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DNA methylation is thought to be robust to environmental perturbations on a short time 

scale. Here, we challenge that view by demonstrating that the infection of human dendritic 

cells (DCs) with a pathogenic bacteria is associated with rapid changes in methylation at 

thousands of loci. Infection-induced changes in methylation occur primarily at distal 

enhancer elements, including those associated with the activation of key immune-

transcription factors and genes involved in the crosstalk between DCs and adaptive 

immunity. Active demethylation is associated with extensive epigenetic remodeling and is 

strongly predictive of changes in the expression levels of nearby genes. Collectively, our 

observations show that rapid changes in methylation play a previously unappreciated role 

in regulating the transcriptional response of DCs to infection. 
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The first immune mechanisms recruited to defend against invading pathogens are those 

associated with innate immune cells, such as dendritic cells (DCs) or macrophages. Once they 

sense an intruder, these cells induce sophisticated transcriptional programs involving the 

regulation of thousands of genes, which are coordinated with the help of signal-dependent 

transcription factors, including NF-κB/Rel, AP-1, and interferon regulatory factors (IRFs)1,2. The 

regulation of this program is achieved through a series of epigenetic changes, which modulate 

the access of transcription factors to specific DNA regulatory elements3. 

 

The most well-studied epigenetic responses to immune stimuli involve the post-translational 

modification of histone tails at promoter and enhancer regions3,4. Histone acetylation has been 

shown to be essential for the activation of many pro-inflammatory genes5,6, whereas increased 

activity of histone deacetylases is often associated with gene repression in the context of 

inflammation7. Moreover, recent studies suggest that the response of innate cells to different 

immune challenges can result in the appearance of histone marks associated with de novo 

enhancer elements (or latent enhancers)8,9, which have been postulated to contribute to a faster 

and stronger transcriptional response to a secondary stimulus8. 

 

In contrast, we still know remarkably little about the role of other epigenetic changes in 

controlling responses to infection. DNA methylation has been particularly understudied, as a 

consequence of the belief that methylation marks are highly stable, and unlikely to respond to 

environmental perturbations on a short time scale. Recent work, however, suggests that DNA 

methylation patterns can rapidly change in response to certain environmental cues10-13, raising 

the possibility that rapid changes in DNA methylation might play a role in innate immune 

responses. Yet, to date, no studies have comprehensively investigated the contribution of rapid, 

active changes in methylation (in contrast to passive changes during cell replication) to the 

regulatory programs induced by innate immune cells in response to an infectious agent. More 

broadly, the few studies that demonstrate active regulation of DNA methylation in mammalian 

cells have been focused on a limited number of CpG sites and, surprisingly, the changes 

observed have been poorly predictive of changes in gene expression levels10,12,13. Here, we show 

that active changes in DNA methylation are pervasive in response to infection and, in contrast to 
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previous reports; we found that such changes have a strong predictive impact on gene expression 

levels. Specifically, we report the first comprehensive epigenome and transcriptome of 

monocyte-derived DCs – professional antigen presenting cells that play a central role in bridging 

innate and adaptive immunity – before and after in vitro infection with live pathogenic bacteria. 

Our results thus provide unique insight into the role of active changes in methylation and their 

association with other epigenetic changes in the control of innate immune responses to infection. 

 

RESULTS 

 

MTB infection induces active changes in DNA methylation in human DCs 

We infected monocyte-derived DCs from six healthy donors with a live virulent strain of 

Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB) in humans. 

Monocyte-derived DCs are ideally suited to study active changes in methylation given that they 

are post-mitotic and that they do not proliferate in response to infection14,15. At 18 hours after 

infection, we obtained paired data on single-base-pair resolution DNA methylation levels (using 

whole genome shotgun bisulfite sequencing: i.e., MethylC-Seq) and genome-wide gene 

expression data (using mRNA sequencing: i.e., mRNA-Seq) in non-infected and MTB-infected 

DCs. For MethylC-Seq data, we generated 8.6 billion single-end reads (mean of 648 ± 110 SD 

million reads per sample; Supplementary Table 1) resulting in an average coverage per CpG 

site of ~9X for each sample. We detected an average of 24 million CpG sites in each sample, 

corresponding to over 80% of CpG sites in the human genome. Genome-wide methylation data 

between biological replicates was strongly correlated attesting for the high quality of the data 

(Supplementary Fig. 1; mean r across all samples = 0.86). 

 

As expected for mammalian cells, CpG sites were ubiquitously methylated throughout the 

genome except near transcription start sites (TSSs) and in CpG islands (Supplementary Fig. 

2a,b). We found a significant negative correlation between gene expression levels and 

methylation levels around TSSs (r = -0.39; P < 1 × 10-16; Supplementary Fig. 2c,d), 

highlighting the well-established role of proximal methylation in the stable silencing of gene 

expression. Principal component analysis of our data along with MethylC-Seq data from 21 other 

purified cell types and tissues revealed that the DC methylome is closely related to that of other 
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blood-derived cells, particularly cells that share a common myeloid progenitor with DCs, such as 

neutrophils (Supplementary Fig. 2e). 

 

We next assessed the occurrence and the extent to which the response of DCs to a bacterial 

infection is accompanied by active changes in DNA methylation, using the BSmooth 

algorithm16. We defined MTB-induced differentially methylated regions (MTB-DMRs) as 

regions of 3 or more consecutive CpG sites exhibiting a significant difference in methylation 

between the two groups (P < 0.01) and an absolute mean methylation difference above 0.117. 

Using these criteria, we identified 3,271 MTB-DMRs, within which 1,557 corresponded to 

hypermethylated regions (i.e., regions in which methylation levels increased upon infection; 

mean length = 134 bp) and 1,714 to hypomethylated regions (i.e., regions in which methylation 

levels decreased upon infection; mean length = 184 bp) (Fig. 1a and Supplementary Table 2). 

Interestingly, we found that less than 7% of MTB-DMRs overlapped with a putative promoter 

(Fig. 1b) and that the vast majority of these sites were located distal to TSSs (median distance of 

~35 kb from the nearest TSS; Fig. 1c). MTB-DMRs occur in genomic regions that show 

increased levels of evolutionary conservation (Fig. 1d), a finding supporting that they are 

functionally important. Moreover, gene ontology analysis revealed that MTB-DMRs are 

significantly enriched (false discovery rate (FDR) < 0.05) near genes known to play a key role in 

the regulation of immune processes, including the regulation of transcription, signal transduction, 

and, importantly, cell apoptosis – a critical mechanism assisting DC cross-presentation to 

adaptive immune cells (Fig. 1e). Notably, hypomethylated regions show a stronger enrichment 

for genes involved in DC-T cell crosstalk, suggesting that active demethylation plays a 

particularly important role in dictating the nature and magnitude of the T cell response to 

infectious agents (Fig. 1e). 

 

Active Changes in Methylation Occur in Regions Enriched for 5-hydroxymethylcytosine 

The TET family proteins catalyze the conversion of methylated cytosine (5mC) to 5-hydroxy-

methylcytosine (5hmC), and are thus key players in the process of active demethylation. To 

evaluate if 5hmC were dynamically changing in response to MTB infection (as expected if 5mC 

sites must pass through the 5hmC state before demethylation), we generated single-base pair 

resolution maps of 5hmC across the genome using Tet-assisted bisulfite sequencing (TAB-Seq)18 
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in one additional donor. As previously described for other cell populations19,20, we found 

markedly higher levels of 5hmC in gene bodies of highly expressed genes, consistent with a role 

for 5hmC in maintaining and/or promoting gene expression (Fig. 2a)21,22. 

