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Abstract:

Polygenic risk scores have shown great promise in predicting complex disease
risk, and will become more accurate as training sample sizes increase. The
standard approach for calculating risk scores involves LD-pruning markers
and applying a P-value threshold to association statistics, but this discards
information and may reduce predictive accuracy. We introduce a new method,
LDpred, which infers the posterior mean causal effect size of each marker
using a prior on effect sizes and LD information from an external reference
panel. Theory and simulations show that LDpred outperforms the
pruning/thresholding approach, particularly at large sample sizes.
Accordingly, prediction R? increased from 20.1% to 25.3% in a large
schizophrenia data set and from 9.8% to 12.0% in a large multiple sclerosis
data set. A similar relative improvement in accuracy was observed for three
additional large disease data sets and when predicting in non-European
schizophrenia samples. The advantage of LDpred over existing methods will
grow as sample sizes increase.

Introduction
Polygenic risk scores (PRS) computed from genome-wide association study (GWAS)
summary statistics have proven valuable for predicting disease risk and
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understanding the genetic architecture of complex traits. PRS were used to predict
genetic risk in a schizophrenia GWAS for which there was only one genome-wide
significant locus! and have been widely used to predict genetic risk for many traits!-
15, PRS can also be used to draw inferences about genetic architectures within and
across traits1213.16-18. As GWAS sample sizes grow the prediction accuracy of PRS
will increase and may eventually yield clinically actionable predictions16:19-21,
However, as noted in recent work®, current PRS methods do not account for effects
of linkage disequilibrium (LD), which limits their predictive value, especially for
large samples. Indeed, our simulations show that, in the presence of LD, the
prediction accuracy of the widely used approach of LD-pruning followed by P-value
thresholding?6891213151619.20 f3]ls short of the heritability explained by the SNPs
(Figure 1 and Supplementary Figure 1; see Online Methods).

One possible solution to this problem is to use one of the many available prediction
methods that require genotype data as input, including genomic BLUP—which
assumes an infinitesimal distribution of effect sizes—and its extensions to non-
infinitesimal mixture priors?2-28, However, these methods are not applicable to
GWAS summary statistics when genotype data are unavailable due to privacy
concerns or logistical constraints, as is often the case. In addition, many of these
methods become computationally intractable at the very large sample sizes (>100K
individuals) that would be required to achieve clinically relevant predictions for
most common diseases16.19.20,

In this study we propose a Bayesian polygenic risk score, LDpred, which estimates
posterior mean causal effect sizes from GWAS summary statistics assuming a prior
for the genetic architecture and LD information from a reference panel. By using a
point-normal mixture prior262° for the marker effects, LDpred can be applied to
traits and diseases with a wide range of genetic architectures. Unlike LD-pruning
followed by P-value thresholding, LDpred has the desirable property that its
prediction accuracy converges to the heritability explained by the SNPs as sample
size grows (see below). Using simulations based on real genotypes we compare the
prediction accuracy of LDpred to the widely used approach of LD-pruning followed
by P-value thresholding?.6:8912,13,1516,19,20.30 a5 well as other approaches that train on
GWAS summary statistics. We apply LDpred to seven common diseases for which
raw genotypes are available in small sample size, and to five common diseases for
which only summary statistics are available in large sample size.

Results

Overview of Methods

LDpred calculates the posterior mean effects from GWAS summary statistics
conditional on a genetic architecture prior and LD information from a reference
panel. The inner product of these re-weighted effect sizes with test sample
genotypes is the posterior mean phenotype and thus, under the model assumptions
and available data, the best unbiased prediction (see Online Methods). The prior for
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the effect sizes is a point-normal mixture distribution, which allows for non-
infinitesimal genetic architectures. The prior has two parameters, the heritability
explained by the genotypes, and the fraction of causal markers (i.e. the fraction of
markers with non-zero effects). The heritability parameter is estimated from GWAS
summary statistics, accounting for sampling noise and LD31-33 (see Online Methods).
The fraction of causal markers is allowed to vary and can be optimized with respect
to prediction accuracy in a validation data set, analogous to how P-value thresholds
are varied in standard PRS. We approximate LD using data from a reference panel
(e.g. independent validation data). The posterior mean effect sizes are estimated via
Markov Chain Monte Carlo (MCMC), and applied to validation data to obtain
polygenic risk scores. In the special case of no LD, posterior mean effect sizes with a
point-normal prior can be viewed as a soft threshold, and can be computed
analytically (Supplementary Figure 2; see Online Methods). We have released
open-source software implementing the method (see Web Resources).

A key feature of LDpred is that it relies on GWAS summary statistics, which are often
available even when raw genotypes are not. In our comparison of methods we
therefore focus primarily on polygenic risk scores that rely on GWAS summary
statistics. The main approaches that we compare LDpred with are listed in Table 1.
These include Polygenic Risk Score using all markers (PRS-all), LD-pruning followed
by P-value thresholding (P+T) and LDpred specialized to an infinitesimal prior
(LDpred-inf) (see Online Methods). We note that LDpred-inf is an analytic method,
since posterior mean effects are closely approximated by:

_ M o
E(,B|,B,D)z<N—h§I+D> B, (D

where D denotes the LD matrix between the markers in the training data and
denotes the marginally estimated marker effects (see Online Methods). LDpred-inf
(using GWAS summary statistics) is analogous to genomic BLUP (using raw
genotypes), as it assumes the same prior.

Simulations

We first considered simulations with simulated genotypes (see Online Methods).
Accuracy was assessed using squared correlation (prediction R?) between observed
and predicted phenotype. The Bayesian shrink imposed by LDpred generally
performed well in simulations without LD (Supplementary Figure 3); in this case,
posterior mean effect sizes can be obtained analytically (see Online Methods).
However, LDpred performed particularly well in simulations with LD
(Supplementary Figure 4); the larger improvement (e.g. vs. P+T) in this case
indicates that the main advantage of LDpred is in its explicit modeling of LD.
Simulations under a Laplace mixture distribution prior gave similar results (see
Supplementary Figure 5). Below we focus on simulations with real Wellcome
Trust Case Control Consortium genotypes, which have more realistic LD properties.
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Using real Wellcome Trust Case Control Consortium (WTCCC) genotypes34 (15,835
samples and 376,901 markers, after QC), we simulated infinitesimal traits with
heritability set to 0.5 (see Online Methods). We extrapolated results for larger
sample sizes (Neg) by restricting the simulations to a subset of the genome (smaller
M), leading to larger N/M. Results are displayed in Figure 2a. LDpred-inf and
LDpred (which are expected to be equivalent in the infinitesimal case) performed
well in these simulations—particularly at large values of Ny, consistent with the
intuition from Equation (1) that the LD adjustment arising from the reference panel

2
LD matrix (D) is more important when Nth is large. On the other hand, P+T

performs less well, consistent with the intuition that pruning markers loses
information.

