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Abstract

Despite their critical importance in maintaining the integrity of all cellular pathways,
the specific role of mutations on protein-protein interaction (PPI) interfaces as
cancer drivers, though known for some specific examples, has not been
systematically studied. We analyzed missense somatic mutations in a pan-cancer
cohort of 5,989 tumors from 23 projects of The Cancer Genome Atlas (TCGA) for
enrichment on PPl interfaces using e-Driver, an algorithm to analyze the mutation
pattern of specific protein regions such as PPl interfaces. We identified 128 PPI
interfaces enriched in somatic cancer mutations. Our results support the notion that
many mutations in well-established cancer driver genes, particularly those in critical
network positions, act by altering PPl interfaces. Finally, focusing on individual
interfaces we are also able to show how tumors driven by the same gene can have
different behaviors, including patient outcomes, depending on whether specific
interfaces are mutated or not.
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Introduction

Cancer patients are extremely heterogeneous in their response to treatments and
outcomes. The first step towards the understanding of this variability was the
identification of the multitude of genes that cause cancer, the so-called cancer driver
genes’. In that sense, the completion of The Cancer Genome Atlas (TCGA) and other
large-scale cancer genomics projects was a watershed event, as it provided the
critical mass of data needed to identify driver alterations in most types of cancers®*>.
Moreover, cancer types that previously were thought unique were found to
represent different subtypes with different outcomes depending on the specific
genes altered in each patient™®. Since the start of the TCGA project, the catalogue of
cancer drivers has increased and become more accurate'’ thanks not only to the
data generated by the project itself, but also to the development of multiple,
complimentary algorithms that search for cancer driver genes using different
approaches. Some of these methods identify cancer drivers by searching for genes
with higher than expected mutation rates'®’, whereas others identify genes that
tend to accumulate damaging mutations® or protein regions with an unusually high
proportion of mutations*?.

Nevertheless, the catalogue of cancer driver genes is far from complete and because
of extreme mutation diversity, it is hard to extend only by increasing the size of the
datasets'®. An complimentary approach towards that goal is to use other approaches
that integrate cancer mutation profiles with other types of biological data to
improve their analysis. For example, merging the mutation profile of cancer patients
with biological networks can be used to find pathways and protein complexes that
are recurrently mutated in cancer and are, therefore, likely drivers®. Note that these
pathways and complexes can only be identified when adding the mutation profiles of
all the components, because each individual protein is rarely mutated and missed by
the standard approaches. Similarly, we can also include information on protein
structure in our analysis to try to identify protein regions enriched in cancer
mutations®>**?°. The underlying idea for this approach is that genes (and the
proteins they encode) are not monolithic entities, but instead have different regions
usually responsible for different functions. Such regions may include, for example, an
enzymatic domain, a PPl domain or interface, or a phosphorylation site. In that
context, it is possible that a given protein acts as a driver only when a specific region
is mutated. Such fine grain approaches are not only capable of finding novel cancer
drivers, but they also can help explain some of the variability between tumors or
cancer cell lines apparently driven by the same gene®’’. We have previously
developed an algorithm, e-Driver, which exploits this feature to identify cancer
driver genes based on linear annotations of biological regions such as protein
domains®2. Despite encouraging results, the algorithm still had some limitations, as
many features, such as epitopes or interaction interfaces, may be discontinuous at
the sequence level and could not be analyzed.

Here we introduce an extended version of e-Driver that uses information on three-
dimensional structures of the mutated proteins to identify specific structural
features. Then, the algorithm analyzes whether these features are enriched in cancer
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somatic mutations and, therefore, are candidate drivers. While technically the
analysis can be applied to any structural feature or region, we focused our attention
to protein-protein interaction (PPI) interfaces. Many known cancer driver genes are
located in critical regions of the PPI network (interactome), usually in network hubs
or bottlenecks®®. Moreover, many cancer somatic alterations, including passenger
mutations, alter PPl interfaces, either destroying existing interactions or creating
new ones”?. Last but not least, despite their critical importance in every cellular
function, the specific role of PPl interfaces as potential cancer drivers has never been
systematically analyzed.

