs covered by ≥30 RNA-seq reads, distributed across 
about 3,000 genes and 12,000 exons (Fig. 2, Fig. S2). The exact number varies due to 
differences in sequencing depth, its distribution across genes, and individual DNA 
heterozygozity. About one half of these genes contain multiple het-SNPs per individual, 
which could be aggregated to better detect allelic expression across the gene (Fig. 2d). 
However, alternative splicing can introduce true biological variation in AE in different 
exons, and incorrect phasing needs to be accounted for in downstream analysis 13. 
Additionally, summing up data from multiple SNPs is not appropriate if the same RNA-
sequencing reads overlap both sites. In the Geuvadis data, 9% of the reads used in AE 
analysis in fact overlap more than one het-SNP (Fig S2d), but this will become more 
frequent as read lengths increase 21. In the future, better tools are needed to partition 
RNA-seq reads to either of the two haplotypes according to all het-SNPs that they 
overlap 22. In fact, this could help to phase exonic sites separated by long introns.  
 AE analysis of small insertions or deletions (indels) has proven to be technically 
very challenging and it is rarely attempted even though frameshift indels are an important 
class of protein-truncating variants. Alignment errors over indel loci are pervasive due to 
multiple mismatches of reads carrying alternative alleles, and lower genotyping quality 
adds further error 12. In Rivas et al. we describe the first approach for large-scale analysis 
of allelic expression over indels, but further methods development is warranted for better 
sensitivity and computational scalability.  
 In addition to classical AE analysis to detect differences in total expression level 
of two haplotypes, it is also possible to analyze allelic differences in transcript structure 
or splicing (AS; 5, 21). These methods compare the exon distribution of reads and their 
mates carrying different alleles of a heterozygous site, and work increasingly well for 
longer total fragment lengths. In these analyses, the data structure is somewhat more 
complex than reference / non-reference read counts in AE, depending on the specific 
algorithm. While this paper focuses on classical AE analysis of SNPs, most of the quality 
analysis steps apply to indel AE and AS analyses as well.  
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Tools to retrieve allele counts 
 
To retrieve allele counts we have developed a new GATK tool, named ASEReadCounter, 
which will be publicly available in the GATK version 3.4. The GATK 23, 24, is a software 
package that offers a wide variety of tools to analyze high-throughput sequencing data. It 
is also a programming framework that allows easy development of new genome analysis 
tools such as the one detailed in this section. 

The ASEReadCounter tool operates on aligned RNA-seq reads and counts the 
alleles over heterozygous sites. For each bi-allelic site (multi-allelic sites are currently 
ignored) the tool counts the reference and alternative allele bases that passed filters for 
mapping and base quality. ASEReadCounter offers several options for processing RNA-
sequencing reads: by default each read fragment is counted only once if the base calls are 
consistent at the site of interest, and duplicate reads are filtered (see below). Additional 
options allow filtering for coverage and for sites or reads with deletions. The output of 
the new tool is one file per RNA-seq input file, with one line per site displaying the 
counts for each allele as well as counts of filtered reads. Several output formats are 
available, and the default output file is compatible with downstream tools, such as the 
statistical analysis tool MAMBA 20. 
 
Quality control of allele counting 
 
Retrieving allele counts from RNA-seq data over a list of heterozygous sites is 
conceptually very simple, but several non-trivial filtering steps need to be undertaken to 
ensure that only high-quality reads representing independent RNA/cDNA molecules are 
counted. The first commonly applied filter is to remove reads with a potentially erroneous 
base over the heterozygous site based on low base quality. Furthermore, potential overlap 
of mates in paired-end RNA-sequencing data needs to be accounted for, so that each 
fragment, representing one RNA molecule, is counted only once per het-SNP. In the 
Geuvadis data, an average of 4.4% of reads mapping to het-SNPs per sample are derived 
from overlapping mates, but this number will vary by the insert size (Fig. S3a).  

