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One Sentence Summary:

By integrating mathematical modeling with in vitro experiments we show that treatment-
induced autophagy modulates melanoma treatment response, and that adding outcomes
data from a companion clinical trial allows implementation of phase i trials (virtual,

informed clinical trials) for melanoma combination therapy.
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Abstract:

The combination of chemotherapy and an AKT inhibitor in patients with metastatic
solid tumors including melanomas was tested in a recently completed phase 1
clinical trial. Our experiments showed that such regimens differentially induce
autophagy in melanoma cells and autophagy modulates the response to treatment.
Motivated by these observations, we formulated a mathematical model comprised of
a system of ordinary differential equations that explains the dynamics of the
response of melanoma cells to different mono and combination therapies. Model
parameters were estimated using an optimization algorithm that minimizes
differences between predicted cell populations and experimentally measured cell
numbers. The model predicts that the combination therapy treatment protocol used
in the trial is effective in short term tumor control but that the treatment will
eventually fail, although smarter schedules can be applied to extend response. To
move this model forward into a more clinically relevant setting, we implemented a
phase i trial (a virtual/imaginary yet informed clinical trial), where a genetic
algorithm was used to generate a cohort of virtual patients that captured the
diversity of disease response observed in a comparable clinical trial. Simulated
clinical trials with the cohort and sensitivity analysis defined parameters that
discriminated virtual patients having more favorable versus less favorable
outcomes. These analyses established the relevance of selecting patients based on
rates of tumor growth and autophagic flux. Finally, the model predicts optimal
therapeutic approaches across all virtual patients, laying the foundation for phase i-

informed clinical melanoma trials. The specific melanoma model developed here is
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just one example of the much broader potential of the phase i framework, which can

be applied to almost any parameterized cancer model.


https://doi.org/10.1101/015925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015925; this version posted March 3, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Significant advances have been made in understanding mechanisms that provoke tumor
initiation and progression, and often this knowledge has been translated into the
development of targeted agents that selectively disable the mutated, activated and/or
overexpressed oncoproteins manifest in tumor cells (1). Most of these targeted agents have
been tested in clinical trials either alone or in combination with other treatments (2), and
though some are clinically effective (e.g., small molecule BRAF kinase inhibitors (3)), the
majority are not (4, 5), despite the fact that such agents have potent activity in preclinical
cancer cell and animal model studies. This inconsistency is in part due to difficulties in
predicting the long-term effectiveness of a cancer therapy using time-limited in vitro
(typically < 1 month) or in vivo (often < 3 months) models systems.

We reasoned that an appropriately defined and parameterized mathematical model,
based on observations in cell and animal studies and clinical trials, might reveal insights
regarding the design of improved and informed therapeutic approaches for treating cancer
patients. To test this notion we used a clinically relevant mathematical model of melanoma
that was generated based on data from in vitro experiments and from a comparable clinical
trial, to predict long-term treatment responses in both cells and patients. A recently
completed multi-arm phase 1 trial of the MK2206 AKT inhibitor (AKTi) in combination
with standard chemotherapy (chemo) (6) with advanced solid tumors, including
melanomas, was used for these studies (Fig. 1A). To investigate potential mechanisms of
treatment efficacy, a mathematical model comprised of a system of ordinary differential
equations was developed to describe the dynamics of melanoma cells exposed to four

treatment conditions, no treatment, chemo, AKTi and combination of chemo and AKTi. Cell
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culture experiments were then used to parameterize the model. The fitted model was
further validated using results from an extensive series of cell culture experiments that
consider twelve different drug combinations and timings. The validated model was then
used to predict the long-term effects of the twelve treatments on melanoma cells, which
revealed that all treatments eventually fail, but do so at different rates.

To investigate the long-term effects of therapy in a more clinically relevant setting,
we varied model parameters to generate virtual patients that had responses similar to
typical clinical trial outcomes (6). We employed a heuristic search algorithm (genetic
algorithm (GA)) to generate a diverse virtual patient cohort consisting of over 3,000
patients. Treatment responses for this patient cohort were simulated and optimized, and
the schedules of AKTi therapy were combined with chemotherapy. This strategy allowed
implementation of a “virtual clinical trial” (phase i trial), where the model guides optimal
treatment strategies for selected patient cohorts (7). Similar virtual clinical trials have been
made to simulate clinical trials of cardiovascular disease, hypertension, diabetes

(www.entelos.com), and acute inflammatory diseases (8), but not in cancer. Statistical

approaches based on clinical drug metabolism (e.g., dose-concentration relationships) have
also been developed to design virtual clinical trials (reviewed in (9)) that detect significant
differences between treatments (for example, placebo vs. treatment). Here we rather
sought to translate biological findings coming from in vitro and clinical studies, using
melanoma combination therapy, into a phase i trial - with the goal that this approach could

be easily adapted to other cancers.
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Results

Responses of melanoma treated with combination therapy

We reported unexpectedly long-term responses (of up to 15 months) to the combination
therapy of chemo and AKTi in two BRAF-wild type melanoma patients in the trial
(NCT00848718) (10). Although little was known regarding why this combination therapy
was successful, but we reasoned this reflected differential effects on inducing autophagy
that were observed (10) (Fig. 1B), as autophagy represents a cancer cell-intrinsic
mechanism of resistance that allows cells to survive times of drug-induced stress (11, 12)
or, if uncontrolled, can deplete key cellular components and provoke tumor cell death (13,
14). The differential autophagic responses to the chemo plus AKTi combination and
accompanying effects on tumor cell growth and survival were manifest in melanoma cells

(Fig. 1B) (10).

Mathematical model development

Motivated by these experimental results, we formulated a mathematical model comprised
of three phenotypic compartments (Fig. 2A(a)), a non-autophagy compartment (N) and two
autophagy compartments (P and Q). We divided the autophagy compartment into two,
physiological autophagy (P) and non- physiological autophagy (Q) compartments, based on
studies which showed that some cells where autophagy is manifest continue to maintain
normal cell homeostasis whereas others did not (15, 16). Figure 2A shows the interactions

between the N, P and Q compartments within the four different environments: (a) no-
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treatment, (b) chemo, (c) AKTi, and (d) combination therapy (chemo+AKTi) (see the
Materials and Methods section for a detailed description of model development).