Our analysis identified PPI interfaces in 128 genes (interface driver genes), including
28 well-known cancer driver genes, which are strongly enriched in somatic missense
mutations. The role of the remaining 100 genes as cancer drivers will, obviously,
have to be verified experimentally, though we find some attributes that suggest that
some of them are indeed true drivers. For example, all the interface driver genes
(including the 28 known drivers) have an unusually high number of interactions, not
only when compared to the rest of the genes in the interactome, but also when
compared to other cancer driver genes. We also identified numerous interfaces in
genes related to the immune response, particularly in HLA-like and complement
molecules. The role of the immune system in cancer treatment and evolution is
gaining attention and we provide new details regarding which interactions seem to
be most affected by somatic mutations. Finally, we show how, depending on which
interface or protein region is altered, tumors thought to be driven by the same
cancer gene might have radically different behaviors and patient outcomes.

Results
e-Driver reveals driver interfaces

We assembled a data set consisting of 5,989 tumors from 23 cancer types from The
Cancer Genome Atlas*!(Supplementary Table 1). The number of samples per tumor
type ranged from 56 for uterine carcinosarcoma, to 975 for breast adenocarcinoma
(Supplementary Figure 1). Consistent with previous reports 2, the average number of
missense mutations per sample is highly variable among cancer types
(Supplementary Figure 2), with melanoma having the highest (429 missense
mutations per sample) and thyroid carcinoma the lowest (11 missense mutations per
sample).

We then compiled a list of currently known, high-confidence PPI interfaces using
18,651 protein structures downloaded from PDB (Online methods). In short, we
defined a PPI interface as the set of residues from a given chain that are within 5
angstroms of any residue from a different chain in the same set of PDB coordinates
(Figure 1a). We identified 122,326 different PPl interfaces between 70,199 PDB
chains (Online methods). Finally, we used BLAST to map the residues from the PDB
datasets to gene sequences in the ENSEMBL human genome. Overall we mapped the
PDB coordinates to 11,154 protein isoforms in 10,028 different human genes. The
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mapping covers roughly 30% of the length of human proteome, with 6% of the
proteome being mapped to at least one PPl interface.

Mutations from all cancer datasets (n = 868,508) seem to be distributed randomly
across the proteome, with approximately 30% of mutations (n = 285,942) being in
regions mapped to structures and around 6% in PPl interfaces (n = 67,174).
However, in the case of known cancer driver genes “!’, regions covered by
structures have between two and three times more missense mutations than
expected by chance (Supplementary Figures 3-4). This enrichment, while variable
and dependent on the cancer type, is particularly high in regions involved in the PPI
interfaces. For example, PPl interfaces from cancer driver genes have more than tree
times as many mutations as would be expected by chance in breast
adenocarcinoma, glioblastoma, lower grade glioma rectal adenocarcinoma or
uterine carcinosarcoma (Supplementary Figure 4) confirming that, indeed, PPI
interfaces might play key roles in carcinogenesis.

Next, we used e-Driver to analyze individual PPl interfaces in each of the 23
individual cancer projects, as well as in the Pan-cancer dataset consisting of the
combination of all of them. Briefly, e-Driver compares the observed number of
mutations in a protein region with the expected value according to the length of the
region and the length of the protein. We had previously used e-Driver to analyze the
distribution of cancer somatic mutations in PFAM domains and intrinsically
disordered regions and showed, for example, that different domains in the same
protein can be driving different types of cancer. Here, we adapted e-Driver to
analyze discontinuous features, such as PPl interfaces derived from 3D structures.
The whole process is exemplified in Figure 1 for PIK3R1 and its interaction interface
with PIK3CA.
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Figure 1 — Using e-Driver to analyze PIK3R1 PPI interfaces . a) The PDB coordinate set 3HMM contains 2 chains,
A (a region of PIK3CA, shown in gray) and B (a region of PIK3R1, shown in brown). Residues from PIK3R1 colored
in red make the interaction interface with PIK3CA. b) Using BLAST we then map these residues to the
corresponding ENSEMBL protein, define a PPl interface (shown in red). Note that the interface is not continuous
in sequence. c) Distribution of mutations in PIK3R1 across all cancer types. d) Using e-Driver we can identify the
interface between PIK3R1 and PIK3CA as strongly enriched in missense somatic mutations (p < 2e-6).