We next simulated non-infinitesimal traits using real WTCCC genotypes, varying the
proportion p of causal markers (see Online Methods). Results are displayed in
Figure 2b-d. LDpred outperformed all other approaches including P+T,
particularly at large values of N/M. For p=0.01 and p=0.001, the methods that do
not account for non-infinitesimal architectures (Unadjusted PRS and LDpred-inf)
perform poorly, and P+T is second best among these methods. Comparisons to
additional methods are provided in Supplementary Figure 6; in particular, LDpred
outperforms other recently proposed approaches that use LD from a reference
panel1435,

Besides accuracy (prediction RZ), another measure of interest is calibration. A
predictor is correctly calibrated if a regression of the true phenotype vs. the
predictor yields a slope of 1, and mis-calibrated otherwise; calibration is
particularly important for risk prediction in clinical settings. In general, unadjusted
PRS and P+T yield poorly calibrated risk scores. On the other hand, the Bayesian
approach provides correctly calibrated predictions (if the prior accurately models
the true genetic architecture and the LD is appropriately accounted for), avoiding
the need for re-calibration at the validation stage. The calibration slopes for the
simulations using WTCCC genotypes are given in Supplementary Figure 7. As
expected, LDpred provides much better calibration than other approaches.

Application to WTCCC disease data sets

We compared LDpred to other summary statistic based methods across the 7
WTCCC disease data sets34, using 5-fold cross validation (see Online Methods).
Results are displayed in Figure 3. (We used Nagelkerke R? as our primary figure of
merit in order to be consistent with previous work!.%13.15 but we also provide
results for observed-scale R?, liability-scale R? [ref. 3¢] and AUC37 in Supplementary
Table 1; the relationship between these metrics is discussed in Online Methods).

LDpred attained significant improvement in prediction accuracy over P+T for T1D
(P-value=4.4e-15), RA (P-value=1.2e-5), and CD (P-value=2.7e-8), similar to
previous results on the same data using BSLMM?7. For these three immune-related
disorders the MHC region explains a large amount of the overall variance,


https://doi.org/10.1101/015859

bioRxiv preprint doi: https://doi.org/10.1101/015859; this version posted March 2, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

representing an extreme special case of a non-infinitesimal genetic architecture. We
note that LDpred and BSLMM both explicitly model non-infinitesimal architectures;
however, unlike LDpred, BSLMM requires full genotype data and cannot be applied
to large summary statistic data sets (see below). For the other diseases with more
complex genetic architectures the prediction accuracy of LDpred was similar to P+T,
potentially due to insufficient training sample size for modeling LD to have a large
impact. The inferred heritability parameters and optimal p parameters for LDpred,
as well as the optimal thresholding parameters for P+T, are provided in
Supplementary Table 2. The calibration of the predictions for the different
approaches is shown in Supplementary Table 3 Consistent with our simulations,
LDpred provides much better calibration than other approaches.

Application to five large summary statistic data sets

We applied LDpred to five diseases—schizophrenia (SCZ), multiple sclerosis (MS),
breast cancer (BC), type 2 diabetes (T2D) and coronary artery disease (CAD)—for
which we had GWAS summary statistics for large sample sizes (ranging from 27K to
86K individuals) and raw genotypes for an independent validation data set (see
Online Methods). Prediction accuracies for LDpred and other methods are reported
in Figure 4 (Nagelkerke R?) and Supplementary Table 4 (other metrics).

For all 5 diseases, LDpred provided significantly better predictions than other
approaches (for the improvement over P+T the P-values were 6.3e-47 for SCZ, 2.0e-
14 for MS, 0.020 for BC, 0.004 for T2D, and 0.017 for CAD). The relative increase in
Nagelkerke R? over other approaches ranged from 11% for T2D to >25% for SCZ.
This is consistent with our simulations showing larger improvements when the trait
is highly polygenic, as is known to be the case for SCZ15. We note that for both CAD
and T2D, the accuracy attained using >60K training samples from large meta-
analyses (Figure 4) is actually lower than the accuracy attained using <5K training
samples from WTCCC (Figure 3). This resultis independent of the prediction
method applied, and demonstrates the challenges of potential heterogeneity in large
meta-analyses (although prediction results based on cross-validation in a single
cohort should be viewed with caution??).

Parameters inferred by LDpred and other methods are provided in Supplementary
Table 5, and calibration results are provided in Supplementary Table 6, with
LDpred again attaining the best calibration. Finally, we applied LDpred to predict
SCZ risk in non-European validation samples of both African and Asian descent (see
Online Methods). Although prediction accuracies were lower in absolute terms, we
observed similar relative improvements for LDpred vs. other methods
(Supplementary Tables 7 and 8).

Discussion

Polygenic risk scores are likely to become clinically useful as GWAS sample sizes
continue to grow!%19, However, unless LD is appropriately modeled, their predictive
accuracy will fall short of their maximal potential. Our results show that LDpred is
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able to address this problem—even when only summary statistics are available—by
estimating posterior mean effect sizes using a point-normal prior and LD
information from a reference panel. Intuitively, there are two reasons for the
relative gain in prediction accuracy of LDpred polygenic risk scores over LD-pruning
followed by P-value thresholding (P+T). First, LD-pruning discards informative
markers, and thereby limits the overall heritability explained by the markers.
Second, LDpred accounts for the effects of linked markers, which can otherwise lead
to biased estimates. These limitations hinder P+T regardless of the LD-pruning and
P-value thresholds used.

Although we focus here on methods that only require summary statistics, we note
the parallel advances that have been made in methods that require raw
genotypes?325-28.38-40 35 training data. Some of those methods employ a Variational
Bayes (Iterative Conditional Expectation) approach to reduce their running
time?25263840 (and report that results are similar to MCMC#?), but we found that
MCMC generally obtains more robust results than Variational Bayes when analyzing
summary statistics, perhaps because the LD information is only approximate. Our
use of a point-normal mixture prior is consistent with some of those studies?¢,
although different priors were used by other studies, e.g. a mixture of normals2427,
One recent study proposed an elegant approach for handling case-control
ascertainment while including genome-wide significant associations as fixed
effects39; however, the correlations between distal causal SNPs induced by case-
control ascertainment do not impact summary statistics from marginal analyses,
and explicit modeling of non-infinitesimal effect size distributions will appropriately
avoid shrinking genome-wide significant associations (Supplementary Figure 2).