To obtain the model parameters, two melanoma cell lines (M257 and WM3918)
were treated with the four different conditions for 8 days and the results were compared
with the model predictions. The model with estimated parameters generated fitted curves
(R = 0.8, for all cases) describing the growth of the two cell lines (Fig. 2B). Chemo reduced
growth rates of both WM3918 and M257 (Fig.2B, Chemo panels) and continuous
application of AKTi increased the proportion of the non-autophagy (N) to physiological
autophagy (P) phenotype (Fig. 2B, AKTi panels, increasing green lines). The combination of
AKTi and chemo generally induced the non-physiological autophagy (Q) phenotype (Fig.
2B, combination panels, increase of red lines), which arose following the rapid transition of
a non-autophagy to physiological autophagy phenotype (Fig. 2B, combination panels, a
sharp increase in the green line < day 1). The number of cells in the total cell population
treated with the combination therapy continued to decrease as a result of cell death of the

Q phenotype (Fig. 2B, combination panels, decreasing red lines).

Model prediction and calibration against preclinical data

The fitted model was used to predict the effects of twelve treatment schedules that differed
in the timing and order of chemo, AKTi and combination therapy across a 16-day period
(Fig. S1, Materials and Methods). The expected treatment responses are summarized in Fig.
2C (red bars). One application of chemo decreased the tumor cell population by 30-65%
(#2) and two applications reduced the population by 50-90% (#3). One application of AKTi

had limited impact on tumor cell growth (approximately 20% reduction from #1 to #4).
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Continuous application of the AKTi reduced the tumor cell population size by 40-70% (#5).
The M257 melanoma cell line was more sensitive to both chemo and AKTi than WM3918
melanoma cells. Combination therapies were substantially more effective than mono-
therapies. In general, concurrent therapies with chemo and AKTi (#6 and #7) were more
successful than all sequential therapies (#8-#12). Concurrent therapy #6 reduced the
tumor cell population size by up to 90%, and concurrent therapy #7 nearly eradicated all of
the tumor cells (Fig. 2C, #7, nearly invisible red bars). Sequential therapy decreased the
tumor cell population size by 50-90% (Fig 2C #8-#12).

To validate these predictions, an extensive series of in vitro experiments were
performed and the numbers of tumor cells were quantified on day 16 (Fig. S1B). We then
compared the total experimental melanoma cell numbers with those predicted by the
models (Fig. 2C, blue vs. red bars). In general, the predictions matched well with the
experimental results, as all predicted values (red bars) were within one standard error
deviation from the mean value of the experimental results (blue bars). Thus, this
mathematical model accurately describes and predicts treatment outcomes manifest in

vitro.

Long-term response of treatments

Having established a successfully calibrated model, the longer-term effects of the therapies
were assessed. Surprisingly, the best proposed strategy (#7) failed by day 40 (WM3918
cells) or day 50 (M257 melanoma), where the physiological autophagy phenotype
developed resistance to the therapy population (green lines, Fig. S2). This finding highlights

a key shortcoming of in vitro experiments; i.e., the limited timescale. Thus long-term studies
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were performed. As predicted, a 30-day treatment of strategy (#7) failed to eradicate some

of the melanoma cell lines in colony formation assay experiments (10).

Phase i trial: virtual cohort generation
Under the assumption that our underlying model of the autophagy model mechanism is
relevant to the clinic, and there is some evidence to support this (17), it was important to
advance such analyses beyond homogeneous cell lines to the heterogeneous patient
population. More specifically, in order to predict long-term treatment responses in a more
clinically relevant scenario, treatments for model parameters that are more representative
of real patients were simulated. The same treatment schedules as in the clinical trial (6)
were used, with five cycles of first-day chemo in a 21-day cycle, and two different
treatment arms of AKTi schedules (Q3W, QOD). In the first AKTi schedule (arm 1: Q3W),
the drug is administered on the first day of the 21-day cycle for five cycles, and thereafter is
given on the first day of every week (weekly maintenance therapy). In the second schedule
(arm 2: QOD), the drug is administered on days 1, 3, 5 and 7 of the 21-day cycle, and is then
given weekly as maintenance therapy.

To generate virtual patient cohorts that exhibit the diversity of responses observed
in the clinic, adaptive heuristic search GA algorithms (built in Matlab) were used, which are
based on the evolutionary principle of natural selection (18, 19). A solution

(P = [gN,gP,dQ,dT, Tp,Tn, bp, Cp, Cg, Ay, cN]) was searched that minimized our objective

function, (F(P) = 3/(V(P) — V;)?), using the difference between tumor volume with a
parameter (V(P)) and the target tumor volume (V7). The V; was randomly selected from

three categories (V,Vp,Vs), where subscript C denotes complete response (CR; tumor
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diameter < 1 mm), subscript P denotes partial response (PR; at least 30% reduction in
tumor diameter) and subscript S denotes stable disease (SD; up to 20% increase in tumor
diameter), based on response criteria (20). Our GA found 1293 sets of parameters in the

case of arm 1 (P1) and found 2098 sets of parameters for arm 2 (P2).