 

Next, we evaluated if 5hmC marks were enriched within MTB-DMRs. We found that regions in 

which methylation actively changed in response to infection were already associated with 

significantly higher levels of 5hmC prior to infection (2.6- and 3.6-fold enrichments for hyper- 

and hypomethylated regions; Wilcoxon test; P < 1 × 10-16, respectively). Upon infection, 

hypomethylated regions show increased levels of 5hmC (Wilcoxon test; P = 1.57 × 10-11; Fig. 

2b,c), which suggests that 5hmC plays an important role in the cascade of events leading to 

active demethylation. The increase in 5hmC appears to be specific to hypomethylated regions: no 

enrichment was observed in hypermethylated regions or genome-wide, a result supported by 

quantitative immunocytochemistry data (Fig. 2d,e). The striking enrichment of 5hmC within 

MTB-DMRs prior to infection strongly suggests that, in addition to its role as a transitory 

demethylation intermediate, 5hmC might also serve additional regulatory functions including the 

coordination of the gene expression program induced in response to a microbial stimulus. 

 

MTB-DMRs overlap with enhancer elements that gain activation marks upon infection 

Given that MTB-DMRs are primarily found distal to TSSs, we predicted that MTB-DMRs would 

overlap with enhancer regions. To test this hypothesis and evaluate how the chromatin states 

associated with MTB-DMRs might dynamically change in response to infection, we collected 

ChIP-Seq data for six histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K36me3 

and H3K9me3) in non-infected and infected DCs (Supplementary Table 1) from two additional 

donors. Using these data, we generated genome-wide, gene regulatory annotation maps for non-

infected and MTB-infected DCs using the ChromHMM chromatin segmentation program (Fig. 

3a and Supplementary Fig. 3)23. We found that 37% of MTB-DMRs overlapped with a 

ChromHMM-annotated enhancer region (defined by the presence of H3K4me1) already present 

in non-infected DCs, a 6.7-fold enrichment compared to genome-wide expectations (χ2-test; P < 

1 × 10-16; Fig. 3b,c, and Supplementary Table 2). Similar enrichments (6.7-fold; P < 1 × 10-16) 

were observed when defining chromatin states in MTB-infected DCs. Given the high-resolution 

of our histone maps, we could further distinguish between active and inactive/poised enhancer 
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elements based on the presence or absence of the H3K27ac mark, respectively, in addition to 

H3K4me124-26. Overall, we found that MTB infection leads to a significant increase of active 

enhancer elements (and decrease of inactive/poised enhancers) colocalizing with MTB-DMRs 

(Fig. 3b,c). 

 

Previous studies have shown that enhancer activation and inactivation are associated with local 

CpG hypomethylation and hypermethylation, respectively20. We therefore extended our analysis 

by examining chromatin transition states at hyper- and hypomethylated regions. In 

hypermethylated regions, we found no evidence for an enrichment in the proportion of regions 

whose chromatin state annotation changed in response to infection, compared to the genome-

wide background (Fig. 3e and Supplementary Fig. 4). Conversely, 42% of hypomethylated 

regions occurred in regions that exhibited infection-dependent changes in chromatin state, a 

significantly higher proportion than expected compared to the rest of the genome (Presampling < 

0.001; Fig. 3e). The chromatin state transitions observed within hypomethylated regions were 

primarily explained by the acquisition of histone activating marks (e.g., H3K27ac) in MTB-

infected cells. For example, among hypomethylated regions that overlapped with predefined 

enhancers (i.e., enhancers observable in non-infected cells), 85% of those that exhibit a change in 

chromatin state gained an activation mark (H3K27ac or H3K27ac+H3K4me3; Fig. 3f,g and 

Supplementary Fig. 5). This proportion was markedly larger than that observed in 

hypermethylated regions (34%) or genome-wide (44%) (χ2-test; P < 8.3 × 10-5; Fig. 3f).  

Notably, we also found a large number of hypomethylated regions (n = 218; 12.7% of all 

hypomethylated DMRs) that overlapped with heterochromatin/repressed regions before infection 

but gained de novo enhancer marks upon MTB infection (H3K4me1 (+ H3K27ac + H3K4me3)). 

The number of de novo enhancers we observed among hypomethylated DMRs was significantly 

higher than expected by chance (Presampling < 0.001; Fig. 3d,e,g and Supplementary Fig. 5). The 

identification of enhancers only present in infected DCs resembles recent findings in mouse 

macrophages showing that in response to different immune stimuli they can gain de novo 

putative enhancer regions that were absent in naive cells8,9. 

 

Interestingly, MTB-induced activation or de novo gain of enhancer elements at hypomethylated 

regions is associated with the induction of putative enhancer RNAs (eRNAs)27 in these 
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intergenic regions (as measured by whole-transcriptome RNA-seq) as well as with increased 

levels of histone marks associated with transcriptional activity (Supplementary Fig. 6). 

Moreover, changes in eRNA levels in response to MTB infection show a striking positive 

correlation with changes in gene expression levels of nearby genes (r = 0.49, P = 7.6 × 10-13; 

Supplementary Fig. 6), in support to a mechanistic link between demethylation, eRNA 

production and the regulation of proximal protein-coding genes28. 

 

MTB-DMRs are bound by signal-dependent transcription factors 

We next asked if MTB-infection was associated with changes in the levels of chromatin 

accessibility in MTB-DMRs. We mapped regions of open chromatin in non-infected and infected 

DCs based on genome-wide sequencing of regions showing high transposase (Tn5) sensitivity 

(using ATAC-Seq in one additional donor)29. Overall, we observed that MTB-DMRs colocalize 

with regions of open chromatin, which further reinforces the regulatory potential of these regions 

(Fig. 4a). Interestingly, we found that the response to MTB-infection was accompanied by a 

striking increase in Tn5 sensitivity levels in hypomethylated regions, which indicates that the 

chromatin in these regions became more accessible after infection (Fig. 4a). This observation is 

commensurate with our data showing the acquisition of active histone marks in these regions, 

and further supports the idea that hypomethylated regions frequently reflect the presence of 

regulatory elements that become more active in response to infection. 

 

An attractive feature of ATAC-Seq data is the ability to identify motif instances occupied by 

transcription factors (TF) within regions of open chromatin29,30. We did so by using a modified 

version of the Centipede algorithm31 specifically devised to test for aggregate differential binding 

of TFs between two experimental conditions. This method, which we coined CentiDual, 

compares the intensity of the Tn5 sensitivity-based footprint across all matches to a given motif 

in the genome, between non-infected and infected samples (see Online Methods for details on 

the statistical model). We found compelling evidence for measurable, genome-wide transcription 

factor activity (i.e., binding to the genome; Bonferroni-corrected P < 0.05) in either non-infected 

or infected DCs for 264 TF binding motifs, representing over 200 unique transcription factors 

(some TFs can bind different motifs; Supplementary Table 3). Of these TF binding motifs, we 

found 56 that were differentially bound between non-infected and infected DCs (Bonferroni-
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corrected P < 0.05; 26 show increased binding and 29 show decreased binding; Fig. 4b). Among 

TF binding motifs showing increased genome-wide binding after infection, we found several 

NF-κB and IRF family members (Fig. 4b and Supplementary Table 3), both of which play a 

primary role in the regulation of inflammatory signals in response to infection2. Interestingly, 

several CTCF motifs showed significantly decreased binding in infected DCs (Bonferroni-

corrected P < 1.85 × 10-14, Supplementary Table 3). CTCF is a well-established transcriptional 

insulator32, raising the possibility that the release of CTCF in response to infection might 

represent an important mechanism for the regulation of efficient immune responses. 