While LDpred is a substantial improvement on existing methods for conducting
polygenic prediction using summary statistics, it still has limitations. First, the
method’s reliance on LD information from a reference panel requires that the
reference panel be a good match for the population from which summary statistics
were obtained; in the case of a mismatch, prediction accuracy may be compromised.
One potential solution is the broad sharing of summary LD statistics, which has
previously been advocated in other settings*l. Second, the point-normal mixture
prior distribution used by LDpred may not accurately model the true genetic
architecture, and it is possible that other prior distributions may perform better in
some settings. Third, in those instances where raw genotypes are available, fitting
all markers simultaneously (if computationally tractable) may achieve higher
accuracy than methods based on marginal summary statistics. Fourth, as with other
prediction methods, heterogeneity across cohorts may hinder prediction accuracy;
our results suggest that this could be a major concern in some data sets. Fifth, joint
analysis of multiple traits—which can potentially increase prediction accuracy—is
not considered here, and remains as a future direction*2. Sixth, we assume that
summary statistics have been appropriately corrected for genetic ancestry, but if
this is not the case then the prediction accuracy may be misinterpreted2?, or may
even decrease®3. Seventh, our analyses have focused on common variants; LD
reference panels are likely to be inadequate for rare variants, motivating future
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work on how to treat rare variants in polygenic risk scores. Finally, we have not
considered the advantages of different prior distributions across genomic regions?28
or functional annotation classes**, whose incorporation into methods for polygenic
prediction remains as a future direction. Despite these limitations, LDpred is likely
to be broadly useful in leveraging summary statistic data sets for polygenic
prediction.

Online Methods

Phenotype model

Let Y be a NX1 phenotype vector and X a NXM genotype matrix, where the N is the
number of individuals and M is the number of genetic variants. For simplicity, we
will assume throughout that the phenotype Y and individual genetic variants X; have
been mean-centered and standardized to have variance 1. We model the phenotype
as a linear combination of M genetic effects and an independent environmental
effecte, i.e.Y = XM X;B; + £, where X; denotes the i'th genetic variant, f; its true
effect, and ¢ the environmental and noise contribution. In this setting the
(marginal) least square estimate of an individual marker effect is §; = X/Y/N. For
clarity we implicitly assume that we have the standardized effect estimates available
to us as summary statistics. In practice, we usually have other summary statistics,
including the P-value and direction of the effect estimates, from which we infer the
standardized effect estimates. First, we exclude all markers with ambiguous effect
directions, i.e. A/T and G/C SNPs. Second, from the P-values we obtain Z-scores, and
multiply them by the sign of the effects (obtained from the effect estimates or effect
direction). Finally we approximate the least square estimate for the effect by
Bi = s; j—‘ﬁ , Where s; is the sign, and z; is the Z-score as obtained from the P-value. If

the trait is a case control trait, this transformation from the P-value to the effect size
can be thought of as being an effect estimate for an underlying quantitative liability
or risk trait#s.

Polygenic risk score using all markers (PRS-all)

The polygenic risk score using all genotyped markers is simply the sum of all the
estimated marker effects for each allele, i.e. the standard unadjusted polygenic score
for the i individual is S; = ¥}, X;; B;.

LD-pruning followed by thresholding (P+T)

In practice, the prediction accuracy is improved if the markers are LD-pruned and P-
value pruned a priori. Informed LD-pruning (also known as LD-clumping), which
preferentially prunes the less significant marker, often yields much more accurate
predictions than pruning random markers. Applying a P-value threshold, i.e. only
markers that achieve a given significance thresholds are used, also improves
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prediction accuracies for many traits and diseases. In this paper the LD-pruning
followed by thresholding approach refers to the strategy of first applying informed
LD-pruning with r? threshold of 0.2, and subsequently P-value thresholding where
the P-value threshold is optimized over a grid with respect to prediction accuracy in
the validation data.

Bayesian approach in the special case of no LD (Bpred)

Under a model, the optimal linear prediction given some statistic is the posterior
mean prediction. This prediction is optimal in the sense that it minimizes the
prediction error variance and is unbiased in the Bayesian sense*¢. Under the linear
model described above, the posterior mean phenotype given GWAS summary
statistics and LD is

M
E(Y[3.0) = )~ X'E(EI.D).

Here ff denotes a vector of marginally estimated least square estimates as obtained
from the GWAS summary statistics, and D refers to the observed genome-wide LD
matrix in the training data, i.e. the samples for which the effect estimates are
calculated. Hence the quantity of interest is the posterior mean marker effect given
LD information from the GWAS sample and the GWAS summary statistics. In
practice we may not have this information available to us and are forced to estimate
the LD from a reference panel. In our analysis we used the independent validation
data set to estimate the local LD structure in the training data.

The variance of the trait can be partitioned into a heritable part and the noise, i.e.
Var(Y) = hi0 + (1 — h2)I, where hj denotes the heritability explained by the
genotyped variants, and © = %is the SNP-based genetic relationship matrix. We

can obtain a trait with the desired covariance structure if we sample the betas

2

. . . h .
independently with mean 0 and variance 7". Note that if the effects are

independently sampled then this also holds true for correlated genotypes, i.e. when
there is LD. However, LD will increase the variance of heritability explained by the
genotypes as estimated from the data (due to fewer effective markers).

If we assume that all samples are independent, and that all markers are unlinked
hZ
and have effects drawn from a Gaussian distribution, i.e. 8; ~;;4 N (0, ﬁg) This is an

infinitesimal model*” where all markers are causal and under it the posterior mean
can be derived analytically, as shown by Dudbridge!¢:

- - h? -
E(B:18) = E(B:18) = —2— 3.
(B:1B) = E(Bil ) <h5+ o /N)ﬁl
Interestingly, with unlinked markers this infinitesimal shrink factor times the

h2
. s . g
heritability, i.e. <h§+M/N

)hg, is the expected squared correlation between the
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polygenic risk score using all (unlinked) markers and the phenotype, regardless of
the underlying genetic architecture*849,

An arguably more reasonable prior for the effect sizes is a non-infinitesimal model,
where only a fraction of the markers are causal. For this consider the following

Gaussian mixture prior
2

N (0 g ) b
,—— | w. prob.
Bi ~iia Mp P P

0 w.prob. 1 —p,
where p is the fraction of markers that is causal, is an unknown parameter. Under
this model the posterior mean can be derived as (see Supplementary Note):

EGuI) = (h’;—%> B,

where
p eZ(h;/Mp-H/N)
- Jh2 I Mp+1/N
pi i ‘[}iz
p ez(hj/Mpn/N) + l-p 2N
Jh I Mp+1/N VI/N

is the posterior probability of an individual marker being causal. In our simulations
we refer to this Bayesian shrink without LD as Bpred.

