
BIOINFORMATICS APPLICATIONS NOTE Vol. 00 no. 00 2015
Pages 1–2

BamHash: a checksum program for verifying the integrity
of sequence data
Arna Óskarsdóttir 1, Gı́sli Másson 1, and Páll Melsted 1,2 ∗

1 deCODE Genetics/Amgen, Reykjavı́k, Iceland
2 Faculty of Industrial Engineering, Mechanical Engineering and Computer Science,
University of Iceland, Reykjavı́k, Iceland
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Summary Large resequencing projects require a significant amount
of storage for raw sequences, as well as alignment files. Since the raw
sequences are redundant once the alignment has been generated, it
is possible to keep only the alignment files. We present BamHash, a
checksum based method to ensure that the read pairs in FASTQ files
match exactly the read pairs stored in BAM files, regardless of the
ordering of reads. BamHash can be used to verify the integrity of the
files stored and discover any discrepancies. Thus, BamHash can be
used to determine if it is safe to delete the FASTQ files storing raw
sequencing reads after alignment, without the loss of data.
Availability and Implementation The software is implemented in
C++, GPL licensed and available at
https://github.com/DecodeGenetics/BamHash
Contact pmelsted@hi.is

1 INTRODUCTION
Resequencing projects, where individuals are sequenced from a
species with a known reference genome, generate a significant
amount of raw sequences that are then aligned to the reference
genome. Data storage becomes an issue as the cost of sequencing
decreases and the throughput of current sequencing technologies
keeps increasing.

Raw sequencing reads are generally stored in FASTQ file format,
usually compressed. After read mapping the resulting alignment
is stored in a BAM file (Li et al., 2009). This BAM file is then
sorted and processed further, but most importantly it contains all
the original information of the FASTQ file. Sorted BAM files yield
a better compression, compared to unsorted BAM files, as well
as allowing random lookup over genomic regions. For this reason
almost all post-alignment analysis, e.g. variant calling, realignment,
and local assembly are done on the sorted BAM file, rather than the
original FASTQ file.

Since the BAM file contains all the information of the FASTQ
file it is justifiable to delete the FASTQ file after alignment. After
all, the contents of the FASTQ file can be regenerated from BAM
file.

However, before deleting the FASTQ file, we need to be sure that
there is no loss of data, i.e. that the sequences in the FASTQ file are

∗to whom correspondence should be addressed

exactly the same as the sequences in the BAM file. The two files
could differ due to a number of reasons. Any errors in the alignment
pipeline could generate inconsistent files.

We present BamHash, a tool for verifying the data integrity
between a FASTQ and a BAM file. The program computes a 64-
bit fingerprint from the sequences and read names for both FASTQ
and BAM files. The method is highly sensitive to changes in the
input so a change in a single nucleotide will result in different
fingerprints; the probability of generating the same fingerprint by
chance is astronomically small. The role of this tool is to flag any
FASTQ and BAM files that have different fingerprints and mark the
FASTQ files as unsafe for deletion.

BamHash plays the same role as the md5sum program,
which computes a fingerprint of files. Comparing md5sum
fingerprints (Rivest, 1992) of FASTQ and BAM files would not yield
a comparable result, since the formatting and ordering are different.
Our method is fast and memory efficient; it can compute the
fingerprint of a BAM file from 30-fold coverage human sequencing
experiment in 30 minutes.

2 METHODS
The information for the sequencing reads, namely the read name, sequence
and quality values are stored differently in FASTQ and BAM files, but can
easily be parsed and recovered. The internal order of reads is generally not
conserved, unless guaranteed by the alignment software. Since BAM files
sorted by genomic coordinates are the norm, we cannot expect to maintain
the order.

Thus we need to compare the two files as sets, or rather multisets, of items.
To do this we use a hash function h for each item and reduce all hash values
using a commutative binary operation. The commutative property ensures
that the final result is independent of the ordering of the reads.

For the commutative binary operation, the XOR function is a natural
candidate for sets. However, XOR has the property that each value is it’s
own inverse, if an item x is repeated twice in the input, the hash values will
cancel each other since h(x) ⊕ h(x) = 0. Normally, we do not expect to
see repeated items since read names tend to be unique, however if the read
names have been stripped and quality values are absent we cannot guarantee
that this holds. For this reason we chose to work with the sum of hash values
as 64-bit integers.