In RNA-seq analysis, duplicate reads with identical start and end position are 
common (15% of reads in Geuvadis AE analysis), because highly expressed genes get 
saturated with reads (Fig. S3b-d). Thus, by default duplicates are usually not removed 
from RNA-seq data to avoid underestimating expression levels in highly expressed 
genes5. However, we observe consistent albeit infrequent signs of PCR artifacts in the 
Geuvadis AE data, affecting especially lowly covered sites – where duplicates are mostly 
true PCR duplicates, since saturation is unlikely. Removing duplicate reads reduces 
technical sources of AE at these sites, while having a minimal effect on highly covered, 
read saturated SNPs (Fig. S3e). Thus, we suggest that removing duplicate reads is a good 
default approach for AE analysis, and it is implemented as a default in the GATK tool. 
 The most difficult problem in AE analysis and a potential source of false positive 
AE is ensuring that 1) all the reads counted over a site indeed originate from that genomic 
locus, and 2) all reads from that locus are counted. RNA-seq studies with shorter or 
single-end RNA-seq reads are more susceptible to these problems. First, to make sure 
that no alien reads get erroneously assigned to a locus, only uniquely mapping reads 
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should be used. This implies that highly homologous loci - such as miRNAs – are not 
amenable to AE analysis.  

An even more difficult caveat in AE analysis is allelic mapping bias: in RNA-seq 
data aligned to the reference genome, a read carrying the alternative allele of a variant has 
at least one mismatch, and thus has a lower probability to align correctly than the 
reference reads 25-27. Simulated data in Panousis et al. 26 indicates substantial variation 
between sites – in most cases reads mapped correctly, but 12% of SNPs and 46% of 
indels had allele ratio bias >5% with some having a full loss of mapping of the alternative 
allele. Loci with homology elsewhere in the genome are particularly problematic as reads 
have nearly equally good alternative loci to align to. Furthermore, even a site with no bias 
in itself can become biased due to a flanking (sometimes unknown) variant that shares 
overlapping reads with the site of interest. In addition, mapping bias varies depending on 
the specific alignment software used (Fig. S4a-c). 

Various strategies can be employed to control for the effect of mapping bias on 
AE analysis. The simplest approach that can be applied to AE data without realignment is 
to filter sites with likely bias 5, 8, 27. In previous work5, 8, 28-30 and in this paper unless 
mentioned otherwise, we remove about 20% of het-SNPs that either fall within regions of 
low mappability (ENCODE 50bp mappability score < 1) or show mapping bias in 
simulations 26. This reduces the number of sites with strong bias by about 50% (Fig. 3a-
c), but the genome-wide reference ratio remaining slightly above 0.5 indicates residual 
bias (Fig. S5a). Using this ratio as a null in statistical tests instead of 0.55, 6 can improve 
results (Fig. S5b-e). A more exhaustive but computationally intensive approach is 
alignment to personalized genomes18, 31, 32 or use of a variant-aware aligner, such as 
mrsFAST-Ultra 33, and GSNAP 34. These methods yield comparable results and eliminate 
average genome-wide bias (Fig. 3d-f, S4d-f), but mappability filters are still essential to 
remove at least most of the sites where homology elsewhere in the genome leads to 
substantial allelic mapping bias (Fig. S4g-i). Altogether, while many commonly used 
approaches yield reasonably accurate data, allelic mapping bias remains a problem 
without a perfect solution.	
  
 
Quality control of genotype data 
 
AE analysis relies on data of heterozygous sites to distinguish the two parental alleles. 
These genotype data are ideally retrieved from DNA-sequencing or genotyping arrays, 
but the RNA-seq data itself can also be used for calling genetic variants and finding 
heterozygous sites (35, 36, https://www.broadinstitute.org/gatk/guide/best-practices). 
However, true allelic imbalance can lead to heterozygous sites being called homozygous 
in RNA-based genotype calling and lead to substantial error in monoallelic genes due to 
e.g. imprinting, and more subtle bias in eQTL genes (Fig. S6a). 

