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Abstract
Sensitivity analysis plays a crucial role in observing the behaviour of output of a variable given variations in the input. In colorec-
tal cancer, β-catenin based transcription complex (TRCMPLX) plays a major role in driving the Wnt signaling pathway. In
this manuscript, the variation in the effect of the predictive behaviour of TRCMPLX conditional on the evidences of regulated
gene expressions in normal and tumor samples is observed by varying the initially assigned values of conditional probability
tables (cpt) for TRCMPLX . Preliminary analysis shows that the variation in predictive behaviour of TRCMPLX conditional
on gene evidences follows power-logarithmic psychophysical law crudely, implying deviations in output are proportional to in-
creasing function of deviations in input and showing constancy for higher values of input. As a second observation, this points
towards stability in the behaviour of TRCMPLX and is reflected in the preserved gene gene interactions of the Wnt pathway
inferred from conditional probabilities of individual gene activation given the status of another gene activation derived using
biologically inspired Bayesian Network. Finally, based on the sensitivity analysis it was observed that the psychophysical laws
are prevelant among the gene-gene interaction network also.

Fig. 1 A cartoon of wnt signaling pathway contributed by Verhaegh
et al. 2. Part (A) represents the destruction of β-catenin leading to
the inactivation of the wnt target gene. Part (B) represents activation
of wnt target gene.

1 Introduction

From Sinha1, the following two sections help build the back-
ground before delving into the problem of sensitivity analysis.
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1.1 Canonical Wnt signaling pathway

The canonical Wnt signaling pathway is a transduction mech-
anism that contributes to embryo development and controls
homeostatic self renewal in several tissues (Clevers3). So-
matic mutations in the pathway are known to be associated
with cancer in different parts of the human body. Promi-
nent among them is the colorectal cancer case (Gregorieff
and Clevers4). In a succinct overview, the Wnt signaling
pathway works when the Wnt ligand gets attached to the
Frizzled(fzd)/LRP coreceptor complex. Fzd may interact
with the Dishevelled (Dvl) causing phosphorylation. It is also
thought that Wnts cause phosphorylation of the LRP via ca-
sein kinase 1 (CK1) and kinase GSK3. These developments
further lead to attraction of Axin which causes inhibition of the
formation of the degradation complex. The degradation com-
plex constitutes of Axin, the β-catenin transportation com-
plex APC, CK1 and GSK3. When the pathway is active
the dissolution of the degradation complex leads to stabiliza-
tion in the concentration of β-catenin in the cytoplasm. As
β-catenin enters into the nucleus it displaces the Groucho
and binds with transcription cell factor TCF thus instigat-
ing transcription of Wnt target genes. Groucho acts as lock
on TCF and prevents the transcription of target genes which
may induce cancer. In cases when the Wnt ligands are not cap-
tured by the coreceptor at the cell membrane, Axin helps in
formation of the degradation complex. The degradation com-
plex phosphorylates β-catenin which is then recognized by
Fbox/WD repeat protein β−TrCP . β−TrCP is a compo-
nent of ubiquitin ligase complex that helps in ubiquitination of
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β-catenin thus marking it for degradation via the proteasome.
Cartoons depicting the phenomena of Wnt being inactive and
active are shown in figures 1(A) and 1(B), respectively.

1.2 Epigenetic factors

One of the widely studied epigenetic factors is methylation
(Costello and Plass5, Das and Singal6, Issa7). Its occur-
rence leads to decrease in the gene expression which affects
the working of Wnt signaling pathways. Such characteristic
trends of gene silencing like that of secreted frizzled-related
proteins (SFRP ) family in nearly all human colorectal tu-
mor samples have been found at extracellular level (Suzuki
et al.8). Similarly, methylation of genes in the Dickkopf
(DKKx Niehrs9, Sato et al.10), Dapper antagonist of catenin
(DACTx Jiang et al.11) and Wnt inhibitory factor-1 (WIF1
Taniguchi et al.12) family are known to have significant ef-
fect on the Wnt pathway. Also, histone modifications (a class
of proteins that help in the formation of chromatin which
packs the DNA in a special form Strahl and Allis13) can af-
fect gene expression (Peterson et al.14). In the context of the
Wnt signaling pathway it has been found that DACT gene
family show a peculiar behavior in colorectal cancer (Jiang
et al.11). DACT1 and DACT2 showed repression in tumor
samples due to increased methylation while DACT3 did not
show obvious changes to the interventions. It is indicated that
DACT3 promoter is simultaneously modified by the both re-
pressive and activating (bivalent) histone modifications (Jiang
et al.11).