By using a hash function we ensure that the resulting fingerprint is
sensitive to any changes in the input. For BamHash, we chose the MD5 hash
function. Whereas MD5 was developed for cryptographic purposes, making

c© Oxford University Press 2015. 1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2015. ; https://doi.org/10.1101/015867doi: bioRxiv preprint 

https://doi.org/10.1101/015867
http://creativecommons.org/licenses/by/4.0/


Óskarsdóttir et al

Algorithm 1 Checksum for paired sequences
function HASH-UPDATE-BAM(r)

s← r.name
if r is first in pair then

s← s+ “/1”
else

s← s+ “/2”
if r is on reverse strand then

r.seq← REVERSE-COMPLEMENT(r.seq)
s← s+ r.seq + r.qual
return MD5(s)

function HASH-UPDATE-FASTQ(r)
s← r.name + r.seq + r.qual
return MD5(s)

function HASH-FILE(f )
H ← 0
for all reads r in f do

if f is a BAM file then
H ←H + (HASH-UPDATE-BAM(r) ) mod 264

else
H ←H + (HASH-UPDATE-FASTQ(r) ) mod 264

return H

it hard to forge an MD5 signature, we only rely on the sensitivity of the hash
function to catch accidental changes. It should be noted that the proposed
method cannot guarantee that it would be too hard for a malicious agent to
modify the input to produce any given fingerprint.

2.1 Implementation
The pseudo-code for the method is given in Algorithm 1. For FASTQ files,
the input for paired reads is given by two FASTQ files. Each read in the
FASTQ file is processed and the read names for pairs is modified to end in /1
or /2, if the read wasn’t already in this format. For BAM files, a single BAM
file is given and the flags are used to determine whether each read is the first
or second in a read pair. Furthermore, reads that are mapped to the reverse
strand have the reverse complement of the sequence stored in the BAM file
to aid compression. For these reads we reconstruct the original sequence to
match what was stored in the corresponding FASTQ file. The program is

written in C++ and uses the SeqAn library (Döring et al., 2008) for parsing
FASTQ, gzip compressed FASTQ and BAM files.

3 RESULTS
To assess the performance of BamHash, we compared the running
time for processing BAM files to viewing with Samtools. The
dataset chosen was a whole genome sequencing experiment, aligned
to GRCh38 Human reference using BWA-MEM. All datasets were
generated at the laboratory at deCODE Genetics and were processed
with the same pipeline (Gudbjartsson et al., 2014). The BAM file
consists of 832 million read pairs at 38× coverage. BamHash
required 38 minutes to compute the hash values, whereas Samtools
required 49 minutes to parse the BAM file and count lines. We note
that the program is largely I/O bound. It runs on a single core, which
is underutilized, as most of the time is spent waiting for data from
the disk.
4 DISCUSSION
The role of BamHash is to detect differences between the read sets
of raw FASTQ and aligned BAM files. This discrepancy can arise
due to mistakes in the pipeline, bugs in alignment code or disk
failures. When the data integrity has been verified, the original
FASTQ files can be safely discarded, thus freeing up storage space.
Additionally, BamHash will be useful when porting alignments to
a new reference genome. Such a pipeline would create intermediate
FASTQ files, which would then be aligned to the new reference. The
old BAM file can be removed only if the BamHash signature agrees
with the newly created alignment.

REFERENCES
Döring, Andreas, David Weese, Tobias Rausch, and Knut Reinert.

SeqAn an efficient, generic C++ library for sequence analysis.
BMC bioinformatics 9.1 (2008): 11.

Daniel F. Gudbjartsson et al. Large-scale whole-genome sequencing
of the Icelandic population. Nature Genetics. In press.

Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan,
Nils Homer, Gabor Marth, Goncalo Abecasis, and Richard
Durbin. The sequence alignment/map format and SAMtools.
Bioinformatics 25.16 (2009): 2078-2079.

Rivest,Ronald. RFC 1321: the MD5 message-digest algorithm.
Internet Engineering Task Force (1992).

2

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2015. ; https://doi.org/10.1101/015867doi: bioRxiv preprint 

https://doi.org/10.1101/015867
http://creativecommons.org/licenses/by/4.0/