Phase i trial: Stratifying treatment outcomes via clinically measurable parameters
To characterize this virtual cohort, it was first divided into four sub-cohorts (Ci-C4, Fig.
3A(a)) according to parameter values (cy, ay), which are clinically measurable variables
(chemo-sensitivity (21, 22), and autophagy marker staining (23, 24)) was used to predict
best responders and worst responders. We compared a distribution of best tumor volume
change responses of the 24 patients in the trial with that of 500 virtual patients sampled
from our virtual cohort (3391 virtual patients) (Fig. 3A(b)). To test if two distributions are
from the same continuous distribution, we performed a two-sample Kolmogorov-Smirnov
test (Matlab statistics toolbox) (25). The test determined that we cannot reject the null
hypothesis at 5% significance (H = 0, P > 0.05, test statistic = 0.14). Empirical cumulative
distribution functions of the two overlap each other (Fig. 3A(b)). This implies that the best
tumor volume responses of these 500 virtual patients can recapitulate real patients’ tumor
volume response well. To validate the agreement further, we used Lin’s concordance
correlation coefficient (p) (26, 27). We repeatedly sampled 24 virtual patients with an
approximated probability density function of best tumor volume changes of real patients
(Fig.1A) 1000 times. For each sample, we calculated p of two measurements, best tumor

volume changes of both real patients and the sample, using an R package (epiR)(28) (Fig.
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S3). The resulting distribution of p shows that the two measurements are highly
concordant (Fig. S3, p > 0.8).

The native doubling time (i.e., without any treatment) of each sub-cohort (C1-C4) in
each patient group (P1 and P;) was compared assuming exponential tumor growth, which
is reasonable for metastatic disease, and the exponent of the best-fit curve was determined.
Doubling times were in the range of 7 to 110 days (Fig. 3A(c) top P4, Fig. 3A(c) bottom for
P2), which were similar to values observed in patients with cutaneous melanoma (29).
Overall, tumors in the P> group grew much faster than those in P; (mean of ~30 days vs.
mean of ~60 days, respectively). In Py, tumors in C; (dark blue) and C; (dark green) that
had slightly increased autophagy following AKTi treatment grew faster than those in C3
(orange) and C4 (pink) that had highly increased levels of autophagy (50 days vs. 70 days).
In contrast, there were no significant differences in the doubling times between the sub-
cohorts in P>.

Phase i combination therapy was simulated for 6 months with the two arms to
predict treatment responses in the virtual cohorts. Patients in P; treated with arm 1 had
diverse responses to the therapy, where CR, PR and SD were observed in 30 randomly
selected subjects (Fig. 3B(a), waterfall plot). For example, some patients in C; were
expected to be complete responders (CR, dark blue bars of nearly -100%), while others in
the same cohort were expected to be in SD (dark blue bars of 40-60%). When comparing
the expected tumor volume changes in each cohort (Fig 3B(a), middle boxplot), there were
no significant differences in outcomes between C; and Cz or between C3 and C4. However,
the Cz and C3 cohorts showed a significant difference (P <0.01, Student’s t-test). Thus, one

of the parameters, specifically the physiological autophagy phenotype (ay), defines

11


https://doi.org/10.1101/015925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015925; this version posted March 3, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

outcome. The histogram of all subjects in each cohort also showed a shift in treatment
responses from the cohort Ci.; (skewed toward responsive) to C3z.4 (uniformly distributed
tumor volumes).

Similarly, subjects in P, treated with arm 2 also showed diverse responses to
therapy (Fig. 3B(b)). However, unlike subjects in P; (Fig. 3B(a)), none of the metrics
determined outcomes of subjects in P2, as the mean tumor volume responses in the four
cohorts did not show significant differences (Fig. 3B(b), boxplot). Accordingly, the
histograms only showed a slight shift of responses when Ci.3 was compared to Cs (Fig.
3B(b)).

We also randomly assigned a treatment arm (either arm 1 or arm 2) to all virtual
patients in both P1 and P2. Tumor volume was checked at the beginning of each cycle (every
21 days), and subjects were removed from treatment if the tumor volume had more than
doubled; this resulted in the removal of a total of 1473 subjects. Random assignment of the
treatment arms produced even greater variations in expected outcomes (Fig. 3B(c)), but
might more accurately reflect how an actual population responds. Specifically, the expected
tumor volume changes showed a large variation, where the 9-99% bar in the boxplot
increased in all sub-cohorts, and in both arms. The physiological autophagy
phenotype (ay) distinguished outcomes between C; and C3 only when patients were
treated with arm 2 (Fig. 3B(c), boxplot, P <0.05). There was no shift in the distribution of
responses between the cohorts (Fig. 3B(c), histograms). Interestingly, the outcomes were
almost uniformly distributed in patients treated with arm 1, while the distributions of

patients treated with arm 2 were skewed toward smaller final tumor volumes (more
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responsive to the therapy). Thus, the physiological autophagy phenotype defines outcomes

in diverse virtual cohorts.

Phase i trial: Assessing stratification factors by sensitivity analysis
Rather than focusing solely on the clinically quantifiable parameters, the nine remaining
model parameters were also assessed to identify sub-cohorts that are most or least likely to
benefit from the combination therapy. To identify the key parameters a sensitivity analysis
of the effect of each parameter on tumor volume after 6 months of treatment was
performed. After dividing the patient group into CR, PR, and SD (based on their tumor
volume at 6 months), each parameter value from each group was compared and the
Student’s t-test was used determine if the mean values of a parameter differed between
two groups (CR vs. PR and PR vs. SD) (Fig. S4-S6). In patients in Py, the two autophagy-
associated phenotypes, physiological and non-physiological (ay,bp), were significantly
different between CR and PR and between PR and SD (Fig. S4). Compared with the previous
partition (Fig. 3A), the new partitioning of P1 according to the value of ay and b, (Fig. 4A))
discriminated the expected treatment outcomes more clearly. Unlike the previous partition
result (Fig. 3B(a)), each sub-cohort (Ci.4) now showed significantly different mean
response to therapy (Fig. 4A, boxplot). The new sub-cohort C; (cyan) is most likely to
benefit from the treatment, while the likelihood decreased gradually in C; (blue), C3
(vellow), and C4 (red). There is also a clear shift in the distribution of treatment response
from C1 to C4 (Fig. 4A, waterfall plot).