 

We next used CentiDual to test for differential binding within MTB-DMRs. We found no 

significant evidence of differential binding for any of the 264 TF binding motifs tested within 

hypermethylated regions. In contrast, within hypomethylated regions we found increased binding 

(FDR < 0.1) at 8 TF binding motifs after infection (Supplementary Table 3). Strikingly, all of 

these motifs were associated with immune-induced TFs from the NF-κB (e.g., REL; FDR = 1.57 

× 10-6), AP-1 (FDR = 4.9 × 10-3), or IRF (FDR = 3.97 × 10-3) families (Fig. 4c), which 

demonstrates that hypomethyated regions correspond to places where immune-activated TFs are 

being recruited. In accordance, we found that, in infected DCs, NF-κB, AP-1, and IRFs were all 

significantly enriched within MTB-DMRs (up to 16-fold), particularly within hypomethylated 

regions (Fig. 4d). Indeed, in MTB infected DCs, over 50% of the hypomethylated regions were 

bound by at least one of these signal-dependent TFs, which corresponds to an 3.8-fold increase 

relative to expectation (based on sampling random regions of the genome matched for length and 

GC content; Supplementary Fig. 7; χ2-test; P = 3.94 × 10-63). 

 

MTB-DMRs are associated with genes differently expressed in response to MTB infection 

Finally, we asked if genes associated with MTB-DMRs were more likely to change expression 

levels in response to infection. We classified 1,665 and 1,740 genes as significantly up- or down-

regulated post-infection, respectively (FDR < 1 × 10-4 & |log2 fold-change| > 1; Supplementary 

Table 4). We next tested whether genes located nearby MTB-DMRs were more likely to be 

differentially expressed upon MTB infection relative to all genes in the genome. To do so, we 

first associated each MTB-DMR with a unique gene using the following criteria: if an MTB-

DMR was located within a gene body, the MTB-DMR was assigned to that gene; otherwise, we 
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assigned each MTB-DMR to the gene with the TSS closest to the midpoint of the MTB. Then, 

we tested for an enrichment of differentially expressed (DE) genes among five classes of genes: 

(i) “DMR-genes” corresponding to all genes associated with MTB-DMRs (n = 2,160); (ii) 

“hyper-DMR-genes” corresponding to the set of genes associated with hypermethylated regions 

(n = 1,137); (iii) “hypo-DMR-genes” corresponding to the set of genes associated with 

hypomethylated regions (n = 1,201); (iv) “predefined-DMR-genes” corresponding to the set of 

genes in hypomethylated regions that overlapped with predefined enhancer elements (n = 470, a 

subset of class iii), and (v) “de novo-DMR-genes” corresponding to the set of genes in 

hypomethylated regions that overlapped with de novo enhancer elements (n = 161, also subset of 

class iii). 

 

We found that DMR-genes (class i) were significantly enriched among DE genes (1.4-fold, χ2-

test; P = 1.27 × 10-11; Fig. 5a,b) as compared to all genes in the genome. This enrichment was 

noticeably stronger for predefined-DMR-genes (class iv; 1.9-fold, P = 3.1 × 10-11) and even more 

so for de novo-DMR-genes (class v; 2.3-fold, P = 1.1 × 10-9). Indeed, among de novo-DMR-

genes, 49% were DE, even at very stringent cutoffs we used to define DE genes (Fig. 5a,b). 

Interestingly, among DE genes associated with hypomethylated regions, 73% were up-regulated 

after MTB infection – substantially more than the 51% of up-regulated genes observed genome-

wide (χ2-test; P = 1.41 × 10-73, Fig. 5c). This observation was even more pronounced when 

focusing specifically on predefined-DMR-genes (class iv) and de novo-DMR-genes (class v), for 

which 78% (P = 5.46 × 10-34) and 92% (P = 1.39 × 10-19), respectively, were associated with 

increased expression levels in response to infection (Fig. 5c). Interestingly, the biological 

functions linked to predefined enhancer-associated genes differed from those linked to de novo 

enhancer-associated genes, even though both types of enhancers occurred in hypomethylated 

DMRs. Specifically, DE genes associated with predefined enhancer elements that loose 

methylation in response to infection were mainly enriched for signal transduction processes 

(FDR < 0.01). This set of genes included virtually all the key “master-regulators” of innate 

immune responses, such as NFKB1, NFKB1A, IRF2, and IRF4 (Fig. 5d). In contrast, DE genes 

associated with de novo enhancers appear to be more directly involved in processes related to the 

ability of DCs to activate B and T cells (FDR < 0.01; e.g., CD83) and the regulation of cell death 

(FDR < 0.01; e.g., BCL2) (Supplementary Table 5). 
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DISCUSSION 

 

The possibility that active changes in methylation, particularly demethylation, can occur in 

mammals has been a matter of debate for decades33,34. Here, we provide with compelling 

evidence that the response of human DCs to MTB infection is accompanied by widespread, rapid 

changes in DNA methylation that involve both active demethylation and de novo methylation. 

Several mechanisms could account for the observed active changes in methylation. De novo 

methylation is likely explained by the action of DNA methyltransferases (DNMT), namely 

DNMT335. For demethylation many possible mechanisms can potentially be invoked36; however, 

the observation that hypomethylated regions show increased levels of 5hmc in response to MTB 

infection strongly suggests that the family of TET proteins (TET1-3) are involved in this process. 

This possibility is further supported by recent studies showing that TET2 was required for active 

DNA demethylation in human monocytes13 and during brain development20. 

 

By integrating our methylation maps with ChIP-Seq data on six histone marks we show that 

active methylation changes occur almost exclusively at distal regulatory elements, namely 

enhancers. This observation, which is robust to the cutoffs used to call MTB-DMRs 

(Supplementary Fig. 8), parallels what has been previously described in differentiating cells and 

during developmental processes37-39 despite the fact that the mechanisms controlling active and 

passive changes in methylation are markedly different36. In stark contrast to previous studies that 

also reported active changes in methylation, for example, in response to neuronal activation10 or 

during the process of differentiation of human monocytes into macrophages or dendritic cells13, 

we found a strong association between DMRs and changes in gene expression of nearby genes. 

The apparent discrepancy between our results and those previously reported is probably 

explained by the fact that past studies have only investigated active methylation changes in 

promoter regions – that we show to be infrequent – or only on a small subset of all CpG sites in 

the (mouse) genome (~1%). Moreover, we decided to focus on differently methylated regions (3 

or more consecutive differently methylated CpGs) instead of methylation changes at individual 

CpG sites10,13, which is likely to enrich for DMRs that are more directly linked to changes in 

gene expression. In support to that hypothesis, we found that the enrichment for DE genes 

become stronger as we focus on DMRs with a larger number of differently methylated CpG sites 
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(Supplementary Fig. 8). More broadly, our results highlight the key importance of using single-

base resolution map of the DNA methylome in order to fully capture the relationship between 

changes in methylation and changes in gene expression. 

 

Interestingly, we found that the loss of methylation at enhancer elements is often associated with 

the gain of histone activation marks and the recruitment of immune-activated TFs (e.g., NF-κB 

and IRFs) to these regions in response to infection. The recruitment of NF-κB and other master 

regulators to hypomethylated regions is likely associated with the opening of the chromatin in 

these regions, although it remains unclear whether the chromatin opens to allow the binding of 

these TFs (i.e., prior to binding) or if the observed increase in chromatin accessibility is a 

consequence of the binding itself. It also remains to be further explored whether the observed 

changes in methylation are required to allow TF binding or if it is the binding of TFs to these 

regions that leads to the loss of methylation, as previously proposed in other cellular 

contexts39,40. Our analyses do indicate, however, that even if TF binding is the instigating factor 

to the observed changes in methylation, binding alone is not sufficient given that the vast 

majority (>99%) of binding events induced by infection occur at regions that do not change 

methylation (Supplementary Fig. 9).     