We identified a total of 128 interface driver genes in either one of the cancer
projects or in the Pan-cancer analysis (Figure 3, Supplementary Tables 3-26). There is
significant overlap between the genes identified in this analysis and lists of known
cancer genes. For example, 28 interface driver genes (22%) are included in a list of
high-confidence driver genes derived from previous analyses of TCGA data'’ (p < 1e-
10, odds ratio 10), and 26 are part of the Cancer Gene Census® (p < 1e-9, odds ratio
5). Note that our predicted interface driver genes do not include 268 and 476 genes
belonging to the TCGA high confidence driver genes list and CGC respectively. These
might not have been identified in our analysis not only because they do not have
driver interfaces, but also because we currently do not have a structure with a PPI
interface to match to them and, thus, they were not included our analysis. For
example, we only have a structure for 50% of all the mutations in known driver
genes, the rest might also be altering interactions, but we cannot know it until we
increase the structural coverage of the human proteome.
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Figure 2 — Genes with driver interfaces. X,Y coordinates reflect the q value (FDR) in the Pancancer analysis and
their lowest q value in all 23 project-specific analysis, respectively. Gray dashed lines are located at 0.01 FDR for
reference. Dots are colored, sized and labeled according to their FDR: genes with an FDR of 1 are colored in
white, are smaller and have no label whereas genes with lower FDRs are more red, bigger and labeled. Note that
there are 8 genes that are not in the plot because their FDR value was too small (FDR < 1e-15): TP53, EGFR, KRAS,
HRAS, NRAS, RPSAP58, PIK3CA and UBBP4. Some driver interfaces are also illustrated in the plot, with the chain
belonging to the gene with the driver interface colored in orange and the interacting chain colored in blue. The
PDB coordinates used are 3IFQ for CTNNB1, 1578 for ERBB2, 2FLU for NFE2L2, 3B13 for RAC1 and 3FGA for
PP2R1A.

Some of the driver interfaces identified here contain known cancer hotspots. For
example, NFE2L2, a gene involved in cancer progression and drug resistance, is
usually activated by mutations that disrupt the interaction with its repressor KEAP1.
We mapped 36 mutations from NFE2L2 to the structure showing its interaction with
its repressor KEAP1 (PDB 2FLU, shown in Figure 2). In agreement with previous
observations™, all but two of the mutations (94%) in NFE2L2 involve interface
residues, likely disrupting the interaction between the two proteins and activating
NFE2L2.

Our results also highlight similarities and differences across related driver genes. For
example, receptor tyrosine kinases, particularly members of the ERBB and FGFR
families, are mutated in many cancer samples and frequently act as drivers. We
found two ERBB proteins among the interface driver genes, ERBB2 and EGFR. These
two proteins are both strongly enriched in mutations in their dimerization interfaces,
while the ligand-binding region is rarely mutated (Supplementary Figure 5). We also
identified two proteins from the FGFR family: FGFR2 and FGFR3. Again, these two
proteins have similar mutation profiles, with both proteins having most of their
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missense mutations in the region that interacts with the ligand (Supplementary
Figure 5), while leaving the dimerization interface intact. This, however, contrasts
with the mutation pattern of the ERBB receptors, where, as we have explained, the
ligand-binding region is rarely mutated. Since some of the most successful
therapeutic antibodies against EGFR target the dimerization interface identified by
our method, it is possible that antibodies against FGF receptors need to target the
ligand-binding region in order to be successful*>.

Among the 100 interface driver genes that are not currently classified as cancer
drivers (Supplementary Table 2), we find several cases where literature and
biological evidence support their role in cancer. This is the case, for example, for
CDC42. This protein is a small GTPase, involved in cellular functions key to cancer
progression, such as cell migration and mitosis**. Moreover, it also interacts with 4
known cancer driver genes (ARGHAP32, WAS, PRKC1 and CDC42BP1), providing
more evidence as to its role as a cancer driver. Another subset of these 100 potential
new cancer driver genes have functions related to immunity. Given the growing
body of evidence showing that the immune system plays a key role in cancer
progression and patients outcomes®®, we analyzed these interfaces in more detail
to try to find novel insights about the interplay between tumors and immune cells.
For example, a recent pan-cancer analysis identified a subnetwork of proteins
around HLA class | as being recurrently mutated in cancer®®. Our analysis also
identified several antigen-presenting molecules as potential cancer drivers, including
one class | (HLA-C), one class Il (HLA-DRB1), and three HLA-like proteins (CD1C, CD1E
and MR1). Note, also, that HLA-C has been recently identified as a likely driver in
head and neck cancer™. Another interesting group of immune-related proteins that
identified in our analysis include several elements of the complement cascade (C3,
C4B and C5) or complement regulators and inhibitors (CFHR4, CFl and CPAMDS). The
complement molecules C3 and C4 have been previously associated with cancer
progression and activation of PI3K signaling®’, whereas C5a is suspected to inhibit
CD8 lymphocytes and natural killer (NK) cells, a subset of immune cells involved in
the immune response towards tumors 2.