Even when using heterozygous genotypes called from DNA data, genotyping 
error can be an important source of false signals of allelic imbalance, because AE data 
from a homozygous site appears as monoallelically expressed. In genotype data that has 
passed normal quality control including Hardy-Weinberg equilibrium test, genotype error 
will lead to rare cases of monoallelic expression per site, not shared across many 
individuals (Fig. 1b). False heterozygous genotype calls are rare but not negligible in AE 
analysis using SNP genotypes from arrays or from modern sequencing data, but much 
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more common in imputed data. Calculating the genome-wide proportion of monoallelic 
AE sites per individual is a sensitive method for genotyping quality control.  
 Removing genotyping error is relatively straightforward for analysis of moderate 
allelic imbalance (such as that caused by cis-regulatory variants): removing monoallelic 
variants removes sites with false genotypes and results in little loss of truly interesting 
data. However, highly covered sites are rarely strictly monoallelic even in a homozygous 
state due to rare errors in sequencing and alignment (Fig. S6b). Thus, we propose a 
genotype error filter where the average amount of such sequencing noise per sample is 
first estimated from alleles other than reference (REF) or alternative (ALT) (Fig. S6c). 
Then, binomial testing is used to estimate if the counts of REF/ALT alleles are 
significantly higher than this noise, and sites where homozygosity cannot be thus rejected 
are flagged as possible errors (Fig. 4). Additionally, it may be desirable to flag fully 
monoallelic sites with low total counts, where homozygosity cannot be significantly 
rejected, but heterozygosity is not supported either. This test can also be applied to study 
designs with RNA-seq data from multiple samples (e.g. tissues or treatments) of a given 
individual, genotyped only once, since genotyping error causes consistent monoallelic 
expression in every tissue. In the Geuvadis data set with 1000 Genomes Phase 1 
genotypes and sites covered by ≥ 8 reads, an average of 4.3% of sites per sample are 
excluded by these criteria (1% FDR).  

Unfortunately, genotyping error is very difficult to distinguish from a true 
biological pattern of strong monoallelic expression, shared across all studied tissues, and 
present in a small number of samples, such as analysis of nonsense-mediated decay 
triggered by a rare variant, or a rare severe regulatory mutation (Fig. 1). The only real 
solution is rigorous genotype quality control and/or validation, and taking the possibility 
of confounding by genotyping error into account in interpretation of the results. 

Sample mislabeling or mixing of the RNA-seq samples can lead to a substantial 
number false positive hits – as opposed to reduction of power in eQTL studies. 
Fortunately, simple metrics from AE analysis provide a sensitive way to detect sample 
contamination and mislabeling 37. DNA-RNA heterozygous concordance – i.e. the 
proportion of DNA-heterozygous sites that are heterozygous also in RNA data – and a 
measure of allelic imbalance detect outliers and indicate the type of error (Fig. S6d).  
 
Technical covariates 

 
RNA-seq has become a mature and highly reproducible technique, but it is not immune to 
technical covariates such as the laboratory which experiments were performed in, aspects 
of library construction and complexity, and sequencing metrics 37. Gene expression 
studies are particularly susceptible to these technical factors, because read counts between 
samples are compared. AE analysis has the advantage that only read counts within 
samples are compared (allele vs allele), which makes it less susceptible to technical 
artifacts. We analyzed the correlation of the proportion of significant AE sites (binomial 
test, nominal p<0.05) with various technical covariates in the Geuvadis data (Fig. 5a). In 
raw AE count data, we observe a high correlation with the library depth (unique reads; R2 
= 0.24) – expectedly, since total read count of AE sites determines the statistical power to 
see significant effects (see below). In AE data corrected for variation in read counts by 
scaling the counts to 30, all technical correlations are very small and mostly non-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2015. ; https://doi.org/10.1101/016097doi: bioRxiv preprint 

https://doi.org/10.1101/016097


significant, in stark contrast to gene expression level data that displays strong batch 
effects (Fig. 5b). Thus, when appropriate measures are taken, AE analysis is an extremely 
robust approach that suffers less from technical factors than gene expression studies.  
 