 

There is mounting evidence that after a first encounter with a pathogen or other immune stimulus 

innate immune cells keep such attacks “in memory”, leading to faster and stronger gene 

transcriptional responses upon restimulation and increased resistance to secondary infection. 

This process, termed trained immunity4,41,42, has been attributed to epigenetic reprograming at 

the level of histone H3 methylation based on the observation that distal regulatory elements that 

gain de novo H3K4me1 (i.e., de novo enhancer marks) in response to immune activation 

generally do not lose this mark after the stimulation has ceased8. Although epigenetic 

programming through histone modifications might be an important factor in trained immunity, 

our results raise the possibility that changes in DNA methylation might also contribute to short-

term memory in innate immune cells. Indeed, changes in DNA methylation might be ideally 

suited as a mechanism of epigenetic memory since these changes are expected to be 

thermodynamically more stable and longer lasting than changes in histone marks. Based on our 

current data, it is hard to assess the degree to which MTB-induced changes in DNA methylation 
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remained stable over time. However, many of the genes associated with DMRs are well-

recognized as early response genes (e.g., NFKB1, IRF2, IRF4, IRF8 are upregulated minutes 

after an immune challenge43,44 or genes that only respond to MTB infection at early time points 

(e.g., DUSP2, MAP2K3, MAP3K4)45. This observation strongly suggests that some of the 

changes in methylation are likely to have occurred in the first hours after infection and have 

remained stable over time. Moreover, we show that the gain of de novo enhancers – assumed to 

account for trained immunity – often occurs concomitantly with the loss of DNA methylation in 

the same regions. Our results thus raise the possibility that trained immunity might not only be 

due to post-transcriptional changes in histone marks but also, and possibly primarily, due to 

changes in DNA methylation. 

 

Collectively, our results suggest that active and rapid changes in methylation might play a 

previously unappreciated and critical role in the transcriptional regulation of an efficient immune 

response to infection. They also highlight the key importance of multiple and coordinated 

epigenetic changes in enhancer regions at dictating the regulatory programs induced in response 

to a live pathogenic bacteria. 
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METHODS 

Methods and any associated references are available in the online version of the paper. 

 

Note: Any Supplementary Information and Source Data files are available in the online version 
of the paper. 
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Figure 1 MTB-induced changes in methylation in human DCs. (a) Examples of regions showing 

active changes in methylation in response to MTB infection. The top panel shows an example of 

a hypermethylated region and the bottom an example of a hypomethylated region. The plot 

shows smoothed methylation values (y-axis) for six non-infected (blue) and six MTB-infected 

samples (red). Gray shadings highlight MTB-DMRs and thick blue and red lines show average 

methylation levels for non-infected and infected cells, respectively. (b) Pie charts showing the 

distribution of hyper- and hypomethylated regions in different genomic regions. Each MTB-

DMR is counted only once: the overlap of a genomic region excludes all previously overlapped 

MTB-DMRs clockwise from promoters (TSS ± 500 bp; red) (c) Distribution of distances of 

MTB-DMRs to the nearest TSS. (d) Average conservation score (phastCons 46 score per 50 bp) 

around the center of MTB-DMRs not associated with promoter regions (i.e, > 3kb away from 

any known TSS). (e) Representative gene ontology (GO) terms enriched among genes associated 

to hyper- and hypomethylated regions. To demonstrate that the enriched biological processes are 

largely robust to the cutoff used to define MTB-DMRs we show the enrichment results when 

requiring 3+ (the one used on the main text), 4+ or 5+ consecutive differently methylated CpG 

sites (P<0.01) to call an MTB-DMR.  
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Figure 2 5hmC is enriched in MTB-DMRs prior to infection. (a) Metagene profiles of 5hmC 

levels relative to Ensembl transcripts expressed at different levels in human DCs. We grouped 

genes in four quantiles based on their expression levels on non-infected DCs.  (b) Barplots 

showing mean 5hmC/C ratios within hyper- and hypomethylated regions, before (blue) and after 

infection (red). (c) Composite plots of patterns of 5hmC before and after MTB infection ±3 kb 

around the midpoint of hyper- and hypomethylated regions. (d) 5hmC staining in non-infected 

(top panel) and MTB-infected DCs (bottom panel). 5hmC levels are given by the levels of Alexa 

488 (green: middle panel) and cells counterstained with DAPI to localize the nucleus (first 

panel).  (e) Boxplots showing the distribution of 5hmC staining intensity. No significant 

differences were observed between the two groups. 
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Figure 3 MTB-DMRs overlap with enhancer elements that become active upon infection in 

hypomethylated regions. (a) Combination of histone patterns used to define the 7 chromatin 

states. The precise relative contribution of each chromatin mark to each of the chromHMM-

defined states can be found in Supplementary Fig. 3. Note that state 7 was defined by either no 

signal or the presence of either H3K27me3/H3K9me3. (b) Pie charts showing the distribution of 

chromatin state annotations genome-wide (on non-infected cells) and within all MTB-DMRs in 

either non-infected (blue) or MTB-infected cells. The chromatin state codes are as defined in (a). 

(c) Fold enrichments of the different chromatin states within MTB-DMRs as compared to 

genome-wide expectations in non-infected (blue) and MTB-infected cells (red). (d) Heatmap of 
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the proportion of hypomethylated regions by chromatin transition state. The x-axis represents the 

chromatin states defined in non-infected DCs and the y-axis the chromatin state of the same 

region in MTB-infected DCs. The two inner boxes indicate two subgroups of hypomethylated 

regions, predefined enhancer (detectable enhancer in non-infected DCs) and de novo enhancers 

(detectable enhancer only in MTB-infected DCs). The numbers inside the cells refer to the 

proportion of hypomethylated regions that undergo each of the highlighted transitions. (e) Top 

panel: Histogram showing the observed proportion of regions that change chromatin state after 

infection (any transition) when sampling 1000 random sets of regions matched to the chromatin 

states found in non-infected samples within hypomethylated regions (blue) and hypermethylated 

regions (red). Each random set contains the same number of hypomethylated and 

hypermethylated regions as those identified in the true data. The blue and red triangles represent 

the observed proportion of regions that changed chromatin state in response to MTB infection in 

hypomethylated and hypermethylated regions, respectively. Bottom Panel: Same as above but 

focusing on regions of the genome labeled as heterochromatin/repressed before infection (state 

7) that gain de novo enhancer marks upon MTB infection (states 3, 4, or 5). The blue triangle 

represents the proportion observed within the true set of hypomethylated regions. (f) Barplots 

showing the proportion of hyper- and hypomethylated regions that overlap with enhancers and 

show dynamic changes in chromatin state, as defined by the gain or loss of H3K27ac mark. (g) 

Composite plots of patterns of H3K4me1 and H3K27ac ChIP-Seq signals ±3 kb around the 

midpoints of hypomethylated regions (x-axis) overlapping with predefined (right) and de novo 

(left) enhancers. 
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Figure 4 MTB-DMRs are bound by signal-dependent transcription factors. (a) Tn5-accessibility 

profiles before and after MTB infection, ±3 kb around the midpoints of hypermethylated regions 

(top panel) and hypomethylated regions (bottom panel). (b) Scatterplot comparing transcription 

factor occupancy score predictions between non-infected (y-axis) and MTB infected DCs (y-

axis). The size of the dots is proportional to the level of statistical significance supporting 

differential binding in response to MTB infection. Red dots represent TFs that show evidence for 

increased binding after MTB infection and blue dots represent TFs that show evidence for 

decreased binding after infection. The inset on the top right corner shows the genome-wide 

footprint for NF-κB (p50) (motif ID: M00051) in non-infected (blue) and MTB-infected DCs 