Similarly, our sensitivity analysis on P> (Fig. S5) revealed another key parameter set

(gn,9gp), the growth rates of both the non-autophagy and physiological autophagy
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phenotypes. P2 was divided based on the parameter values (C1-C4) (Fig. 4B, table). Unlike
the previous partitioning (Fig. 3B(b)), these parameters successfully segregated patients
according to the expected outcomes (Fig. 4B, boxplot). C1 was revealed as the best
responding sub-cohort, where almost all tumor volumes in this group (99%) were reduced
by at least 20% (Fig. 4B, cyan boxplot). The next best responders were both Cz and Cs,
where more than 75% of the cohorts showed at least a 30% reduction in tumor volume;
the expected outcomes in Cz and C3 significantly differed from those in C1 (P < 0.01). The
expected outcomes in C4 were slightly worse than those in C1.C3, as the mean outcome was
worse with some tumors from C4 having an increased tumor size of up to ~70% (Fig. 4B,
red boxplot). The waterfall plots in Fig. 4B show inter-patient variation in tumor volume
changes even within the same sub-cohort and shifting of the treatment response from C; to
Ca.

With random treatment assignment of either arm 1 or arm 2 to all patients in both
Py and P2, as would be done in a real trial, our analysis identified the key parameters gy
and ay as potential predictive factors of the treatment outcomes (Fig. S6). The new cohorts
(C1"-C4", Table in Fig. 4C) exhibit significantly different mean responses to therapy (Fig. 4C,
boxplots). The new partition also showed a tendency of increasing tumor volumes from C1*
to C4" in both arms (Fig. 4C, boxplots and waterfall plots), and defined the most sensitive
sub-cohort (C1"), who are predicted to be the most likely to benefit from treatment using
either arm 1 or arm 2. In summary, sensitivity analysis allows one to select potential
predictive factors for each treatment strategy, which could be used as a guide for selecting

specific therapies for a given patient.
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Phase i trial: Optimizing AKTi treatment to minimize toxicity for each sub-cohort
For the new virtual sub-cohorts (C1*-C4") optimal therapy recommendations were derived
using implicit filtering (30). Notably, the schedule of chemo was fixed, as it was in the
clinical trial (6), with the goals of identifying the AKTi schedule that reduced the initial
tumor volume by at least 30% after 6 months of therapy, and that used as few AKTi
applications as possible to provide an effective and less toxic treatment strategy. Optimized
schedules of AKTi are summarized in Table 1. For the patients in C1*, optimum therapy
recommended 1 day of AKTi treatment on the first day of the 42-day cycle, a treatment
holiday for five cycles and then from day 168, 1 day of treatment on the first day of a 7-day
cycle (weekly maintenance). For the patients in C2", the optimal schedule was to administer
AKTi on the first and third days of a 21-day cycle for five cycles, followed by weekly
maintenance. For the patients in C3", optimization recommended that AKTi be taken on the
first, third, and fifth days of each 19-day cycle for five cycles, followed by administration on
the first day of each week from day 95. The optimal schedule for cohort C4" is to administer
AKTi on the first, third, and fifth days of each 19-day cycle for five cycles, followed by
administration on the first and third days of a 9-day cycle from day 96.

To understand the relative impact of these alternate therapies we compared the 2-
year survival probability of patients on the different therapies. The therapies included
optimized therapy, treatment arm 1 and arm 2, and two mono-therapies of AKTi only (i.e.,
AKTi treatment only from either arm 1 or arm 2), and chemo (Fig. 5). The initial number of
tumor cells was set at one billion and the melanoma was considered fatal when the number
of tumor cells reached 1013 cells. We also compared the cumulative drug concentration of

each therapy to determine the toxicity of the treatment at two time points, immediately

15


https://doi.org/10.1101/015925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015925; this version posted March 3, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

after the five-cycles of combination therapy of AKTi with chemo (105 days) and at the
completion of therapy (2 years) (see Materials and Methods for calculations of plasma
concentration).

As expected, the probability of 2-year survival decreased after 6 months if the
patients in the cohort C1" were not treated with any therapy (Fig. 54, black line). Survival of
the chemo-alone Ci" cohort had only minimal improvement (Fig. 54, yellow line). In
contrast if the C1* patients were treated with any type of AKTi, their probability for 2 year
survival remained over 0.9 (Fig. 5A, red, pink, blue, cyan and green lines), which was
expected as this cohort is the most sensitive (Fig. 4C, cyan boxplots, tumor volume at 6
months < -60%). Regarding toxicity, the optimal therapy was the least toxic to patients, as
the cumulative drug concentration was minimal (Fig. 5A, green bars), except the C1" chemo
cohort (Fig. 5A, nearly invisible yellow bar).

The probability of 2-year survival of patients in cohort C;" also decreased after 6
months if patients were not treated with any therapy (Fig. 5B, black line) and chemo again
slightly increased the probability of survival (Fig. 5B, yellow line). Also, like the cohort C1%,
the probability of 2-year survival was relatively high (> 0.9) when patients were treated
with any of the AKTi schedules (Fig. 5B). The combination AKTi with chemo and the
optimized therapy slightly increased survival probability (Fig. 5B, cyan, blue, and green
lines). Regarding toxicity, arm 2 (cyan) was the most toxic, followed by AKTi (QOD, pink),
the optimized therapy (green bar), and arm 1 (blue bar), at both days 105 and 720 (2
years) (Fig. 5B bar graphs). Interestingly, the most optimized therapy is substantially less

toxic than both arm 2 and AKTi (QOD) at day 105.
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For patient cohort C3", the survival probability decreased rapidly to zero by 6
months if the patients were untreated (Fig. 5C, black line) and chemo again had little-to-no.
impact on survival (Fig. 5C, yellow line). The AKTi monotherapies and treatment arm 1
significantly improved patient survival (Fig. 5C, AKTi: pink and red lines and arm 1: blue
line). However, the most optimized therapy and arm 2 clearly provided the best probability
for survival, and again the optimized therapy was less toxic than arm 2 (Fig. 5C, green vs.
cyan bars).