Interface driver genes are network hubs

Cancer driver genes are known to occupy critical positions in the interactome, as
well as having more interactions and higher betweenness than the average gene®.
Since our method identifies genes strongly enriched in mutations in their PPI
interfaces, we hypothesized that they would also be located in these central
positions of the protein interaction network. To test this hypothesis, we used a PPI
network resulting from the merge of an unbiased experimental interactome and a
curated network from the literature®. In that network, interface driver genes tend
to interact between themselves more than expected by chance (p < 0.0001,
Supplementary Figures 6-7), though this seems to be a general property of cancer
driver genes. Moreover, interface driver genes have higher degree (number of
overall interactions) and betweenness than the average gene (Figure 3), supporting
our hypothesis. Remarkably, this is also true if we compare them to known cancer
drivers with no driver interfaces. These results are consistent with the hypothesis
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that the main driver mechanism of the genes identified in our analysis is the
alteration of their interaction interfaces.
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Figure 3 - Network properties of interface-driver genes. a) Most genes identified by e-Driver3D (shown in red)
cluster together with other cancer driver genes (shown in green). Genes are sized according to their number of
interactions (genes with more interactions are bigger and vice versa). b) Interface driver genes are critical
elements of the interactome. They have more interactions (higher degree, left panel) and betweenness (center
panel) than other cancer driver genes or the rest of the genes in the interactome. Moreover, interactions
between interface-driver genes (shown in dark blue, right panel) are more central (higher edge betweenness)
than other structurally solved interactions (shown in light blue).

Consequences of mutations in driver interfaces

Even if the genes that we identified have more mutations than expected in some of
their PPl interfaces, there are tumor samples with mutations in other regions of the
same genes. With that in mind, we wondered if there are consistent differences
between cancer samples belonging to each of these two groups. To explore this
issue, we first used proteomics data’® and compared the expression levels of
different proteins in tumors with mutations in the predicted driver interfaces with
that of tumors with mutations in other regions of the same gene. To limit the impact
of intrinsic tissue-variability in the protein expression levels, we limited our analysis
to tissue-specific driver interfaces.
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Though we could not analyze most of the interfaces due to lack of statistical power
(there were not enough samples with proteomics data in both groups), we did find
some interface-specific protein changes. For example, glioblastoma samples with
mutations in EGFR’s dimerization interface have higher levels of both EGFR and
phosphorylated EGFR (Y992 and Y1173) proteins than patients with other EGFR
mutations (Figure 4), suggesting that EGFR signaling is stronger in these patients.
Note that these results also agree with the hypothesis that the main molecular
mechanism driving cancer in these genes is the disruption of certain interactions, as
the cancer cells have different signaling levels depending on whether the gene is
mutated in the identified driver interfaces or in another region.
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Figure 4 - Protein expression changes induced by mutations in EGFR dimerization interface. a) Structure
showing an EGFR dimer in active conformation (based on“). The residues involved in the EGFR-EGFR interaction
for the left EGFR molecule are shown in red, the other EGFR protein is shown in blue, the two EGF ligands are
shown in green and the lipid bilayer in brown. b) Histogram showing that most glioblastoma mutations (black
bars) in EGFR are located in its dimerization interface (red bars). c) Protein expression in different glioblastoma
populations. Patients with mutations in EGFR’s dimerization interface (shown in red) have higher levels of EGFR
and phosphorylated EGFR proteins than those with other or no EGFR mutations (shon in green and blue
respectively).