Statistical Tests for Allelic Expression 
 
A binomial test is the most classical way to test whether the ratio of the two alleles is 
significantly different from the expected 0.5. We show that after the QC measures 
outlined above, it provides a surprisingly good fit for the Geuvadis data (Fig. 6a-b, S7a), 
despite earlier reports suggesting substantial overdispersion38, 39. It does however 
consistently underestimate variance at both very lowly (<10) and very highly (>1000) 
covered sites, although QC measures reduce this. Overall, this renders strong support for 
the overall high quality of the allelic count data from modern RNA-seq experiments.  
 A challenge in interpreting AE data – whether analyzing binomial p-values or 
allelic imbalance by other means – are the highly variable total read counts (Fig. 2a), 
which leads to substantial differences in sampling variance and statistical power between 
AE sites. This is driven by differences in library depth between samples, as well as 
biologically variable expression levels between genes and samples. This can affect 
patterns seen in the data, for example by causing samples to cluster by experimental 
batch (Fig. 6c) or by tissue (data not shown). If the goal of the analysis is to capture 
allelic expression, patterns introduced by expression levels are often not desirable. An 
experimental approach to avoid low read counts in AE data are assays that yield high 
read counts, such as mmPCR-seq, instead of or alongside with RNA-seq data 9, 12, 13, 40. 

The most conservative method to account for variation in total read counts is to 
sample total read counts to an even threshold and use these data in downstream analysis. 
This is a useful approach at least as a sanity check, but vast amounts of valuable data are 
discarded (Fig. S7c-e). Another straightforward approach is to assign significant sites 
based on FDR-corrected p-value from the raw counts together with an effect size filter, 
analogously to differential expression studies – this accounts for the strongest 
dependency of total read counts (Fig. 6d, S7b). Finally, more sophisticated statistical 
models can account for various technical sources of variance and integrate information 
across tissues or individuals to capture phenomena such as cis-regulatory variation, 
nonsense-mediated decay, and imprinting 13, 19. The most appropriate method depends on 
the biological question as well as the data type, quality and size, and full benchmarking 
these approaches is beyond the scope of this paper.  
 
DISCUSSION 
 
In this paper, we have introduced novel, efficient software tool for retrieving high-quality 
AE data from RNA-sequencing data sets. We have described how the quality of the input 
data affects AE analysis, and outlined the quality control approaches that are needed to 
obtain accurate estimates of allelic expression from RNA-seq data (Fig. S8, Table S1). 
Altogether, we show that carefully collected and filtered AE estimates from modern 
RNA-seq data is remarkably robust to technical variation in RNA-sequencing data, 
highlighting its utility for detecting diverse biological phenomena of genetic and 
epigenetic variation. Increasingly standardized production of AE data advances wider 
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data sharing and integration across studies, although the geånotype data included in AE 
estimates by default poses limitations on data access. The increasing size of AE data from 
large-scale RNA-seq studies hold great promise for capturing regulatory variation even in 
small numbers of samples, allowing integrated analysis of the personalized genome and 
its function.  
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group at the Broad, and the bioinformatics team of the New York Genome Center. 
 
Figure Legends 
 
Figure 1. Allelic expression and its sources. A) Schematic illustration of allelic 
expression; B) Biological sources of AE, with the x-axis denoting the approximate 
sharing of AE across tissues of an individual, and the y-axis having the estimated sharing 
of AE signal in one tissue across different individuals 5, 8, 12, 13, 15. 
 
Figure 2. Genomic coverage of allelic expression data in Geuvadis CEU samples. A) 
Cumulative distribution of RNA-seq read coverage per het-SNP (each line represents one 
sample). B-C) The number of het-SNPs (b) and protein-coding genes (c) per sample as a 
function of coverage cutoff. D) The number of protein-coding genes with AE data vs the 
number of het-SNPs they contain. Each line is the median for all samples at a specific 
coverage level.  
 