Finally, like the C3" cohort, the probability of survival of C4" patients decreased
sharply if they were untreated or treated with chemo only (Fig. 5D, black and yellow line),
and again the AKTi monotherapies improved survival (Fig. 5D, red line (Q3W), and pink
line (QOD)). Both treatment arm 1 and arm 2 also increased the probability of survival (Fig.
5D, blue line: arm 1 and cyan line: arm 2). Notably, the optimized therapy significantly
improved the probability of survival (Fig. 5D, green line) compared to arm 2 (P < 0.05), and
was also less toxic than arm 2 at day 105 right after the five cycles of combination of chemo

with AKTi, although it became more toxic at year 2 (Fig. 5D bar graphs).
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Discussion

The integrated approach applied herein shows that treatment-induced autophagy
phenotypes likely account for the long-term effects of treating patients with chemo in
combination with AKTi. The mathematical model hypothesizes that two distinct states of
autophagy exists (physiological and non-physiological states), and indicates that improved
patient outcomes are associated with the non-physiological autophagy phenotype. The
model also predicts that therapy drives the transition from the non-autophagy to the
physiological autophagy phenotype, and that with continued exposure to AKTi selects for
the emergence of the physiological autophagy phenotype that provides a transient escape
route from treatments and which we conclude has the greatest fitness under such
continuous selection pressure. In contrast, the model indicates that a persistent non-
physiological autophagy state is detrimental to overall fitness and thus this represents a
desired outcome of therapy.

Implementing a phase i trial allows one to translate models to a clinically relevant
setting. The key components of such a trial are a clinically relevant mathematical model
and a cohort of virtual patients that mirror responses observed in an actual clinical trial.
When developing mathematical models to facilitate clinical decisions, an important
constraint is the number of measurable parameters of the patient. As patient data are
generally limiting, this inevitably leads to simpler models, where the data dictate model
inputs and consequently, model outputs. The model presented herein is an excellent
example, as it is constructed by integrating experimental findings for a given cancer (e.g.,
melanoma) with the clinical reality. An extensive cohort having widely distributed

parameters is another key element of the phase i trial, and the cohort should be
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representative of inter-patient variability, which drives the diversity of the response (ie,
the spectrum of the response and resistance to a given therapy) that is observed in the
clinic. Using a GA and employing response criteria used in the clinic, one can easily
generate a relatively large cohort of diverse virtual patients who are treated using the same
treatments given to patients in a clinical trial.

To stratify treatment outcomes according to clinically measurable variables, the
cohort was divided based on chemo-sensitivity and the induction of autophagy in tumor
samples. The rate of transition to the physiological autophagy phenotype was a predictive
factor of treatment outcome for arm 1, where higher rates of physiological autophagy
resulted in unfavorable outcomes. Interestingly in another melanoma study using different
treatments, an increased autophagy response was associated with resistance to BRAF
inhibitors (17). In treatment arm 2, neither of the two variables selected for more sensitive
or resistant individuals. However, after randomly assigning treatment of either arm 1 or
arm 2 to each virtual patient, the autophagy phenotype again discriminated sensitive vs.
non-sensitive sub-cohorts. Interestingly, some of the good responders to arm 2 became
non-responders when their treatment was switched to arm 1 (Fig. 3B(c), -100% dark blue
bars on the far left), highlighting the importance of selecting the most appropriate patients
for a given treatment.

Sensitivity analysis of the simulated cohort was superior at defining predictive
factors in each treatment arm, which discriminated between CR, PR and SD. The ability of
non-autophagic melanoma cells to become either physiological or non-physiological
autophagic determined patient outcomes for arm 1, whereas the growth rates of

proliferating tumor cells (non-autophagy vs. autophagy phenotypes) were the
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determinants of outcomes for arm 2. Further, when randomly assigning to either arm 1 or
arm 2 the transition to the non-physiological autophagy phenotype and the growth rate of
non-autophagy cells discriminated outcomes. Thus, key parameters for cases having more
or less favorable outcomes can be defined for each treatment schedule, demonstrating the

utility of phase i trials in aiding patient selection.

Optimizing the AKTi schedule for each cohort provided the most benefit. Notably,
mathematically informed drug scheduling can positively impact overall outcome, including
using a lower drug dose in some cohorts. Indeed, changing the temporal protocol
influenced the dynamics of the system significantly. Interestingly, another melanoma study
showed that using unconventional (discontinuous) dosing schedules of melanoma cells
with BRAF inhibitors could prevent resistance (31). This idea is now being explored in a
phase II clinical trial of BRAF-mutant melanoma patients (SWOG: 1320). We submit that
the simulation of optimized schedules and comparing outcomes across virtual patients can
assist clinical treatment planning to improve overall outcomes (6).

The underlining mechanisms, parameterization and validation of our model were
based on data from a preclinical in vitro study. However, as demonstrated here an
integrated approach can be also be achieved using in vivo preclinical studies (32). To bridge
the divide between the in vitro study and the clinic the assumption was made that the same
mechanisms of therapy resistance apply. Whilst this oversimplifies the many routes to
resistance, for the two drugs and the range of treatment schedules considered, the data
establish that this assumption was reasonable, where a companion clinical trial that used
the same drugs as our in vitro study generate a virtual patient cohort that matched the

distribution of clinically observed outcomes. Thus, using an integrated approach, phase i

20


https://doi.org/10.1101/015925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015925; this version posted March 3, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

trials can be broadly applied to improve safety and efficacy of clinical oncology trials, as

well as patient outcomes.
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Materials and Methods

Mathematical modeling

Untreated melanoma cells proliferate (rate:gy), and following treatment can acquire either a
physiological autophagy phenotype (transition rate:ap) or a non-physiological autophagy
phenotype (transition rate: by). Physiological autophagy cells grow (rate: gp) and can revert to
non-autophagy cells (returning rate:rp), or enter a quiescent/senescent state (rate:qp). Tumor cells
having the non-physiological autophagy phenotype do not divide, yet such these cells can either
reacquire a physiological autophagy phenotype (rate: ry) or a non-autophagy phenotype (rate: ry)
state. Cells in each compartment die at some rate (dy p). To model increased cell deaths on days 6-
9 (Fig. 1B(b)), we included the delayed cell deaths of quiescent/senescent autophagy cells (7).