Another example of interface-specific protein expression changes comes from TP53
and its interface with SV40 (Figure 5). Note that this interface is the same as the one
that TP53 uses to dimerize and to bind to DNA (Figure 5b). Patients from eight
different cancer types (bladder, breast, colon, endometrial, glioma, stomach, lung
and head and neck) with mutations in this interface had significantly higher levels of
TP53 protein than those with other or no TP53 mutations (Supplementary Figure 8).
Moreover, patients with breast cancer had significantly worse outcomes (Figure 5d),
suggesting that these mutations are more aggressive than other mutations in TP53
and that maybe different therapeutical approaches are needed in these cases. Note
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that traditional gene-centric analyses or the previous version of e-Driver cannot find
these differences among patient subpopulations.
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Figure 5 - Mutations in TP53 interface predict patient's outcomes. a) Our analysis identified the interface
between TP53 and SV40 (shown in gray and orange respectively) as strongly enriched in mutations (panel c). b)
This interface is the same as the one that TP53 uses to interact with other TP53 molecules (shown in dark blue)
and DNA (shown in light blue). d) Breast cancer patients with mutations in this interface (shown in red) have
worse outcomes than those with other or no TP53 mutations (shown in blue and red respectively).

Discussion

Here we explored the role of mutations in PPl interfaces as cancer driver events
using our e-Driver algorithm and the mutation profiles of 5,989 tumor samples from
23 different cancer types. Though the interaction interfaces of some cancer driver
genes have been studied before®”*?, this is the first time that three-dimensional
protein features, such as PPl interfaces, have been systematically used to identify
driver genes across large cancer datasets. Previous large scale analyses, including our
own, are either limited to linear features®*****, or do not define functional regions in
three-dimensional structures but, instead, identify de novo three-dimensional
clusters of mutations®>. Our analysis identified several driver PPl interfaces in known
cancer driver genes, such as TP53, HRAS, PIK3CA or EGFR, proving that our method
can find relevant genes and that alteration of interaction interfaces is a common
pathogenic mechanism of cancer somatic mutations. In fact, we found that cancer
driver genes, as a group, are strongly enriched (over two-fold in most cancer types)
in mutations in their PPl interfaces. Moreover, there is a strong correlation between
the fact that a cancer driver gene is recurrently mutated in its PPl interfaces and how
critical it is to the stability of the interactome in terms of both number of
interactions and network betweenness. We also identified a series of driver
interfaces in genes that are currently not known as cancer drivers. Some of these
genes interact with known cancer drivers or are related to key cancer functions, such
as the immune system, suggesting that they are, indeed relevant to carcinogenesis.
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Analysis of other genes with cancer driver interfaces is ongoing and we provide a
complete list of such genes in the supplementary materials, as well as in our on-line
resource Cancer3D™.

It is important to note that the analysis presented here was limited to high quality
interfaces, predicted either from solved structures or from close homology models.
However, about 70% of human proteome currently has no structural coverage. This
fraction of the proteome includes both low complexity or disordered regions, and
protein regions without available templates to model their 3D structures. Also,
structures of many complexes are still unknown. In these cases, even if we know the
structures of the subunits, we cannot define the PPI interfaces and these proteins
are excluded from our analysis. Finally, even though we did not explore this issue
here, there are other mutations that can have an impact in PPl interfaces, such as in-
frame indels or silent mutations*®. Therefore, the results presented here represent
only the tip of the iceberg of what can be achieved by including structural data in the
analysis of cancer mutation profiles. We expect that our method will improve not
only as more cancer genomes are added to existing repositories (increasing the
statistical power of the analysis), but also as the structural coverage of the human
proteome increases. We expect such increase to come from both new
experimentally determined structures in public databases and the use of improved
modeling tools*"*2.

We also found that tumors apparently driven by the same gene can have surprisingly
different behavior and outcomes depending on the specific PPI interface altered.
This adds to a growing body of evidence suggesting that the current gene-centric
paradigm in biology, while accurate in some cases, will not probably be enough to
explain the complex genotype-phenotype relationships*®°>. In the case of cancer, for
example, it is known that the two most common mutations in PIK3CA, E545K and
H1047L, contribute to carcinogenesis through different mechanisms*2. The same is
true for different types of mutations in KRAS >* or, as we have shown here, for
mutations in EGFR or TP53 among many others. All of the above suggests that, in
order to predict the outcome of a patient or the best treatment option we will need
to have more detailed knowledge about the consequences of a specific mutation
than just the cancer driver gene where it is located. Such increase in detail and
knowledge should include, not only information about the protein domain or PPI
interface of the gene being altered, but also data about mutations in other regions of
the network, as these can also influence the phenotype of a driver gene through
synthetic interations™.