Information regarding prior biological knowledge in terms
of known influence relations and epigenetic factors have been
depicted in the figure represented by figure 2 from Sinha1.

1.3 Problem statement

In Sinha1, it has been hypothesized that the activation state
of TRCMPLX in the Wnt signaling pathway is not always
the same as the state of the test sample (normal/tumorous) un-
der consideration. For this, Sinha1 shows various results on
the predicted state of TRCMPLX conditional on the given
gene evidences, while varying the assigned probability values
of conditional probability tables of TRCMPLX during ini-
tialization of the Bayesian Network (BN). It was found that the
predicted values often increase with an increasing value in the
effect of the TRCMPLX on the genes. In a recent develop-
ment, Goentoro and Kirschner16 point to two findings namely,
• the robust fold changes of β-catenin and • the transcriptional
machinery of the Wnt pathway depends on the fold changes in
β-catenin instead of absolute levels of the same and some gene
transcription networks must respond to fold changes in signals
according to the Weber’s law in sensory physiology.

In accordance with the aforementioned phenomena noted

in Sinha1, it would be important to test the veracity of the ob-
served logarithmic laws and their derivations (like the Weber’s
law) employed in Goentoro and Kirschner16. In the current
manuscript, preliminary analysis of results in Sinha1 shows
that the variation in predictive behaviour of TRCMPLX
conditional on gene evidences follows power and logarithmic
psychophysical law crudely, implying deviations in output are
proportional to increasing function of deviations in input and
showing constancy for higher values of input. This relates to
the work of Adler et al.17 on power and logarithmic law al-
beit at a coarse level. Also, the result points towards stabil-
ity in the behaviour of TRCMPLX and is reflected in the
preserved gene gene interactions of the Wnt pathway inferred
from conditional probabilities of individual gene activation
given the status of another gene activation derived using bi-
ologically inspired Bayesian Network. Note that Weber’s law
has been found to be a special case of Bernoulli’s logarithmic
law (Masin et al.18).

1.4 The logarithmic psychophysical law

Masin et al.18 states the Weber’s law as follows -

Consider a sensation magnitude γ determined
by a stimulus magnitude β. Fechner19 (vol 2, p. 9)
used the symbol ∆γ to denote a just noticeable sen-
sation increment, from γ to γ + ∆γ, and the sym-
bol ∆β to denote the corresponding stimulus incre-
ment, from β to β + ∆β. Fechner19 (vol 1, p. 65)
attributed to the German physiologist Ernst Hein-
rich Weber the empirical finding Weber20 that ∆γ
remains constant when the relative stimulus incre-
ment ∆β

β remains constant, and named this finding
Weber’s law. Fechner19 (vol 2, p. 10) underlined
that Weber’s law was empirical.

It has been found that Bernoulli’s principle (Bernoulli21) is
different from Weber’s law (Weber20) in that it refers to ∆γ
as any possible increment in γ, while the Weber’s law refers
only to just noticeable increment in γ. Masin et al.18 shows
that Weber’s law is a special case of Bernoulli’s principle and
can be derived as follows - Equation 1 depicts the increment
in sensation represented by ∆γ to be proportional to change
in stimulus represented by ∆β.