The effects of chemo, AKTi and their combination (Fig. 2A(b)-(d)) were incorporated into
the model. It was assumed that the drug reaches its maximum concentration immediately after
administration and remains at that level until the beginning of the treatment break. Although the
chemotherapeutic agents (paclitaxel and carboplatin) are detectable in patients for 24 hours, the
half-life is serum is relatively short, in the range of 5.6 - 11.1 hr (33, 34); we assumed that the
concentration of the chemotherapeutic agents were maintained for only 1 day after administration
and became zero at the beginning of the treatment break. As the plasma concentration of AKTi
(MK2206) is known to be constant for approximately 48 hr (with a long terminal elimination half-
life of 40-100 hr) (35), we assumed that a 1-day application of AKTi to cells or patients corresponds
to a 2-day application to cells or patients in silico. Notably, drug doses were not modulated in this
study, where a fixed dose was assumed for both chemo and AKTi. As cell culture experiments
showed that chemo triggered cell death with negligible effects on autophagy (Fig. 1B(a)), it was
assumed that chemo only augmented cell death. Further, as chemo is effective only in proliferating
melanoma populations, we assumed that the therapy increases the death rate of the two

proliferating phenotypes, non-autophagy (dy) and physiological autophagy cells (dp)(Fig. 2B(b),
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black arrows). We also assumed that the frequency with which cells became quiescent/senescent
(gp) increased with chemo (Fig. 2B(b), black lines). /n vitro studies showed that while AKTi did not
augment cell deaths or effectively inhibit melanoma cell growth (Fig. 1B(a)-(b) and (10)), it did
induce autophagy (Fig. 1B(c) and (10)); thus, we assumed that AKTi increases the rate of
transitioning to the autophagy phenotypes, ap and b, (Fig. 2B(c), black arrows). As combination
therapy does not augment cell death compared with chemo, nor significantly increase autophagy
relative to AKTi, the combination of the two treatments was modeled by adding the effects of
chemo and AKTi (Fig. 2B(d), black arrows and crosses). Finally, it was assumed that no cells with a
given phenotype revert to their original states while any treatment is being applied. The schematic
representation of this compartment model (Fig. 2A(a) to (d)) converts readily into a system of

ordinary differential equations:

(gn — dn)N — (ap +bg)N + [1 — A@)][rpP + (1 — C(t)) rnQ)
(gp — dp)P —qpP +apN + [1 — A(t)H—T‘pP + (1 — C(t)) TQQ} (1)

~ (o + 2 ) @+ oM +arP — (1= AD)1 — CO)ry +10)Q

N
P
Q

where dN = do + CNC(t) B dp = do + CPC(t),qP = (o + CQC(t),ap = Qg + aNA(t), and bQ = bo +
bpA(t). In equation (1), A(t) and C(t) model time schedules of AKTi and chemo, respectively. To

model the treatment schedules, we used Heaviside function H (t — 6) defined by

0 t<aé,

H(t_e):{l t>0.

Assuming alternative application of the AKTi over a period of time at each cycle, the schedule of
AKTi was modeled by A(t) = X2, X (H(t — (kt; + 2i)) — H(t — (kt; + 2i + 1))), where n is the
number of AKTi applications at each cycle, n,is the number of AKTi treatment cycles, and ¢; is the

length of each AKTi treatment cycle. Similarly, the schedule of chemo was modeled by C(t) =
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ZC:O (H(t — kt,,) — H(t — (kt,, + tC))), where n.is the number of chemo cycles, t,, is the length of

each chemo-cycle, and t. is the duration of chemo.

Parameter estimation

Two melanoma cell lines (M257 and WM3918) were treated with chemo on the first four days (day
0-4) and with AKTi on every other day (days 0, 2, 4, and 6). We measured the number of melanoma
cells at days 4, 6 and 8. We assumed that all of the initial tumor cell population was the non-
autophagy phenotype (100% of non-autophagy cells on day 0). Both initial cell populations and the
growth rate of non-autophagy cells (gy) are estimated by assuming an exponential growth of
untreated cells and finding both the initial value and exponent of the best-fit curve. We used an
optimization algorithm called implicit filtering (30), a steepest descent algorithm for problems with
bound constraint, to determine the best remaining parameter set H (except gy) that minimized the
difference between predicted number of cells (Np) and experimental result (Ng) in four conditions:
no treatment (n); chemo (c); AKTi (a); and combination (m). The mathematical definition of our

problem is:

min fC) =min | > (Np,(H) = Ng)’,

i={n,c,am}

where the goal is to minimize the objective function f subject to the condition that H € R" is in the
feasible region:

a={HeR|L; < H; < U},
where and L; and U; are the upper and lower bound on the jth component H; of the vector H. The

estimated parameters for each cell line are summarized in Table S1.

Synopsis of 12 different schedules over 16 days tested to validate the model
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The schedules (Fig. S1) included: #1, no-treatment; #2, two types of mono-therapies with chemo
only (one time chemo for the first four days, days 0-4); #3, two chemos for both the first four days
(days 0-4) and the last four days (days 12-16); #4, AKTi mono-therapy (one time AKTi for the first
four days (days 0-4), #5: AKTi mono-therapy, alternative day administration of AKTi.

We considered both concurrent and sequential combination therapies. The two concurrent
combination therapy schedules are #6 and #7, where #6 was one time treatment of concurrent
therapy for the first four days (day 0-4), and where #7 was one time treatment of chemo for the
first 4 days (days 0-4) and alternative administration of AKTi.