Figure 3. Strategies for reducing mapping bias in allelic expression analysis. A-C) AE 
data using a standard alignment approach (STAR 2-pass) before (a) and after (b) filtering 
sites based on low mappability and simulated mapping bias, and the resulting reference 
allele ratios (c). D-F) The effect of mapping to a personalized reference on AE data, with 
reads aligned using STAR to either hg19 (STAR, blue) or a personalized genome 
generated using AlleleSeq (STAR AS, red). Scatterplot of reference ratio at sites with AE 
data in both mapping strategies (shared het-SNPs, d), histogram of reference ratios at 
sites with AE data in only one mapping strategy (unique het-SNPs, e), and overall 
distribution of reference ratios using each mapping strategy (all het-SNPs, f). Sites with 
low mappability and simulated mapping bias have been excluded from d-e.  
 
Figure 4. Quality control of genotype data for allelic expression analysis. Total het-SNP 
read count vs the read count of the lesser-covered allele for an individual Geuvadis 
sample. Sites flagged as putative genotyping errors are marked in red, with RNA-seq data 
not rendering support for heterozygosity. 
 
Figure 5. Technical covariates of allelic expression.  A) Correlation of AE with technical 
covariates, measured as correlation (R2) between each covariate and the percentage of 
significant AE sites in a sample (binomial p < 0.05, het-SNPs with ≥ 30 reads), both 
before and after scaling to 30 reads. B) Correlation of gene expression with technical 
covariates. As the gene expression statistic we use the median correlation of each sample 
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to all other samples (D-statistic). Correlation to a biological covariate (population) is 
shown for comparison. Correlations were calculated from all Geuvadis samples by 
Spearman Correlation for continuous covariates, or linear regression for categorical 
covariates. ** (p < 0.01), * (p < 0.05) after Bonferroni correction.  
 
Figure 6. Binomial testing for significant allelic expression. A-B) Variance of allelic 
ratios as a function of total read counts, calculated as the mean at a given SNP from a 
Geuvadis individual with 8 technical replicates (grey) with (b) or without (a) QC filters. 
The lines denote locally weighted smoothing of observed data (black) and theoretical 
variance for binomially distributed data (red). C-D) MDS clustering of Geuvadis samples 
based on proportion of sites with significant AE that differs between sample pairs. 
Samples are colored by sequencing laboratory and labeled by population. If significant 
sites are assigned based on a simple binomial test (FDR 5%) the samples cluster first by 
sequencing laboratory due to lab-specific differences in coverage (c). This effect is 
mostly removed in (d) by requiring significant sites to have FDR 5% and effect size 
>0.15.  
 
Supplementary Figure Legends 
 
Figure S1. Schematic illustration of allelic expression signal from a population of 
monoclonal versus polyclonal cells. In the latter, standard RNA-sequencing will show 
allelic imbalance only when the two alleles are systematically differentially expressed 
e.g. due to a regulatory variant or imprinting.  
 
Figure S2. Genomic coverage of allelic expression data in Geuvadis CEU samples 
(extended). A) Total number of unique het-SNPs covered by increasing read depth as a 
function of the number of individuals. B) Boxplot of the total number of exons per 
individual containing at least one het-SNP for each depth level. C) Median number of 
exons as a function of the number of het-SNPs per feature at increasing read depths. D) 
Distribution of percentage of reads mapping to het-SNPs that cover > 1 het-SNP for all 
Geuvadis samples (median = 8.8%).  
 
 
Figure S3. Effect of overlapping and duplicate reads on AE analysis of Geuvadis 
samples. A) Histogram of percent overlapping mates of paired-end reads at het-SNPs 
used for AE analysis. B) Histogram of percent duplicate reads at het-SNPs used for AE 
analysis. C) Total coverage vs percent duplicate reads at AE sites. D) Percent duplicate 
reads in coverage level bins for Geuvadis samples with the minimum (77.5%, red), 
median (83.9%, yellow) and maximum (89.6%, green) read complexity at het-SNPs. 
Complexity is defined as total number of reads mapping to het-SNPs after removing 
duplicates / number of reads before removing duplicates. E) Effect of duplicate removal 
on allelic expression effect size (AE = | 0.5 – ref reads / total reads |, ∆AE = AE(Dup 
Removed) – AE(No Dup Removed)) on het-SNPs binned by coverage level, sites where 
∆AE = 0 are not shown. 
 