Methods

All the raw data and algorithms used in this manuscript, as well as the results
presented, can be downloaded from http://github.com/eduardporta/e-Driver. All
the statistical calculations were done using R 3.1.0.

Mutation data. We downloaded level 3 mutation data from the TCGA data portal
(https://tcga-data.nci.nih.gov) for 5,989 tumor samples that belong to 23 different
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cancer types (Supplementary Table 1). We then used the Variant Effect Predictor
tool to derive the consequences of each mutation in the different protein isoforms
where it mapped®. We used gene and protein annotations from ENSEMBL version
72. We identified a total of 868,508 missense mutations in 19,196 proteins. Note
that we only analyzed the longest isoform of each gene in order to minimize
problems related to multiple testing.

Identification of the protein-protein interfaces. We identified 18,651 protein
structures with multiple chains in PDB (as of May 2014). Then, we analyzed all such
structures to find the residues implicated in PPl interfaces. To that end, we defined a
protein-protein interface in a chain as all the residues with a heavy atom within 5
angstroms of another heavy atom from a different chain, an intermediate value
between the 4 and 6 angstroms seen in other references’>’. If a chain was in
contact with multiple other chains, we defined a different interface for each chain-
chain pair. Note that any specific interface does not have to be linear in sequence
and that the same residue can be involved in multiple interfaces from different
structures.

Structure mapping. The mapping between ENSEMBL and PDB is the same as the one
used in Cancer3D. Briefly, we queried the full PDB (March 2014), including non-
human proteins, with every protein from ENSEMBL using BLAST. Every time we
identified a PDB-ENSEMBL pair with an e-value below 1e® we used the BLAST output
to map the residues from the ENSEMBL sequence to the PDB structure™®.

e-Driver analysis. We used e-Driver? to identify interfaces that are enriched in
somatic missense mutations. The algorithm calculates the statistical significance of
deviation from the null hypothesis that the mutations are distributed randomly
across the protein using a right-sided binomial test:

MT
MR

MT—-MR

PMRMT) = (0 ) (Prucreg (1 = Pusucneg)

Where “Pmutreg” is the ratio between the number of residues involved in the
interface and the number of aminoacids in the entire protein, “Mg” is the number of
mutations in the interface and “M<” is the total number of mutations in the protein.
Since it is possible that only a fraction of the protein is covered by the structure, we
adjusted the algorithm to limit all the parameters to the structure-mapped region of
the protein (for example “M;” refers to the total number of mutations in the region
of the protein covered by the specific structure being analyzed, not the absolute
total of mutations in the protein). The final step consists in correcting all the p values
for multiple testing using the Benjamini-Hochberg algorithm. We considered as
positives all of the interfaces with a g value below

PPl Network analysis. Given the large number of available human PPl networks and
the variability in their quality, we decided to use data from two recently published
high-quality networks®. The first one consists in a set of 11,621 protein-protein
interactions derived from the literature. In order to be in that network, an
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interaction must have been reported at least twice. The second network, described
in the same publication, contains 13,945 interactions validated by, at least, two
different experimental techniques. In our analysis, we used the network derived
from the merge of these two, which contains 21,509 interactions between 7,463
proteins (Supplementary Table 27). We calculated the different network properties
(node degree and node and edge betweenness) using the R package “iGraph”.

Finally, in order to find whether interface driver genes interact between themselves
more than expected we compared the observed number of interactions in the actual
network with that of 2,000 randomized networks. To estimate the distribution of z-
scores, we repeated this procedure 100 times and calculated the z-score in each
simulation. We also did this with known cancer driver genes from TCGA and CGC. A
set of 300 genes was picked at random from the network each of the 100 times to be
used as additional control.

Protein expression and clinical data analysis. We downloaded level 3 clinical and
protein expression data, whenever it was available, from the TCGA data portal. Then,
for each statistically significant interface, we classified each sample into one of three
groups: samples with mutations in the interface, samples with mutations in other
regions of the same protein and samples with no mutations in that protein.

Finally, in the case of proteomics data, we used a two-sided Wilcoxon test to identify
proteins with statistically significant differences between the first group and the
other two. As for the clinical data, we used the Cox proportional hazards model,
from the R package “survival”, to estimate whether mutation of a specific interface
was a predictive feature for survival (p < 0.01) after correcting by age.
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