(red). In this example, the footprint in MTB-infected DCs is clearly stronger, which supports 

increased binding of NF-κB (p50) genome-wide upon MTB infection. (c) TF motifs that show 

significantly increased binding in hypomethylated regions after MTB infection. (d) TFs for 
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which the number of well-supported footprints (posterior Pr > 0.95) within hyper- and 

hypomethylated regions were enriched relative to the genomic background, in MTB infected 

DCs. The enrichment factors are shown in the x-axis in a log2 scale. The bars around the 

estimated enrichments reflect the 95th confidence intervals around the estimates. For 

visualization purposes we only show the top 10 most significantly enriched TF footprints. A 

complete list of all TFs for which footprints are enriched within MTB-DMRs can be found in 

Supplementary Table 3. 
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Figure 5 Differential methylation is coupled to differential gene expression. (a) Proportion of 

differentially expressed genes (y-axis) observed among all tested genes and among genes 

associated with different subgroups of MTB-DMRs. (b) QQ-plot showing that genes in the 

vicinity of MTB-DMRs (and particularly hypomethylated regions) show stronger statistical 

evidence for being differently expressed in response to MTB infection (P values on y-axis) 

compared to all genes tested (P values on x-axis). (c) Proportion of up- and down-regulated 

genes among DE genes associated with the different subgroups of MTB-DMRs. (d) Examples of 

genes encoding for two key transcription factors, NFKB1 (left panel) and IRF4 (right panel) that 
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are strongly upregulated in response to MTB infection and for which we identified one or more 

hypomethylated regions (gray shading) that overlap with putative enhancer elements. 

Normalized read counts for the indicated features are shown for non-infected (blue tracks) and 

infected conditions (red tracks). 
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ONLINE METHODS 

 

Sample collection. Blood samples were obtained from the Indiana Blood Center. A signed 

written consent was obtained from all of the participants and the project was approved by the 

ethics committee at the CHU Sainte-Justine (protocol #4023). All individuals recruited in this 

study were healthy Caucasian males between the ages of 21 and 55 y old. We decided to only 

focus on males to limit the variation in methylation estimates due to sex-specific differences. 

Only individuals self-reported as currently healthy, not under medication, and with no history of 

chronic diseases were included in the study. In addition, each donor’s blood was tested for 

standard blood-borne pathogens, and only samples negative for all of the pathogens tested were 

included. 

 

Mycobacterium tuberculosis preparation. We infected dendritic cells (DCs) with a 

Mycobacterium tuberculosis (MTB) strain expressing green-fluorescent protein (H37Rv)47,48. 

Importantly, previous studies have shown that the presence of GFP in this strain does not alter 

the growth rate or the virulence of the bacilli under axenic conditions, relative to wild-type MTB. 

M. tuberculosis H37Rv was grown from a frozen stock to midlog phase in 7H9 medium (BD) 

supplemented with albumin-dextrose-catalase (ADC; Difco)48,49. 

 

Isolation and infection of DCs. Peripheral blood mononuclear cells (PBMCs) were isolated 

from buffy coats by Ficoll-Paque centrifugation. Blood monocytes were then purified from 

PBMCs by positive selection with magnetic CD14 MicroBeads (Miltenyi Biotech). Pure 

monocytes were cultured for 5 days in RPMI 1640 (Invitrogen) supplemented with 10% heat-

inactivated FCS (Dutscher), L-glutamine (Invitrogen), GM-CSF (20 ng/mL; Immunotools), and 

IL-4 (20 ng/mL; Immunotools). Cell cultures were fed every 2 days with complete medium 

supplemented with the cytokines previously mentioned. Before infection, we systematically 

checked the differentiation/activation status of the monocyte-derived DCs by flow cytometry, 

using antibodies against CD1a, CD14, CD83, and HLA-DR. Only samples presenting the 

expected phenotype for non-activated DCs – CD1a+, CD14-, CD83-, and HLA-DRlow – were 

used in downstream experiments. The resulting monocyte-derived DCs were then infected with 

MTB for 18 h at a multiplicity of infection of 1-to-1, as previously described47. 
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For biosecurity reasons the ChIP-Seq and ATAC-Seq experiments were performed using heat-

killed bacteria instead of live MTB. In order to evaluate the extent to which using heat-killed 

bacteria could result in a different transcriptional response to that induced by live MTB, we used 

the Illumina HumanHT-12 v4 Expression BeadChip array to compare the genome-wide 

transcriptional responses observed in DCs in response to live MTB to those observed when DCs 

from the same donors were exposed to different amounts of heat-killed MTB bacteria. Low-level 

microarray processing including normalization of the data and variance stabilizing 

transformation were performed as previously described47. We found that using the equivalent of 

5 heat-killed bacteria to 1 DC leads to virtually the same transcriptional response at 18 hours to 

that observed with live MTB (r = 0.91; Supplementary Fig. 10). 

 

DNA and RNA Extractions. DNA from infected and non-infected DCs was extracted using the 

PureGene DNA extraction kit (Gentra Systems). Total RNA was extracted from the same 

samples using the miRNeasy kit (Qiagen). RNA quantity was evaluated spectrophotometrically, 

and the quality was assessed with the Agilent 2100 Bioanalyzer (Agilent Technologies). Only 

samples with no evidence for RNA degradation (RNA integrity number > 8) were kept for 

further experiments.  
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MethylC-Seq library preparation and sequencing. DNA from infected and non-infected DCs 

(6ug) was spiked with 30ng of unmethylated cl857 Sam7 Lambda DNA (Promega, Madison, 

WI) and further sonicated to an average length of ~100bp using a Covaris ultrasonicator under 

the following settings for 16 cycles: Duty cycle: 10%; Intensity: 5; Cycles/burst: 100. The 

sonicated product was further subjected to repair of 3’ and 5’ ends followed by the addition of a 

non-templated dA-tail before ligation to cytosine-methylated adapters provided by Illumina 

(Illumina, San Diego, CA) as per manufacturerʼs instructions for genomic DNA library 

construction.  Adapter-ligated DNA of 100-200 bp was isolated by 2% agarose gel 

electrophoresis, and sodium bisulfite conversion was performed on the resulting sample using 

the MethylCode™ Bisulfite Conversion Kit (Invitrogen) as per manufacturer’s instructions. Half 

of the bisulfite-converted, adapter-ligated DNA molecules were enriched by six cycles of PCR 

with the following reaction composition: 2.5 U of uracil-insensitive PfuTurboCx Hotstart DNA 

polymerase (Agilent), 5 µl 10X PfuTurbo reaction buffer, 25 µM dNTPs, 1 µl PE Primer 1.0 

(Illumina), 1 µl PE Primer 2.0 (Illumina) (50 µl final volume). The thermocycling parameters 

were: 95 ̊C 2 min, 98 ̊C 30 sec, then 6 cycles of 98 ̊C 15 sec, 60 ̊C 30 sec and 72 ̊C 4 min, ending 

with one 72 ̊C 10 min step. The reaction products were purified using the QIAquick PCR spin 

column (Qiagen). Two separate PCR reactions were performed on subsets of the adapter-ligated, 

bisulfite-converted DNA, yielding two independent libraries from the same biological sample.  