Bayesian approach in the presence of LD (LDpred)

If we allow for loci to be linked, then we can derive posterior mean effects
analytically under a Gaussian infinitesimal prior (described above). We call the
resulting method LDpred-inf and it represents a computationally efficient special
case of LDpred. If we assume that distant markers are unlinked, the posterior mean
for the effect sizes within a small region / under an infinitesimal model, is well
approximated by

-1

B(BF.D) ~ (1 +D1) B, (L.

Here D, denotes the regional LD matrix within the region of LD and ' denotes the
least square estimated effects within that region. The approximation assumes that
the heritability explained by the region is small and that LD with SNPs outside of the
region is negligible. Interestingly, under these assumptions the resulting effects
approximate the standard mixed model genomic BLUP effects. LDpred-inf is
therefore a natural extension of the genomic BLUP to summary statistics. The
detailed derivation is given in the Supplementary Note. In practice we do not know
the LD pattern in the training data, and we need to estimate it using LD in a
reference panel.

Deriving an analytical expression for the posterior mean under a non-infinitesimal
Gaussian mixture prior is difficult, and we therefore approximate it numerically in
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LDpred. The Bayesian shrink under the infinitesimal model implies that we can
solve it either using a Gauss-Seidel method>%5! , or via MCMC Gibbs sampling. The
Gauss-Seidel method iterates over the markers, and obtains a residual effect
estimate after subtracting the effect of neighboring markers in LD. It then applies a
univariate Bayesian shrink, i.e. the Bayesian shrink for unlinked markers (described
above). It then iterates over the genome multiple times until convergence is
achieved. However, we found the Gauss-Seidel approach to be sensitive to model
assumptions, i.e. if the LD matrix used differed from the true LD matrix in the
training data we observed convergence issues. We therefore decided to use an
approximate MCMC Gibbs sampler instead to infer the posterior mean. The
approximate Gibbs sampler used by LDpred is similar the Gauss-Seidel approach,
except that instead of using the posterior mean to update the effect size, we sample
the update from the posterior distribution. Compared to the Gauss-Seidel method
this seems to lead to less serious convergence issues. The approximate Gibbs
sampler is described in detail in the Supplementary Note. To ensure convergence,
we shrink the posterior probability of being causal by a fixed factor at each big
g ), where A2
R 9
is the estimated heritability using an aggregate approach (see below), and (E;)i is
the estimated genome-wide heritability at each big iteration. To speed up
convergence in the Gibbs-sampler we used Rao-Blackwellization and observed that
good convergence was usually attained with less than 100 iterations in practice (see
Supplementary Note).

iteration step i, where the shrinkage factor is defined as ¢ = min(1,

Estimation of heritability parameter
In the absence of population structure and assuming i.i.d. mean-zero SNP effects, the
following equation has been shown to hold

where [; = Y [rz(j, k) — #}, is the LD score for the jth SNP summing over k

neighboring SNPs in LD. Taking the average of both sides over SNPs and
rearranging, we obtain a heritability estimate

r2_ (2 —1)Ml

2 7 N
where y2 = Zj%, and [ = X % We call this the aggregate estimator, and it is
equivalent to LD score regression31-33 with intercept constrained to 1 and SNP j

weighted by li Prediction accuracy is not predicated on the robustness of this
j

estimator, which will be evaluated elsewhere. Following the conversion proposed
by Lee et al.®2, we also reported the heritability on the liability scale.

Simulations
We performed three types of simulations: (1) simulated traits and simulated
genotypes; (2) simulated traits, simulated summary statistics and simulated
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validation genotypes; (3) simulated traits using real genotypes. For most of the

simulations we used the point-normal model for effect sizes as described above:
2

N (0 hg) b
,—— | w. prob.
Bi ~iia Mp P P

0 w.prob. 1 —p.
For some of our simulations (Supplementary Figure 5) we sampled the non-zero
effects from a Laplace distribution instead of a Gaussian distribution. For all of our
simulations we used four different values for p (the fraction of causal loci). For
some of our simulations (Supplementary Figure 1) we sampled the p parameter
from a Beta(p,1- p) distribution. The simulated trait was then obtained by summing
up the allelic effects for each individual, and adding a Gaussian distributed noise
term to fix the heritability. The simulated genotypes were sampled from a standard
Gaussian distribution. To emulate linkage disequilibrium (LD) we simulated one
genotype or SNP at a time generating batches of 100 correlated SNPs. Each SNP was
defined as the sum of the preceding adjacent SNP and some noise, where they were
scaled to correspond to a fixed squared correlation between two adjacent SNPs
within a batch. We simulated genotypes with the adjacent squared correlation
between SNPs set to 0 (unlinked SNPs), and 0.9 when simulating LD.

In order to compare the performance of our method at large sample sizes we
simulated summary statistics that we used as training data for the polygenic risk
scores. We also simulated a smaller sample (2000 individuals) representing an
independent validation data. When there is no LD, the least square effect estimates
(summary statistics) are sampled from a Gaussian distribution f;|8; ~i;q N (,81-,%),
where B; are the true effects. To simulate marginal effect estimates without
genotypes in the presence of LD we first estimate the LD pattern empirically by
simulating 100 SNPs for 1000 individuals for a given value (as described above) and
average over 1000 simulations. This matrix captures the LD pattern in the
validation data since we simulate it using the same procedure (described earlier).
Using this LD matrix D we then sample the marginal least square estimates within a

region of LD (SNP chunk) as 8|8 ~;iqa N (DB, %), where D is the LD matrix.

For the simulations in Figure 1 b) and Supplementary Figures 1, 3, and 4, we
simulated least square effect estimates for 200K variants in batches of LD regions
with 100 variants each (as described above). We then simulated genotypes for 2000
validation individuals and averaged over 100-500 simulated phenotypes to ensure
smooth curves. Depending on the simulation parameters, the actual number of
repeats required to achieve a smooth curve varied. For the simulations in Figure 1
a) and Supplementary Figure 2, we simulated the least square estimates
independently by adding an appropriately scaled Gaussian noise term to the true
effects.