The four single agent sequential therapy schedules (#8-#12) included different ordering of
chemo and AKTi. Some schedules set chemo treatment first, where #8 was chemo from day 0 to day
4 and then AKTi from day O to day 4, whereas #9 was chemo on day 0-4 and then alternating
administration of AKTi. The other schedule administrated AKTi first, where #10 was AKTi first for
day 0-4 and then chemo day 0-4. Finally, there were alternative applications of chemo and AKTi
twice, where #11 was chemo first for the first four days, followed by AKTi treatment for 4 days, and

where #12 was AKTi for the first four days, followed by 4-day application of chemo.

Optimization of AKTi schedules

In the model AKTi was initially administered with chemo for five cycles and then administered
without chemo (AKTi maintenance), as in the clinical trial. For each AKTi application, we assumed a
1-day application time. The scheduling parameter S consists of 5 variables, number of 1-day
applications (N.) at each cycle with chemo, length of treatment holiday at each cycle (L), starting
day of AKTi maintenance (M), number of applications (Ns) in AKTi maintenance phase and the

length of treatment holiday (Ls) each week since the stating day As. Our objective function to

identify an optimal schedule of the AKTi is f(S) = \/Zieck(Vi(S) —0.7V,)?, where k (=1,2,3,4)

denotes each cohort Ci.s*and Vp is the initial number of tumor cells (109 cells). We employed the

25


https://doi.org/10.1101/015925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015925; this version posted March 3, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

implicit filtering method to find the optimal S for each cohort.

Toxicity treatment: cumulative drug concentration of AKTi and chemo
The plasma concentration of AKTi was determined by solving a differential equation Z—f = —AX(t) +

A(t), where Ais a decay rate of AKTi and A(t) (defined in the above Mathematical modeling
section) denotes the application of AKTi. We assumed that the decay rate of AKTi is 0.35 per day

based on pharmacokinetic study of AKTi in patients (35). Similarly, plasma concentration of chemo
was obtained by solving a differential equation % = —uY(t) + C(t), where u (= 0.7 per day) is a

decay rate of chemo and C(t) denotes the application chemo (see Mathematical modeling section).
The cumulative drug concentration at time T is obtained by adding the areas under the curve of

X(t) (AKTi) and Y (t)(chemo) from O to T.
Statistical analysis

Matlab statistics toolbox was used to perform the Student’s t-test where no significance (ns)

denotes > 0.05, ** denotes P < 0.05, and *** denotes P < 0.01.
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Figure Legends:

Figure 1. Acquisition of historic clinical and biological data.

A, typical clinical data obtained from a clinical trial. Waterfall plots of the best responses in a
clinical trial (6). The percentage change from baseline for the best result is shown here. Adapted
from Molife et al (6), published in the Journal of Hematology & Oncology, copyright 2014
BioMed Central.

B, biological data that may explain the underlying mechanisms in treatment responses. (a)
Assessment of cell death (WM3918 cells, annexin-V) after 72 hr treatment with chemo
(carboplatin and paclitaxel), AKTi (MK2206), and the combination of chemo and AKTi. (b) The
measurement of cell death (WM3918) in a panel of 3D collagen-implemented spheroids. Cells
were treated with AKTi and chemo (carboplatin and paclitaxel) for 3, 6, and 9 days. Green,
viable cells; red, dead cells. Magnification 10x. (c) Treatment induces autophagy in cells. Leff,
fluorescence imaging of WM3918 cells treated as indicated for 72 hr and stained with acridine
orange (AO). Orange: aggregated AO, green: diffuse AO. Right, Quantification of staining.
Adapted from Rebecca et al (10) published in Pigment Cell & Melanoma Research, copyright

2014. John Wiley & Sons.
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Figure 2. Mathematical model development and validation.

A, Mathematical model development. (a) Schematic of a compartmental model composed of
three compartments, non-autophagy (blue), physiological autophagy (green), and non-
physiological autophagy (red). (b) Schematic that incorporates the responses to chemo. Black
arrows, increased rates during chemo; black crosses, the removal of the interaction during
therapy. (c) AKTi increases the transition rate from non-autophagy to both autophagy
phenotypes (black arrows) and blocks the transition from the autophagy to the non-autophagy
phenotype (black crosses). (d) Schematic of the combination of chemo and AKTi.

B, Model calibration. Predicted non-autophagy (blue), physiological autophagy (green), non-
physiological autophagy (red), total population (black line), and experimental cell counts (black
dots) on days 4, 6 and 8, under four conditions: no treatment; chemo (day 0-4, cyan bars), AKTi
(days 0, 2, 4 and 6, pink bars) and combination therapy (chemo on days 0-4 and AKTi on days
0, 2, 4 and 6) in cell lines WM 3918 (left) and M257 (right) melanoma cells. R-values are
reported for each case.

C, Validation. In a total of 12 different conditions (Fig. S1), each of the predicted total

populations (red bars) are compared with of the each experimental results (blue bars).
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Figure 3. Virtual cohort generation and clinical trial simulation

A, Virtual cohort generation. (a) Graphical representation of virtual patients partitioned based on
the cell death rate of the non-autophagy tumor population under chemo (cy) and the induction of
the autophagy from non-autophagy to physiological autophagy populations following exposure
to AKTi (ay). Both rates were low in patients in sub-cohort C4 (dark blue dots). cy was low but
ay was high in C, (dark green). Both rates were high in patients in C3 (orange). The tumor cells
in patients in C4 (pink) had a higher rate of ay but a lower rate of c¢y. (b) Empirical cumulative
distribution functions of patients (black line) and virtual patients (green line). The maximum
difference between two distributions is 0.14. Inlet: Box-Whisker plots of patients (left) and
sampled 500 virtual patients (right). x: mean, -: median, box: 25% - 75%, upper and lower
horizontal bar (-): 91-9%.(c) Mean doubling time of untreated tumor volume in virtual patients

from group P4 (top), P, (bottom). Dark blue: C4; dark green, C,; orange, Cs; and pink, C,.