The quality of the libraries was checked on a Bioanalyzer followed by quantification of the 

libraries by qPCR using the KAPA Library Quantification Kit prior to sequencing.  Samples 

were sequenced on an Illumina HiSeq 2000 using 50- and 59-bp single-end reads. We obtained 

the final sequence coverage by sequencing the two libraries for a sample separately, thus 

reducing the proportion of apparent PCR duplicates. The sodium bisulfite non-conversion rate 

was calculated as the percentage of cytosines sequenced at cytosine reference positions in the 

Lambda genome.  
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Tet-assisted bisulfite sequencing (TAB-Seq). TAB-Seq libraries were performed as previously 

described 18 and a detailed protocol will be provided upon request. Briefly, genomic DNA was 

spiked with 0.25% of M. SsI methylated lambda DNA and 0.25% of 5hmC spike-in control II 

(where all cytosines were 5hmC) and then sonicated to 200-500bp with a Covaris ultrasonicator. 

The M. SsI methylated lambda DNA and the 5hmC spike-in control were used to evaluate the 

conversion rate of 5mC and protection rate of 5hmC, respectively (see TAB-Seq data processing 

section). Next, we use b-glucosyltransferase (bGT) to introduce a glucose onto 5hmC, generating 

b-glucosyl-5-hydroxymethylcytosine (5gmC) to protect 5hmC from further TET oxidation. After 

blocking of 5hmC, all 5mC is converted to 5caC by oxidation with an excess of recombinant 

Tet1 protein. Bisulfite treatment of the resulting DNA then converts all C and 5caC (derived 

from 5mC) to uracil or 5caU, respectively, whereas the original 5hmC bases remain protected as 

5gmC. Thus, following sequencing, only the 5hmC that were protected from bisulfite conversion 

will be read as cytosine bases. After the treatment, we performed bisulfite conversion and library 

preparation following a protocol identical to that for the MethylC-Seq libraries (described 

above). Samples were sequenced on an Illumina HiSeq 2000 using 100-bp paired-end reads.  

 

5hmC staining. The protocol was adapted from Santos et al.50. Briefly DCs were cultured on 

poly-L-lysine-coated coverslips. Cells were fixed for 30 min in 4% paraformaldehyde in PBS 

and permeabilized with 0.2% Triton X-100 in PBS for 30 min at room temperature (RT). Cells 

were then washed with 0.05% Tween 20 in PBS and were treated with 1M HCl plus 0.1% Triton 

X-100. After 30 min at 37°C, cells were incubated with 100mM tris/HCl (pH 8.5) for 30 min and 

blocked for 2h in PBS with 1% BSA, 0.05% Tween-20 and 2% goat serum. Cells were incubated 

with 5-Hydroxymethylcytosine antibody (ActiveMotif), followed by Alexa 488 goat anti-rabbit 

antibody (Life Technologies) 1h at RT. The slides were mounted with Fluoromount G 

(SouthernBiotech), and cells counterstained with DAPI to localize the nucleus. A laser-scanning 

microscope (Zeiss LSM 700) in the tile scan mode was used to capture a mosaic of images. 

Fluorescence was quantified using the Fiji software. Average fluorescence estimates were 

calculated from 1,769 non-infected cells and 1,532 MTB-infected cells.  
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RNA-Seq library preparation and sequencing. RNA-Seq libraries for the six samples for 

which we collected MethylC-Seq were generated via polyA+ selection of mRNA from total 

RNA using the TruSeq RNA Sample Prep Kit v2 (Illumina). In addition, for the two individuals 

from whom we collected histone mark ChIP-Seq data, we also performed RNA-Seq on the 

whole transcriptome following ribosomal depletion using the Ribo-Zero Gold depletion and the 

Illumina Total Stranded RNA Library kits (Illumina). We did so in order to be able to capture 

enhancer RNAs, which are usually non-polyadenylated51. RNA-Seq libraries were sequenced as 

50-bp single-end (polyA+ fraction) and 100-bp paired-end reads (ribo-minus) on an Illumina 

HiSeq 2500. 

 

ChIP-Seq library preparation and sequencing. Samples from infected and non-infected DCs 

from two individuals were crosslinked with 1% w/v formaldehyde for 10 min at RT and 

immediately quenched for 5 min with 125mM Glycine at RT. The formaldehyde fixed samples 

were then sonicated to 100-400 bp using a Bioruptor (Diagenode) and then ChIP-DNA prepared 

using the IP-Star Compact (Diagenode) Indirect method with an Antibody-Antigen incubation of 

10 hr, Bead incubation of 2 hr, and 4x 20 min wash steps. Approximately 1 million cells were 

used for each ChIP and ~50,000 cells for the input. The following antibodies were used: 

H3K4me1 (Company: CST, Cat. No.: 5326P, Lot No.: 1), H3K4me3 (CST, 9751BC, 7), 

H3K9me3 (MABI, 0318, 13001), H3K27me3 (MABI, 0323, 13001), H3K27ac (Abcam, 

Ab4729, GR119051), and H3K36me3 (MABI, 0333, 12003). ChIP and Input libraries were 

prepared using the Illumina Truseq Nano DNA kit, with alterations including: PCR enrichment 

(14 cycles) prior to size selection and utilizing the PippinPrep method (SAGE Science) instead of 

the SPRI method for size selection (200-400 bp). Libraries were sequenced on an Illumina Hiseq 

2000. We pooled 8 libraries per lane and sequenced the lane twice to reduce the possibility of 

lane effects. Each library was sequenced using 50-bp single-end reads.   
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ATAC-Seq library preparation and sequencing. To prepare nuclei, we spun 100,000 cells at 

500g for 5 min, which was followed by a wash using 50 µL of cold 1× PBS and centrifugation at 

500g for 5 min. Cells were lysed using cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 

3 mM MgCl2 and 0.05% IGEPAL CA-630). Immediately after lysis, nuclei were spun at 500g 

for 10 min using a refrigerated centrifuge. Immediately following the nuclei prep, the pellet was 

resuspended in the transposase reaction mix (25 µL 2× TD buffer, 2.5 µL transposase (Illumina) 

and 22.5 µL nuclease-free water). The transposition reaction was carried out for 30 min at 37 °C. 

Directly following transposition the sample was purified using a Qiagen MinElute kit. Following 

purification, we amplified library fragments using 25 uL of 2X NEBnext PCR master mix, 0.3 

uL of 100X SYBR Green I, 2.5 uL each of Nextera primer index 1 (i7) and 2 (i5), and 10 uL of 

the transposed DNA, in a final volume of 50 uL. We used the following PCR conditions: 72 °C 

for 5 min; 98 °C for 30 s; and thermocycling at 98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 

min. To reduce GC and size bias in our PCR, we monitored the PCR reaction using qPCR in 

order to stop amplification before saturation. To do so, we amplified the full libraries for four 

cycles, after which we took an aliquot (5 ul) of the PCR reaction and added 10 µl of the previous 

PCR cocktail. We ran this reaction for 19 cycles to determine the additional number of cycles 

needed for the remaining 45 uL reaction. Libraries were amplified for a total of 9 cycles. The 

libraries were purified using a Qiagen MinElute kit in 20 µL. Quality of the libraries was verified 

on a polyacrylamide gel and Bioanalyzer. Libraries were then quantifed by qPCR using the 

KAPA Library Quantification Kit and sequenced on the Illumina Hiseq 2500 using 100-bp 

paired-end reads. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2015. ; https://doi.org/10.1101/016022doi: bioRxiv preprint 

https://doi.org/10.1101/016022
http://creativecommons.org/licenses/by-nc-nd/4.0/


MethylC-Seq data processing. We used the tool Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/pro jects/trim_galore/) to trim off adapter sequences 

incorporated in the read and remove bases with a Phred base quality score below 20. The 

resulting reads were mapped to the human reference genome (GRCh37/hg19) and lambda phage 

genome using Bismark52 (with the options -p 12 -N 1), which uses Bowtie 253 and a bisulfite 

converted reference genome (C-to-T and a G-to-A) for read mapping. Only reads that had a 

unique alignment and a maximum number of one mismatch were retained. For each sample, we 

sequenced two independent libraries and therefore we removed PCR duplicates for each library 

separately, using a Perl script that is part of the Bismark package 

(deduplicate_bismark_alignment_output.pl), and then merged the two libraries for the same 

sample. The context of each C was determined, which allowed us to classify each C of the 

genome as CpG, CHH, or CHG, where H is either an A, T, or C nucleotide. Methylation levels 

for each CpG site were estimated by counting the number of reported C (‘methylated’ reads) 

divided by the total number of reported C and T (‘unmethylated’ reads) at the same position of 

the reference genome using Bismark’s methylation extractor tool. The same strategy was also 

applied for non-CpG methylation (CHG context, where H is either an A, T, or C nucleotide). We 

performed a strand-independent analysis of CpG methylation where counts from the two Cs in a 

CpG and its reverse complement (position i on plus strand and position i+1 on minus strand) 

were combined and assigned to the position of the C in the plus strand. 