When simulating traits using the WTCCC genotypes (Figure 2) we performed
simulations under four different scenarios, representing different number of
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chromosomes: (1) all chromosomes; (2) chromosomes 1-4; (3) chromosomes 1-2;
(4) chromosome 1. We used 16,179 individuals in the WTCCC data, and 376,901
SNPs that passed quality control. In our simulations we used 3-fold cross validation,
using 1/3 of the data as validation data and 2/3 as training data.

WTCCC Genotype data

We used the Wellcome Trust Case Control Consortium (WTCCC) genotypes3* for
both simulations and analysis. After quality control, pruning variants with missing
rates above 1%, and removing individuals that had genetic relatedness coefficients
above 0.05, we were left with 15,835 individuals genotyped for 376,901 SNPs,
including 1,819 cases for bipolar disease (BD), 1,862 cases for coronary artery
disease (CAD), 1,687 cases for Chron’s disease (CD, 1,907 cases for hypertension
(HT), 1,831 cases for rheumatoid arthritis (RA), 1,953 cases for type-1 diabetes
(T1D), and 1,909 cases for type-2 diabetes (T2D). For each of the 7 diseases, we
performed 5-fold cross-validation on disease cases and 2,867 controls.

Summary statistics and independent validation data sets

Five large summary statistics data sets were analyzed in this paper. The Psychiatric
Genomics Consortium (PGC) 2 schizophrenia summary statistics'®> consists of
34,241 cases and 45,604 controls. For our purposes we calculated GWAS summary
statistics while excluding the ISC (International Schizophrenia Consortium) cohorts
and the MGS (Molecular Genetics of Schizophrenia) cohorts respectively. The
summary statistics were calculated on a set of 1000 genomes imputed SNPs,
resulting in 16.9M statistics. The two independent validation data sets, the ISC and
the MGS data sets, both consist of multiple cohorts with individuals of European
descent. For both of the validation data sets we used the chip genotypes and filtered
individuals with more than 10% of genotype calls missing and filtered SNPs that had
more than 1% missing rate and a minor allele frequency greater than 1%. In
addition we removed SNPs that had ambiguous nucleotides, i.e. A/T and G/C SNPs.
We matched the SNPs between the validation and the GWAS summary statistics data
sets based on the SNP rs-ID and excluded triplets, SNPs where one nucleotide was
unknown, and SNPs that had different nucleotides in different data sets. This was
our quality control (QC) procedure for all large summary statistics data sets that we
analyzed. After QC, the ISC consisted of 1562 cases and 1994 controls genotyped on
518K SNPs that overlapped with the GWAS summary statistics. The MGS data set
consisted of 2681 cases and 2653 controls after QC and had 549K SNPs that
overlapped with the GWAS summary statistics.

For multiple sclerosis we used the International Multiple Sclerosis (MS) Genetics
Consortium summary statistics®3. These were calculated with 9,772 cases and
17,376 controls (27,148 individuals in total) for 465K SNPs. As an independent
validation data set we used the BWH/MIGEN chip genotypes with 821 cases and
2705 controls>*. After QC the overlap between the validation genotypes and the
summary statistics only consisted of 114K SNPs, which we used for our analysis.
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For breast cancer we used the Genetic Associations and Mechanisms in Oncology
(GAME-ON) breast cancer GWAS summary statistics, consisting of 16,003 cases and
41,335 controls (both ER- and ER+ were included in this analysis)>>-58. These
summary statistics were calculated for 2.6M HapMap2 imputed SNPs. As validation
genotypes we combined genotypes from five different data sets, BPC3 ER- cases and
controls>>, BRCA NHS2 cases, NHS1 cases and controls from a mammographic
density study, CGEMS NHS1 cases>?, and Kidney Stone NHS2 controls. None of these
307 cases and 560 controls were included in the GWAS summary statistics analysis
and thus represent an independent validation data set. We used the chip genotypes
that overlapped with the GWAS summary statistics, which resulted in 444K
genotypes after QC.

For coronary artery disease we used the transatlantic Coronary ARtery Dlsease
Genome wide Replication and Meta-analysis (CARDIoGRAM) consortium GWAS
summary statistics. These were calculated using 22,233 cases and 64,762 controls
(86,995 inviduals in total) for 2.4M SNPs10. For the type-2 diabetes we used the
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium GWAS
summary statistics. These were calculated using 12,171 cases and 56,862 controls
(69,033 individuals in total) for 2,5M SNPs®. For both CAD and T2D we used the
Womens Genomes Health Study (WGHS) data set as validation data®l, where we
randomly down-sampled the controls. For CAD we validated in 923 cases CVD and
1428 controls, and for T2D we used 1673 cases and 1434 controls. We used the
genotyped SNPs that overlapped with the GWAS summary statistics, which
amounted to about 290K SNPs for both CAD and T2D after quality control.

For all of these data sets we used the validation data set as an LD-reference for
LDpred and when LD-pruning. We calculated risk scores for different P-value
thresholds using grid values [1E-8, 1E-6, 1E-5, 3E-5, 1E-4, 3E-4, 1E-3, 3E-3, 0.01,
0.03,0.1,0.3,1] and for LDpred we used the mixture probability (fraction of causal
markers) values [1E-4, 3E-4, 1E-3, 3E-3, 0.01, 0.03,0.1,0.3,1]. We then reported the
optimal prediction value from a validation data for LDpred and P+T respectively.

Schizophrenia validation data sets with non-European ancestry

For the non-European validation data sets we used the MGS data set as an LD-
reference. This required us to coordinate across three different data sets, the GWAS
summary statistics, the LD reference genotypes and the validation genotypes. To
ensure sufficient overlap of genetic variants across all three data sets we used 1000
genomes imputed MGS genotypes and the 1000 genomes imputed validation
genotypes for the three Asian validation data sets (JPN1, TCR1, and HOK2). To limit
the number of markers for these data sets we only considered markers that had
MAF>0.1. After QC, and removing variants with MAF<0.1, we were left with 1.38
million SNPs and 492 cases and 427 controls in the JPN1 data set, 1.88 million SNPs
and 898 cases and 973 controls in the TCR1 data set, and 1.71 million SNPs and 476
cases and 2018 controls in the HOK?2 data set.
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For the African American validation data set (AFAM) we used the reported GWAS
summary statistics data set!> to train on. The AFAM data set consisted of 3361
schizophrenia cases and 5076 controls. Since the AFAM data set was not included in
that analysis this allowed us to leverage a larger sample size, but at the cost of
having fewer SNPs. The overlap between the 1000 genomes imputed MGS
genotypes, the HapMap 3 imputed AFAM genotypes and the PGC2 reported
summary statistics had 482K SNPs after QC (with a MAF>0.01).