Figure S4. Comparison of AE data generated with different alignment strategies. A-C) 
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Observed reference ratio using STAR 2-pass alignment (STAR) or GSNAP at het-SNPs 
for which both aligners produce data (a), het-SNPs that only have data using one or the 
other aligner (b), and the overall distribution of reference ratios (c). D-F) Comparison of 
GSNAP to GSNAP with variant aware alignment (GSNAP VA), plots as in A-C. G-I) 
Comparison of STAR mapping to either hg19 or a personalized genome generated with 
AlleleSeq (STAR AS) as in A-C, without filtering for sites in regions of low mappability 
or sites that show mapping bias in simulations (see Fig. 3 for analogous filtered data). 
Sites with low mappability and simulated mapping bias have been excluded from a-f. 
 
Figure S5. Low-level reference bias at het-SNPs remains after filtering biased sites. A) 
Boxplot of reference ratio (reference / total) for each reference-alternative base 
combination for each Geuvadis sample, mapped with STAR 2-pass and filtered for sites 
with low mappability or mapping bias in simulations as well as sites with potential 
genotyping error as described before. Ratio is calculated by summing up all REF and 
ALT read counts for that combination in a sample at sites that have ≥ 8 reads, and for 
sites with coverage > 75th percentile total counts were scaled down to the 75th percentile 
to avoid sites with very high coverage having a disproportionate effect on the overall 
ratio.  B-C) Binomial test of AE on an example Geuvadis sample using an expected 
reference ratio of 0.5 (b) or against the calculated mean scaled reference ratio (c, as 
described above), with sites of significant AE shown in red (5% FDR). D) Histogram of 
reference ratios at significant sites from (b), E) Histogram of reference ratios at 
significant sites from (c). 
 
Figure S6. Quality control of genotype data for allelic expression analysis (extended). A) 
Boxplot of per individual percentage of false homozygous RNA-seq genotype calls at 
het-SNPs in genes with cis-eQTLs in LCLs (FDR <= 0.05, Geuvadis), imprinted genes 
(based on 13 excluding genes detected exclusively in Geuvadis data), and all other 
genes. False homozygosity defined as sites where variant calling using LCL RNA-seq 
data indicates the individual is homozygous for a non-reference allele, while DNA 
genotyping (1000 genomes) indicates they are heterozygous. Genotype calls made using 
GATK and best practices for RNA-seq genotype calling. B) Percentage of het-
SNPs where reads from foreign alleles (≥1 blue, ≥2 green, ≥3 yellow, ≥4 red) are 
observed as a function of coverage level using all Geuvadis RNA-seq data. Binned by 
hundreds of reads / het-SNP. C) Frequency of the proportion of reads from foreign alleles 
(non ref or alt) observed (ε) in all Geuvadis samples (median = 4.128 x 10-4). D) 
Scatterplot of percent significant AE sites (binomial test, p < 0.05) and percent biallelic 
het-SNPs (≥1 read for each allele), for 5 Geuvadis libraries that have been contaminated 
with another sample in silico (0-75% contamination). 
 
Figure S7. Binomial testing for significant allelic expression (extended). A-C) Testing for 
significant AE using a binomial test and multiple testing (MT) correction (a, 5% FDR), 
MT correction and an effect size cutoff (b, 5% FDR, AE), and sampling total het-SNP 
coverage without replacement to 30 reads with a nominal p-cutoff (c, p < 0.05). D) AE 
effect size (|0.5 – Ref ratio|) vs statistical power (1 – β) at various sampling depths. E) 
Minimum effect size that can be detected at a given read depth using a binomial test 
setting α = 0.05 and β = 0.20. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2015. ; https://doi.org/10.1101/016097doi: bioRxiv preprint 

https://doi.org/10.1101/016097


 
Figure S8. Complete workflow for AE analysis illustrating appropriate quality control 
measures and filters.  
 