 

To assess MethylC-Seq bisulfite conversion rate, the frequency of unconverted cytosines (C 

basecalls) at lambda phage CpG reference positions was calculated from reads uniquely mapped 

to the lambda phage reference genome. Overall, bisulfite conversion rate was >99% in all of the 

samples (Table S1). 
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TAB-Seq data processing. We used Trim Galore in paired-end mode to remove adapter 

sequences and low quality score bases (Phred score < 20). The resulting reads were mapped in 

bisulfite mode to human reference genome (GRCh37/hg19) (and lambda phage + control II 

sequence) using Bismark with the following parameters: --bowtie2 -p 12 -N 1. PCR duplicates 

were removed using the deduplicate_bismark_alignment_output.pl script. In total, we obtained 

~430 million paired-end reads, of which 87% were unambiguously mapped to the reference 

genome with a mean sequencing coverage of 10.1X and 9.3X in non-infected and infected DCs, 

respectively (Table S1). Similar to MethylC-Seq data, hydroxymethylation levels for each CpG 

site were estimated by counting the number of reported C (‘hydroxymethylated’ reads) divided 

by the total number of reported C and T (‘non-hydroxymethylated’ reads) at the same position of 

the reference genome using Bismark methylation extractor with parameters --ignore_r2 2 --

no_overlap. Cytosine non-conversion rate (i.e., failed 5mC conversion by Tet1 and failure of 

bisulfite conversion) was assessed by calculating the frequency of C base calls at lambda CpG 

reference positions from reads uniquely mapped to the lambda reference. 5hmC protection rate 

was calculated likewise using CpG reference positions in control II sequence. 

 

ChIP-Seq data processing. We started by trimming adapter sequences and low quality score 

bases using Trim Galore. The resulting reads were mapped to the human reference genome 

(GRCh37/hg19) and PCR duplicates were removed using Picard tools 

(http://broadinstitute.github.io/picard/). The alignment software Bowtie 2 was then used with the 

following options: -p 12 -N 1. Only reads that had a unique alignment and no more than one 

mismatch were retained. For each of the histone marks in each of the conditions, we obtained an 

average of 58.5 ± 9.5 SD million reads (Table S1) when combining data from the two biological 

replicates. Pearson correlation revealed a high concordance between the histone ChIP-Seq 

signals for the two biological replicates sequenced for each of the histone marks (mean r = 0.94 

and range = 0.87-0.99; Supplementary Fig. 11), which allowed us to merge them for 

downstream analyses. 
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RNA-Seq data processing and identification of differently expressed genes upon MTB 

infection. Adaptor sequences and low quality score bases were first trimmed using Trim Galore. 

The resulting reads were aligned to the human genome reference sequence (GRCh37/hg19) using 

the TopHat2 software package54 with a TopHat transcript index from RefSeq. The number of 

read fragments overlapping with annotated exons of genes was tabulated using HTSeq55 using 

the following parameters: -q -m intersection-nonempty -s no.  Using normalized gene counts for 

6 infected and 6 non-infected samples, we identified genes whose expression levels were 

significantly altered following MTB infection of DCs using the R package DESeq256. Using a  

paired design, we considered a gene as differentially expressed if statistically supported at a 

Benjamini and Hochberg57 false discovery rate (FDR) < 1 × 10-4 and showing a |log2 fold 

change| > 1. Lowly expressed or non-expressed genes with a read count of 0 in at least half of the 

samples in each condition were discarded. 

 

Genomic annotation and mRNA TSS collection. Gene locations used in Figure 1 were defined 

based on the GRCh37/hg19 assembly. Annotation of known Ensembl transcripts was obtained 

from UCSC (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ensGene.txt.gz). Since 

genes can have multiple transcripts, we selected the 5’-most transcription start site (TSS) on the 

positive strand as the single TSS associated with each gene. The reverse (3’ most TSS) was done 

for genes on the negative strand. We limited downstream analysis to protein-coding genes, 

resulting in 20,745 TSSs in total. Similarly, annotations for retro-elements (i.e., LINEs and 

SINEs), CpG islands, exons and introns were downloaded from the UCSC. 

 

Integrated analysis of gene expression and 5mC. FPKM (fragments per kilobase of exon per 

million fragments) values of expression were calculated using Cufflinks58. Genes were then 

classified into quartiles based on their basal gene expression levels: 1st quartile is lowest and 4th 

is highest. Gene bodies and 20-kb regions upstream and downstream were each divided into 50 

intervals. We gathered methylation data from windows within each of these intervals and plotted 

the mean methylation level (mean_me) for all windows overlapping each position. For each bin 

containing n sites (i): 
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where C = read supporting methylated cytosine, T = read supporting unmethylated cytosine, i = 

position of cytosine and n = total number of cytosine positions.  

 

Principal component analysis based on methylomes. Principal component analysis (PCA) of 

DC methylomes and those of other cell types for which MethylC-Seq data was publically 

available was performed on a set of 2,724,731 CpG sites that were sequenced at coverage ≥5 

across all cell types or tissues using MethylKit tools59. The following cell types or tissues were 

used: neuroectoderm, neuroepithelial, glia, fetal (fheart, fthymus, fmuscle, fadrenal, fbrain), 

adipocyte, colon mucosa (cmucosa), substantia nigra (snigra), B-cell, T-cells (cd4, cd8, cd34), 

dendritic cells (dc81, dc82, dc83, dc87, dc89, dc91, hippocampus, hspc, liver, neutrophil, 

peripheral blood mononuclear cell (pbmc), and sperm. 

 

Identification of MTB-DMRs. The summarized methylation estimates of strand-merged CpG 

sites from the 6 infected and 6 non-infecred samples were used to identify MTB-induced 

differences in methylation, using the R package Bsmooth16 with following parameters: ns = 25 

and h = 200. Bsmooth implements a smoothing method that uses a local likelihood approach to 

estimate the smoothed probability of methylation at each site, taking into account the spatial 

correlation between nearby sites and placing greater weight on sites with higher coverage. To 

minimize noise in methylation estimates due to low-coverage data, we restricted the differential 

methylation analysis to CpG sites with coverage of ≥4 sequence reads in at least half of the DC 

samples in each condition, which still allowed us to interrogate changes in methylation levels at 

~20 million CpG sites. Moreover, to eliminate effects caused by polymorphisms, C nucleotides 

that overlapped with known SNPs (dbSNP132; http://www.ncbi.nlm.nih.gov/SNP/) were 

removed. We identified MTB-induced differentially methylated regions (MTB-DMRs) as 

regions containing at least 3 consecutive CpG sites that were significantly differentially 

methylated using a paired t-test (|t-statistic| > 4.032 at P = 0.01) and exhibited at least a 10% 

difference in mean methylation levels between treated and untreated samples. 
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Assigning MTB-DMRs to genes. To assign each MTB-DMR to a gene, we use the following 

rationale: if an MTB-DMR was located within a gene body the MTB-DMR was assigned to that 

gene; otherwise, we assigned each MTB-DMR to the closest TSS from the center position of the 

MTB-DMR. If the closest TSS was further away than 250 kb the gene assigned to that MTB-

DMR was not included in any of the downstream analysis.  