Prediction accuracy metrics

For simulated quantitative traits, we used squared correlation (R?). For case-
control traits, which include all of the disease data sets analyzed, we used four
different metrics. We used Nagelkerke R? as our primary figure of merit in order to
be consistent with previous work!213.15 but also report three other commonly used
metrics in Supplementary Tables 1, 4, and 7: observed scale R?, liability scale R?,
and the area under the curve (AUC). All of the reported prediction R? values were
adjusted for the top 5 principal components (PCs) in the validation sample (top 3
PCs for breast cancer). The relationship between observed scale R?, liability scale
R?, and AUC is described in Lee et al.36. We note that Nagelkerke R? is similar to
observed scale R? (i.e. is also affected by case-control ascertainment), but generally
has slightly larger values.

Web Resources
* LDpred software: http://www.hsph.harvard.edu/alkes-price/software/ and
https://bitbucket.org/bjarni vilhjalmsson/ldpred
* Genetic Associations and Mechanisms in Oncology (GAME-ON) breast cancer
GWAS summary statistics: http://gameon.dfci.harvard.edu
* Type-2 diabetes summary statistics®?: www.diagram-consortium.org
* Coronary artery disease summary statistics10:
http://www.cardiogramplusc4d.org
* Schizophrenia summary statistics!®:
http://www.med.unc.edu/pgc/downloads
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Figure 1: The performance of polygenic risk scores using LD-pruning (r?<0.2)
followed by thresholding (P+T) with optimized threshold when applied to simulated
genotypes with and without LD. The prediction accuracy, as measured by squared
correlation between the true phenotypes and the polygenic risk scores (prediction
R?), is plotted as a function of the training sample size. The results are averaged
over 2000 simulated traits with 200K simulated genotypes where the fraction of
causal variants p was let vary. In a) the simulated genotypes are unlinked. In b) the
simulated genotypes are linked, where we simulated independent batches of 100
markers where the squared correlation between adjacent variants in a batch was
fixed to 0.9.
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Figure 2: Comparison between the four different methods listed in Table 1 when
applied to simulated traits with WTCCC genotypes. The four subfigures a-d,
correspond to different values of the fraction of simulated causal markers (p) with
(non-zero) effect sizes sampled from a Gaussian distribution. To aid interpretation
of the results, we plot the accuracy against the effective sample size defined as

N, = —=— M, where N=10,786 is the training sample size, M=376,901 is the total

sitm

number of SNPs, and Mg;,, is the actual number of SNPs used in each simulation:
376,901 (all chromosomes), 112,185 (chromosomes 1-4), 61,689 (chromosomes 1-
2) and 30,004 (chromosome 1), respectively. The effective sample size is the sample
size that maintains the same N/M ratio if using all SNPs.
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Figure 3: Comparison of methods when applied to 7 WTCCC disease data sets, type-
1 diabetes (T1D), rheumatoid arthritis (RA), Chron’s disease (CD), bipolar disease
(BD), type-2 diabetes (T2D), hypertension (HT), coronary artery disease (CAD). The
Nagelkerke prediction R? is shown on the y-axis, see Supplementary Table 1 for
other metrics. LDpred significantly improved the prediction accuracy for the
immune-related diseases T1D, RA, and CD (see main text).
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Figure 4: Comparison of prediction accuracy for 5 different diseases, schizophrenia
(SCZ), multiple sclerosis (MS), breast cancer (BC), type-2 diabetes (T2D), and
coronary artery disease (CAD). The risk scores were trained using large GWAS
summary statistics data sets and used to predict in independent validation data sets.
The Nagelkerke prediction R? is shown on the y-axis (see Supplementary Table 1
for other metrics). LDpred improved the prediction R? by 11-25% compared to LD-
pruning + Thresholding (P+T). SCZ results are shown for the SCZ-MGS validation
cohort used in recent studies?!315, but LDpred also produced a large improvement
for the independent SCZ-ISC validation cohort (Supplementary Table 4).
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Prediction Method Accounts for LD? Accounts for non- Comments

infinitesimal genetic

architecture?
Unadjusted No. No.
polygenic risk
score
LD-pruning Yes™. Yes. A heuristic that discards
followed by P- information from pruned and
value thresholding thresholded markers.
(P+T)
LDpred-inf Yes. No. An analytical solution that

assumes an infinitesimal prior
for effects.
LDpred Yes. Yes. A Gibbs sampler that assumes a
point-normal mixture prior for
effects.
Table 1: A list of the main polygenic risk score methods (using summary association
statistics as input) considered in this study. (*Although P+T prunes SNPs in high LD,

itignores bias induced by linked causal markers.)
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Supplementary Figure 1. Performance of P+T (LD-pruning followed by
thresholding) for an alternative genetic architecture where causal markers cluster.
The results are averaged over 3000 simulated traits with 200K simulated genotypes
where the average fraction of causal variants p was let vary. The simulated
genotypes are linked, where we simulated independent batches of 100 markers
where the squared correlation between adjacent variants in a batch was fixed to 0.9.
For each simulated 100 SNP region of LD, we sampled the p parameter from a
Beta(p,1-p) distribution. This will cause causal variants to cluster in some regions of
the genome. As expected, the impact of LD on the prediction accuracy of P+T is
greater when causal variants cluster, and still substantial for small values of p.
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Supplementary Figure 2. Comparison of five different shrinks in the absence of LD.
Bpred corresponds to LDpred without LD and can be derived analytically (see
Online Methods and Supplementary Note for details). The marginal (least square)
effect estimate is plotted against the shrunk estimate for the five different shrinks.
Bpred denotes the analytical solution to LDpred, which can be derived in the
absence of LD (see Supplementary Note for details). The Bpred shrink shown here
assumes that the heritability is 0.5 and the training sample size is 10,000 and the
number of markers is 60,000. Similarly, the LASSO shrink shown here corresponds
to the (marginal) posterior mode effect under a Laplace prior for the causal effects.
Compared to P-value thresholding, and LASSO, Bpred can be viewed as a smoother
shrink.
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Supplementary Figure 3. Comparison of methods using simulated genotypes
without LD. The four subfigures a-d correspond to different genetic architectures
where we vary p, the fraction of variants with (non-zero) effects drawn from a
Gaussian distribution. Bpred denotes the analytical solution to LDpred, which can be
derived in the absence of LD (see Supplementary Note for details). As expected,
Bpred outperforms P-value thresholding in the absence of LD, although not by