Supplementary Table Legends 
 
Table S1. Summary of QC problems for AE data, proposed solutions and potential 
drawbacks. 
 
ONLINE METHODS 
 
Filtering homozygous sites 
 
In order to identify potentially homozygous sites miscalled as a heterozygous SNP we 
model the number of reads that can be observed due to technical error of the experimental 
and upstream computational pipeline. Let us assume there are a total of n reads 
originating from a site homozygous for an allele R. Assuming a noise rate ε, by which a 
read can erroneously support another allele A, the distribution of total number of reads 
aligned to allele A, nA, is given by binomial distribution. Hence the probability of a 
observing nA or more reads assigned to allele A in a site homozygous for R is given by: 
 𝑝 𝑥 ≥ 𝑛!|  𝑅𝑅 = 1− 𝐵𝑖𝑛𝐶𝐷𝐹 𝑛!,𝑛, 𝜀 , 
where 𝐵𝑖𝑛𝐶𝐷𝐹 𝑛!,𝑛, 𝜀  is the binomial cumulative distribution function. Conversely, the 
probability of a observing nR (n= 𝑛! + 𝑛!) or more reads assigned to allele R in a site 
homozygous for A is given by: 
 𝑝 𝑥 ≥ 𝑛!|  𝐴𝐴 = 1− 𝐵𝑖𝑛𝐶𝐷𝐹 𝑛! ,𝑛, 𝜀 , 
under the assumption that the noise rate is equal for all alleles. Therefore, the probability 
of observing extreme allelic imbalance due to the null hypothesis, homozygosity for one 
of the alleles, can be calculated by summing up the two above probabilities 
corresponding to the two tails of the distribution. In order to derive an empirical estimate 
of the noise rate ε we used ratio between the total sum of reads assigned to other alleles, 
those different than the designated reference or alternative allele at each site, to the total 
number of reads in a library divided by two. For this purpose we exclude the sites with 
more than 5% of the reads aligned to other alleles from the analysis.  
 
Mapping Strategies for Allelic Expression Analysis 
 
For all analyses, unless otherwise noted, reads were mapped using STAR v2.4.0f1 and 
the 2-pass mapping strategy as recommended by the Broad 
(https://www.broadinstitute.org/gatk/guide/article?id=3891). Briefly, splice junctions are 
detected during a first pass mapping, and these are used to inform a second round of 
mapping. All reads were mapped to hg19 and Gencode v19 annotations were used. 
 
For mapping to a personalized genome, the X tool, part of AlleleSeq was used to generate 
both a maternal and paternal genome for NA06986 from the phased 1000 Genomes phase 
1 reference using het-SNPs only. Reads were then mapped to both genomes separately 
using STAR 2-pass strategy (as above).  Reads which aligned uniquely to only one 
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genome were kept, and in cases where reads mapped uniquely to both genomes, the 
alignment with the higher mapping quality was used. The script available for merging 
alignments to personalized genomes is available online at http://tlab.org. 
 
Mapping using GSNAP was performed with default settings and splice site annotations 
from hg19 refGene. Variant aware alignment was performed using the “-d” option for 
NA06986 from the phased 1000 Genomes phase 1 reference using het-SNPs only, as 
described in the GSNAP documentation. 
 
MDS Clustering of Samples by Allelic Expression Data 
 
A pairwise distance matrix was produced for all Geuvadis samples using AE data and 
used for classical multidimensional scaling (cmdscale) in R. The first two dimensions 
were then plotted against each other for all samples. The distance between two samples 
was calculated as follows: pairwise distance = total number of sites with significant AE 
in only one sample / total number of shared sites. A binomial test with a 5% FDR was 
used for significance with either no effect size cutoff (6c) or a minimum effect size of 
0.15 (6d). 
 
Units of allelic expression 
 
For a single variant: 

Reference Ratio = Reference Reads / Total Reads 
Allelic Expression (effect size) = | 0.5 – Reference Ratio | 
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