 

5hmC analysis. Metagene profiles of 5hmC were plotted as described above for the 5mC data. 

To plot 5hmC profiles around MTB-DMRs, the weighted mean methylation was calculated for 

each contiguous 100-bp bin from 3 kb upstream to 3 kb downstream of the central position of the 

MTB-DMR. Only CpG sites with sequencing coverage ≥4 were included in the analyses.  

 

Chromatin state annotation and dynamics. We used ChromHMM23 with default parameters to 

segment the genome into different chromatin states based on six histone modifications and ChIP 

input. A model was learned separately for both conditions (i.e., infected and non-infected 

samples), producing segmentations based on the most likely state assignment of the model. We 

selected a 12-state model in order to allow sufficient resolution to resolve biologically 

meaningful chromatin patterns. We further combined segments that had comparable histone 

patterns, resulting in 7 biologically meaningful chromatin states (Supplementary Fig. 3). To 

evaluate the enrichment of each chromatin state at MTB-DMRs, we first assigned each MTB-

DMR to a particular chromatin state based on the chromHMM segment overlapping with its 

midpoint. We then calculated the frequency of MTB-DMRs that were assigned to a particular 

chromatin state, and normalized this value against the expected frequency based on the amount 

of genome covered by that state. We note that we have also performed similar analyses using a 

unified model that learns and defines chromatin states in both infected and non-infected DCs at 

the same time (in contrast to doing it separately in each condition) and all our results and 

conclusions remain virtually the same (Supplementary Fig. 12). 
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To test the hypothesis that regions that changed DNA methylation are also more likely to change 

chromatin state (compared to other regions of the genome), we randomly sampled an equal 

number of regions matched for the same chromatin states observed within hyper- and 

hypomethylated MTB-DMRs in non-infected DCs. We then counted the proportion of these 

random regions that changed chromatin state after infection. The expected distribution of 

chromHMM state transitions was generated using 1000 simulations and was compared to the 

proportion of chromatin changes observed among hyper- and hypomethylated regions. A similar 

resampling strategy was used to test for an enrichment of hypomethylated regions marked as 

heterochromatin/repressed before infection and that gained de novo enhancer marks upon MTB 

infection. 

 

Enhancer classification of hypomethylated regions based on chromatin state. In order to 

define different categories of enhancers, we centered our analysis on H3K4me1 signals. If 

H3K4me1 was present in the basal state, such region was defined as a predefined enhancer. 

Therefore, predefined enhancers were simply defined as regions that overlapped with a 

chromHMM segment of either state 3, 4, or 5 (active or inactive enhancers) prior to MTB 

infection. If H3K4me1 was not found to be enriched against input in the basal (untreated) state 

but H3K4me1 and/or H3K27ac were induced by MTB infection, the region was defined as a de 

novo enhancer. Therefore, de novo enhancers were defined as regions that overlapped with a 

chromHMM segment of state 7 (heterochromatin/repressed) that transitioned to either state 3, 4, 

or 5 (active or inactive enhancers) after MTB infection. 

 

ChIP-Seq profiles around MTB-DMRs. Global visualization for chromatin modifications, 

genome accessibility and RNA patterns around MTB-DMRs was accomplished with ngs.plot60 

using default parameters. For each MTB-DMR, data was analyzed from 3 kb upstream to 3 kb 

downstream of the central position of the MTB-DMR unless otherwise indicated. To compensate 

for differences in total sequencing read depth among samples, all ChIP-Seq read counts were 

first normalized to their equivalent total number of reads. Next, the normalized number of reads 

was subtracted from the normalized number of reads in the input within a 100-bp scanning 

window, and the subtracted value was used for further analysis and plotting. For visualization 

purposes, pseudo counts were added if the resulting values were negative.  
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Sequencing read data visualization. Sequencing experiments were visualized by preparing 

custom tracks for the WashU Epigenome browser (http://epigenomegateway.wustl.edu/). 

 

ATAC-Seq data processing and footprinting analysis. ATAC-Seq29 reads were mapped to the 

human reference genome (GRCh37/hg19) using BWA-MEM61, at default parameters. Only reads 

that had a unique alignment and mapping quality of ≥10 were retained. Similarly, ngs.plot was 

used to plot ATAC-Seq profiles around MTB-DMRs. To detect TF binding footprints in the 

ATAC-Seq data we used the program Centipede31 in two steps. In the first step, we determined 

which transcription factors were active (have motif instances with footprints) before and after 

infection using a reduced set of motif instances (5K-15K) for each TF as defined in 

Moyerbrailean et al.62. In the second step, we scanned the entire genome for motif instances 

matching the original PWM, and we ran Centipede in parallel for the two conditions in order to 

make the posterior probabilities comparable. For both steps, to run Centipede the aligned paired-

end reads are separated into four bins depending on the fragment length ([40, 99], [100, 139], 

[140, 179] and [180, 250] in bp). As Tn5 transposase contacts and duplicates 9 bp of DNA29 we 

take as the cleavage site the middle nucleotide. To do so, we shifted 4 bp from the 5'-end 

positions towards the center of the fragment. Then for each motif we built a matrix that counted 

Tn5 cleavage events, where each row represented a motif instance (i.e., a candidate binding site), 

and each column represented a spatial location with respect to the TF binding site in bp (i.e., 

relative cleavage site). This matrix was constructed separately for each fragment length bin and 

each strand orientation (with respect to the motif match, or reference strand if motif was 

palindromic). We used a window size of 300 bp on either side of the motif match. We then 

concatenated all 8 matrices and fed them as input data to Centipede, together with the PWM 

score. 

For determining which TFs are active on the first step, we calculate a Z-score corresponding to 

the PWM effect in the prior probability in Centipede’s logistic model and we determine as active 

those that have a Bonferroni-corrected P < 0.05. The Z-score corresponds to the !  parameter in: 

             
log ! l

1"! l

#
$%

&
'(
=) + *  PWMscorel
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 where ! l  represent the prior probability of binding in Centipede’s model in motif location l . On 

the second step, we first train Centipede assuming that the footprint is bound in the two 

conditions. Then, we fix the model parameters and we generate a likelihood ratio and posterior 

probability ! lt  for each condition t  separately and for each site l . To detect if the footprint is 

more active in one of the two conditions, we fit a logistic model that includes an intercept for 

each condition (!  and ! ), the PWM effect ! , and PWM times the treatment effect ! : 

          
log ! lt

1"! lt

#
$%

&
'(
=) * 1" It( ) + + *  PWMscorel +, * It + - * It * PWMscorel( )

 
where It  is an indicator variable that takes the value 1 if t = “treatment” and 0 if t = “control’’. 

We calculate a Z-score for the interaction effect !  that measures if there is condition specific 

binding. 

 

Gene Set Enrichment Analysis. We used Genetrail63 to test for enrichment of functional 

annotations among genes nearby MTB-DMRs (<250 kb), using the set of all Ensembl genes as a 

background. Analysis was done with default parameters and results corrected for multiple testing 

by the method of Benjamini and Hochberg to control the False Discovery Rate (FDR). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2015. ; https://doi.org/10.1101/016022doi: bioRxiv preprint 

https://doi.org/10.1101/016022
http://creativecommons.org/licenses/by-nc-nd/4.0/