B, Simulation of 6-month treatments in all of the virtual patients. (a) Waterfall plots of final tumor
volumes in 30 randomly selected patients from P, treated with arm 1. Box whisker plot of the
expected 6-month treatment outcomes in each sub-cohort C4.4 (x: mean, -: median, box: 25% -
75%, upper and lower horizontal bar (-): 91-9%). **, P < 0.05; ***, P < 0.01. Histogram shows
expected tumor volumes at the final day of treatment (day 180). (b) Waterfall plots of final tumor
volume in 30 randomly selected patients from P, treated with arm 2. Box whisker plot of the
expected 6-month treatment outcomes in each sub-cohort C;4 Histogram of expected tumor
volumes. (c) Waterfall plots of tumor volume response in 30 randomly selected patients from
both Py and P, treated with either arm 1 or arm 2 (randomly selected treatment). Box whisker
plot of the expected 6-month treatment outcomes in each sub-cohort C4-C,. Histogram of

expected tumor volumes (day 180).
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Figure 4. Potential predictive factors of the therapy to virtual patients.

A, Re-partitioning of P; based on the rate of autophagy induction in the transition from the non-
autophagy to physiological autophagy phenotypes under AKTi (ay), and the rate of transition
from the non-autophagy to non-physiological autophagy phenotypes (bp). Box whisker plot of
the expected 6-month treatment outcomes in the new sub-cohorts C;-C4 of P; (x: mean, -:
median, box: 25% - 75%, upper and lower horizontal bar (-): 91-9%). Cyan, C;; blue, C,. yellow,
Cs; and red, Cy4. **, P < 0.05; *** P < 0.01. Waterfall plots of final tumor volumes in 40
randomly selected patients from P;. The vertical line indicates no change in volume (0%) after
therapy.

B, Re-partitioning of P, based on two growth rates, those of non-autophagy (gy) and
physiological autophagy phenotype cells (gp). Box whisker plot of the expected 6-month
treatment outcomes in the new sub-cohorts C;-C4 of P,. Waterfall plots of final tumor volumes in
40 randomly selected patients from P.

C, Re-partitioning of all virtual patients based on the growth rate of non-autophagy tumor cells
(gn) and the transition rate from non-autophagy to non-physiological autophagy phenotype (bp).
Box whisker plot of the expected 6-month treatment outcomes in the new sub-cohorts C;*-Cy*.
Waterfall plots of the final tumor volumes in 40 randomly selected 40 patients treated with either

arm lor arm 2 (random assignment).
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Figure 5. Treatment optimization and predicted 5-year survival analysis

Kaplan-Meier curves in patients from cohort (A: C4, B: C,, C: C3, D: C4) when eight different
treatments were applied for 2 years, no treatment (black), five cycles of chemo only (yellow),
AKTi monotherapy following the Q3W schedule (red), AKTi monotherapy following the QOD
schedule (pink), combination therapy with arm 1 (blue) or arm 2 (cyan), and the optimum
therapy (green). Inlet bars, sum of cumulative drug (both AKTi and chemo) concentrations at

day 105 (first bar graph, same color scheme as in the survival curves) and year 2 (second bar
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Table 1. Optimized AKTi schedule for sub-cohort C+.4 (unit: day)

s After 5 cycles of combination
5 cycles of combination -
(AKTi only)
Treatment | Cycle length Start day Treatment | Cycle length
C* 1 42 168 1 7
C2* 1,3 21 105 1 7
C3* 1,3,5 19 95 1 7
Cs* 1,3,5 19 96 1,3 9
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Supplementary Materials and Methods

Supplementary Figure Legends

Figure S1. A, graphical representation of the 12 different schedules. B, representative image of

cells (WM3918 and M257) on day 16 treated with the schedules.
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Figure S2. The long-term effects of the therapy (#7).
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Figure S3. Histogram of Lin’s concordance correlation coefficients and estimated densities

based on 1000 samplings from the virtual cohort.
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Figure S4. Predictive factors of treatment response arm 1 to the patient cohorts P,. For each
parameter, a Students’ {-test was performed to assess if there is a significant difference in the
mean of each model parameter between complete responder (CR), partial responder (PR) and
stable diseases (SD). Statistical significance is indicated where ns denotes > 0.05, ** denotes

P<0.05 and *** denotes P < 0.01. Among 11 parameters, bp and ay discriminate CR, PR and

SD in P4+ most significantly.
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Figure S5. Predictive factors of treatment response arm 2 to the patient cohorts P,. Parameter

gy and gp discriminated CR, PR and SD most significantly.
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Figure S6. Predictive factors of treatment response either arm 1 or arm 2 to all patients (both P

and P,). Parameter gy and bp discriminated CR, PR and SD most significantly.
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Table S1. Estimated parameters (unit: 1/day)

Name Description M257 WM
3918
gn Growth rate of non-autophagy cells (N) 0.238 0.198
ap  Autophagy transition rate N — P 0.015 0.01
by Autophagy transition rate N —Q 0.01 0.01
TP Recovery rate P —> N 0.5 0.8
Ty Recovery rate Q — N 0.7 0.5
gr Growth rate of physiological autophagy cells ( P ) 0.19 0.195
qp Transition rate P — Q 0.05 0.01
To Recovery rate Q — P 0.09 0.02
Cn Increased non-autophagy cell death rate under chemo 0.3 0.1
Cp Increased physiological autophagy ( P ) cell death rate under 0.6 0.75
chemo
Co Increased transition rate P — Q under chemo 1.8 1.4
ay Increased transition rate N — P under AKTi 1.6 2.0
bp Increased transition rate N - Q under AKTi 0.15 0.15
dg Cell death rate of non-physiological autophagy (Q) 0.05 0.11
d, Delayed death rate of non-physiological autophagy (Q) 0.15 0.2
T Delayed time (unit: day) 6 9

A natural death rate (d,) was set to be d, = 0.01.
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