much.
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Supplementary Figure 4. Comparison of methods using simulated genotypes with
LD. The four subfigures a-d correspond to different genetic architectures where we
vary p, the fraction of variants with (non-zero) effects drawn from a Gaussian
distribution. We simulated marginal least square effect estimates with LD (see
Supplementary Note for details). This enabled us to evaluate the behavior of the
methods at large sample sizes. The LD structure consisted of 100 SNP regions
where adjacent markers had r?=0.9. For validation we simulated 200000 SNPs in
2000 individuals. For each point in the plot we averaged the results over 2000
independent phenotype simulations keeping the simulated genotypes fixed (see
Supplementary Note for details). The behavior of LDpred in the subfigure c) for
small sample sizes is due to a LD window-size mismatch between the simulated data
and the LDpred and P+T methods.
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Supplementary Figure 5. Comparison of methods using simulated genotypes (see
Supplementary Figure 4.) with LD with Laplace mixture distributed effects instead
of Gaussian mixture distributed effects. The change in prior appears to have
minimal effect on the shape of the curve and the relative performance.
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Supplementary Figure 6. Comparisons to other methods using simulated traits
and real WTCCC genotypes. As expected COJO1435 performs close to optimal with
sufficient training data, or more precisely, when the ratio (Nh?)/(Mp) is
approximately larger than 10. The comparison between the two types of LD-
pruning clearly demonstrates the advantage of informed LD-pruning over
indiscriminate LD-pruning, which randomly prunes either marker of a pair of
markers in LD. For both LD-pruning strategies a pair of markers was considered in
LD if r2>0.2. When LDpred is compared to conditional joint analysis (COJO), LDpred
outperforms COJO as long as the data does not overwhelm the prior, i.e. when
(Nh?)/(Mp) is not sufficiently large (<10). For most of the diseases considered in
this paper, current sample sizes are still not large enough for joint estimates to yield
accurate risk scores.
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Supplementary Figure 7. Boxplots of calibration slopes for the four prediction
methods evaluated in Figure 2 for p=0.001 (the fraction of variants with non-zero
effects). The subfigures a-d correspond to different number of SNPs used, ranging
from 30,004 SNPs on chromosome 1 in a) to 376,901 SNPs or the full genome in d).
If the prediction conditional on the true value is unbiased then we expect a slope of
one. A slope of less than one implies that the predicted value is mis-calibrated by a
factor of 1/slope. Results for other values of p (p=1; p=0.1; p=0.01) gave similar
results, and even stronger bias for P+T (LD-pruning followed by P-value
thresholding).
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Diseas Prediction Unadjusted Pruning + LDpred-inf LDpred
e accuracy PRS using all | Thresholdin
measurement SNPs g
T1D Observed scale R? | 0.1064 0.3195 0.1062 0.3832
Nagelkerke R? 0.1442 0.4228 0.1438 0.5084
Liability scale RZ 0.0426 0.0934 0.0426 0.1037
AUC 0.6915 0.8410 0.6912 0.8738
T2D Observed scale RZ | 0.0360 0.0465 0.0404 0.0467
Nagelkerke R? 0.0488 0.0631 0.0547 0.0633
Liability scale R? 0.0257 0.0327 0.0287 0.0329
AUC 0.6094 0.6243 0.6180 0.6275
CAD Observed scale RZ2 | 0.0250 0.0349 0.0290 0.0333
Nagelkerke R? 0.0338 0.0473 0.0393 0.0451
Liability scale RZ 0.0191 0.0263 0.0221 0.0253
AUC 0.5880 0.6087 0.5963 0.6043
CD Observed scale RZ | 0.0428 0.0485 0.0461 0.0824
Nagelkerke R? 0.0585 0.0661 0.0630 0.1122
Liability scale R? 0.0148 0.0167 0.0159 0.0267
AUC 0.6212 0.6313 0.6279 0.6693
RA Observed scale R? | 0.0483 0.1151 0.0462 0.1354
Nagelkerke R? 0.0656 0.1540 0.0627 0.1801
Liability scale R? 0.0239 0.0508 0.0229 0.0579
AUC 0.6277 0.6994 0.6267 0.7162
BD Observed scale R? | 0.0707 0.0876 0.0798 0.0816
Nagelkerke R? 0.09578 0.1185 0.1080 0.1105
Liability scale R? 0.0308 0.0371 0.0342 0.0349
AUC 0.6552 0.6744 0.6662 0.6682
HT Observed scale RZ | 0.0306 0.0424 0.0348 0.0376
Nagelkerke R? 0.0414 0.0574 0.0471 0.0509
Liability scale R? 0.0258 0.0351 0.0292 0.0314
AUC 0.6005 0.6180 0.6072 0.6109

Supplementary Table 1. Numerical values of results displayed in Figure 3, on four
different R? or AUC scales. To transform the prediction R? to liability scale we used
the Lee et al. R? transformation3® using values of disease prevalence specified in
Supplementary Table 2.
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Disease Optimal Optimal P-value LDpred LDpred Assumed
fraction of threshold for estimated estimated disease
causal Pruning + heritability | heritabilityon | prevalence
markers Thresholding liability scale
used in
LDpred
T1D 0.001 106 1.3250 0.7258 0.005
T2D 0.03 1 0.6206 0.5125 0.03
CAD 0.03 1 0.6160 0.5181 0.035
CD 0.01 0.0001 0.7974 0.2904 0.001
RA 0.0001 10-6 0.9097 0.5145 0.0075
BD 0.1 1 0.9695 0.4959 0.005
HT 0.03 1 0.6216 0.5939 0.05

Supplementary Table 2. P+T and LDpred parameters for methods evaluated in
Figure 3. The heritabilities are calculated as averages over 5 cross validations. The
Lee et al. heritability transformation>2 was used to obtain the heritability on the
liability scale. The LD window size used in the simulations was 400 SNPs.
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Disease | Unadjusted PRS using all SNPs | Pruning + Thresholding | LDpred-inf | LDpred
T1D 0.0082 0.4301 3.2282 0.6365
T2D 0.0056 0.0278 1.2678 1.0198
CAD 0.0058 0.0231 2.1214 1.6566
(6)] 0.0059 0.0231 1.4159 0.8570
RA 0.0069 0.3163 2.3133 0.7755
BD 0.0076 0.0249 1.2348 1.1472
HT 0.0055 0.0301 1.7345 1.7039

Supplementary Table 3. Calibration comparison for methods evaluated in Figure
3. We report the slope, where a value close to 1 represents a well-calibrated
prediction. LDpred yields the most appropriately calibrated predictions.
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Disease | Prediction accuracy Unadjusted PRS Pruning + LDpred- | LDpred
measurement using all SNPs Thresholding inf
SCZ- Observed scale R? 0.1591 0.1510 0.1870 0.1898
MGS Nagelkerke R? 0.2119 0.2014 0.2488 0.2528
Liability scale R? 0.0616 0.0594 0.0688 0.0694
AUC 0.7294 0.7248 0.7499 0.7519
SCZ-ISC | Observed scale R? 0.1169 0.0970 0.1334 0.1367
Nagelkerke R? 0.1574 0.1304 0.1803 0.1836
Liability scale R? 0.0518 0.0446 0.0578 0.0585
AUC 0.6988 0.6784 0.7127 0.7165
MS Observed scale R? 0.0316 0.0674 0.0363 0.0840
Nagelkerke R? 0.0474 0.0978 0.0512 0.1198
Liability scale R? 0.0149 0.0302 0.0170 0.0368
AUC 0.6169 0.6714 0.6187 0.6918
BC Observed scale R? 0.0071 0.0324 0.0092 0.0386
Nagelkerke R? 0.0097 0.0437 0.0119 0.0519
Liability scale R? 0.0040 0.0184 0.0052 0.0220
AUC 0.5489 0.6052 0.5549 0.6156
T2D Observed scale R? 0.0159 0.0247 0.0214 0.0273
Nagelkerke R? 0.0212 0.0330 0.0309 0.0365
Liability scale R? 0.0112 0.0170 0.0149 0.0187
AUC 0.5747 0.5854 0.5825 0.5953
CAD Observed scale R? 0.0109 0.0101 0.0124 0.0125
Nagelkerke R? 0.0146 0.0137 0.0168 0.0170
Liability scale R? 0.0085 0.0080 0.0097 0.0098
AUC 0.5612 0.5557 0.5645 0.5647

Supplementary Table 4. Numerical values of results displayed in Figure 4, on four
different R? or AUC scales.
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Disease Optimal P-value Optimal Gaussian LDpred/ LD- GWAS LDpred LDpred estimated Assumed
threshold for Pruning mixture weight pruning window | sample size estimated heritability on prevalence
+ Thresholding (fraction of causal size (# of SNPs) used in heritability liability scale
markers) for LDpred LDpred
SCZ- 0.1 0.3 500 65K 0.5738 0.4231 0.01
MGS
SCZ-ISC | 0.1 0.3 500 65K 0.4718 0.3479 0.01
MS 0.001 0.01 400 27K 0.3694 0.1321 0.001
BC 0.00003 0.003 400 50K 0.1934 0.1124 0.01
T2D 0.00003 0.1 300 69K 0.2061 0.1582 0.0075
CAD 0.1 1 300 86K 0.2943 0.2494 0.035

Supplementary Table 5. Parameters inferred or assumed by P+T and LDpred for results displayed in Figure 4. The Lee et al.
heritability transformation>2 was used to obtain the heritability on the liability scale.
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Disease Unadjusted PRS using all Pruning + LDpred- LDpred
SNPs Thresholding inf

SCz- 0.0063 0.0467 0.3845 0.3918
MGS

SCz-ISC 0.0130 0.0407 0.4683 0.4413
MS 0.0089 0.0717 0.9092 0.2011
BC 0.0017 0.1327 1.2323 0.5650
T2D 0.0032 0.1002 0.6421 0.4057
CAD 0.0035 0.0137 0.2244 0.1868

Supplementary Table 6. Calibration slopes for methods evaluated in Figure 4.
We report the slope, where a value close to 1 represents a well-calibrated
prediction.
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Schizophrenia Prediction Unadjusted Pruning + LDpred- LDpred
Cohort accuracy PRS using Thresholding inf
measurement all SNPs
MGS Observed 0.1591 0.1510 0.1870 0.1898
(European scale R?
ancestry) Nagelkerke 0.2119 0.2014 0.2488 0.2528
R?
Liability 0.0616 0.0594 0.0688 0.0694
scale R?
AUC 0.7294 0.7248 0.7499 0.7519
JPN1 Observed 0.0477 0.0702 0.0691 0.0695
(Japanese scale R?
ancestry) Nagelkerke 0.0635 0.0944 0.0923 0.0929
R2
Liability 0.0232 0.0323 0.0319 0.0320
scale R?
AUC 0.6276 0.6527 0.6523 0.6531
TCR1 Observed 0.0570 0.0616 0.0704 0.0717
(Chinese scale R?
ancestry) Nagelkerke 0.0761 0.0821 0.0939 0.0956
RZ
Liability 0.0274 0.0294 0.0329 0.0336
scale R?
AUC 0.6331 0.6391 0.6483 0.6488
HOK2 Observed 0.0253 0.0306 0.0374 0.0373
(Chinese scale R?
ancestry) Nagelkerke 0.0414 0.0511 0.0609 0.0609
RZ
Liability 0.0187 0.0225 0.0271 0.0271
scale R?
AUC 0.6176 0.6250 0.6352 0.6352
AFAM Observed 0.0170 0.0151 0.0279 0.0280
(African scale R?
American Nagelkerke 0.0233 0.0202 0.0382 0.0383
ancestry) R?
Liability 0.0095 0.0084 0.0152 0.0152
scale R?
AUC 0.5745 0.5682 0.5936 0.5936

Supplementary Table 7. Numerical values of results displayed in Figure 4, on
four different R or AUC scales.
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Scz Genetic Optimal P- Optimal LDpred/ GWAS
cohort ancestry value Gaussian LD- sample
threshold for mixture pruning size
Pruning + weight window used in
Thresholding (fraction of size (# of LDpred
causal SNPs)
markers)
for LDpred
JPN1 Japanese 0.1 0.3 1000 65000
(Tokai)
TCR1 Chinese 0.1 0.3 1000 65000
(Singapore)
HOK2 Chinese 1 1 1000 65000
(Hong
Kong)
AFAM African 0.3 1 400 69000
American

Supplementary Table 8. Parameters inferred or assumed by P+T and LDpred
for analysis of the non-European validation samples in Supplementary Table 7.
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