γ = b× log
β

α
(1)

were b is a constant and α is a threshold. To evaluate the incre-
ment, the following equation 2 and the ensuing simplification
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Fig. 2 Influence diagram ofMPBK+EI contains partial prior biological knowledge and epigenetic information in the form of methylation
and histone modification. Diagram drawn using Cytoscape 15. In this model the state of Sample is distinguished from state of TRCMPLX
that constitutes the Wnt pathway.

gives -

∆γ = b× log
β + ∆β

α
− b× log

β

α

= b× log(
β + ∆β

β
)

= b× log(1 +
∆β

β
) (2)

Since b is a constant, equation 2 reduces to

∆γ ◦ ∆β

β
(3)

were ◦ means ”is constant when there is constancy of” from
Masin et al.18. The final equation 3 is a formulation of We-
ber’s laws in wordings and thus Bernoulli’s principles imply
Weber’s law as a special case. Using Fechner19 derivation, it
is possible to show the relation between Bernoulli’s principles
and Weber’s law. Starting from the last line of equation 2, the
following yields the relation.

.

∆γ = b× log(1 +
∆β

β
)

e∆γ = eb×log(1+ ∆β
β )

kp = elog(1+ ∆β
β )b ; were kp = e∆γ

kp = (1 +
∆β

β
)b; since elog(x) = x

b
√
kp = 1 +

∆β

β

kq × β = β + ∆β; were b
√
kp = kq

kq × β − β = ∆β

(kq − 1)× β = ∆β

kq − 1 =
∆β

β

kr =
∆β

β
; the weber’s law s.t. kr =

b
√
e∆γ − 1

(4)

Equation 3 holds true given the last line of equation 4. In the
current study, observation of deviation recorded in predicted
values of state of TRCMPLX conditional on gene evidences
show crude logarithmic behaviour which might bolster We-
ber’s law and Bernoulli’s principles. But it must be noted that
these observations are made on static causal models and ob-
servation of the same behaviour in dynamical setting would
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add more value.

2 Materials and methods

The models purported by Sinha1 involving the biologi-
cal knowledge as well as epigenetic information depicted
by MPBK+EI and biological knowledge excluding epige-
netic information MPBK were used to predict the state of
TRCMPLX given the gene evidences. Figure 2 depicts the
model MPBK+EI . The predictions were recorded over the
varying effect of TRCMPLX on gene regulations via as-
signment of different values to conditional probability tables
(cpt) of TRCMPLX while initializing the aforementioned
BN models. This varying effect is represented by the term
ETGN in Sinha1.

As a recapitulation, the design of the experiment is a sim-
ple 2-holdout experiment where one sample from the normal
and one sample from the tumorous are paired to form a test
dataset. Excluding the pair formed in an iteration of 2-hold out
experiment the remaining samples are considered for training
of a BN model. Thus in a data set of 24 normal and 24 tu-
morous cases obtained from Jiang et al.11, a training set will
contain 46 samples and a test set will contain 2 samples (one
of normal and one of tumor). This procedure is repeated for
every normal sample which is combined with each of the tu-
morous sample to form a series of test datasets. In total there
will be 576 pairs of test data and 576 instances of training
data. Note that for each test sample in a pair, the expression
value for a gene is discretized using a threshold computed for
that particular gene from the training set. Computation of the
threshold has been elucidated in Sinha1. This computation is
repeated for all genes per test sample. Based on the avail-
able evidence from the state of expression of all genes, which
constitute the test data, inference regarding the state of both
the TRCMPLX and the test sample is made. These infer-
ences reveal information regarding the activation state of the
TRCMPLX and the state of the test sample. Finally, for
each gene gi, the conditional probability Pr(gi = active|gk ev-
idence) ∀k genes. Note that these probabilities are recorded
for both normal and tumor test samples.

Three observations are presented in this manuscript. The
first observation is regarding the logarithmic deviations in pre-
diction of activation status of TRCMPLX conditional on
gene expression evidences. The second observation is preser-
vation of gene gene interactions across deviations. To observe
these preservations, first the gene gene interactions have to
be constructed from the predicted conditional probabilities of
one gene given the evidence of another gene (for all gene ev-
idences taken separately). After the construction, further pre-
processing is required before the gene-gene interaction net-
work can be inferred. Finally, the third observation is to check

Deviation study for modelMPBK+EI

β ∆β ∆β
β log(1 + ∆β

β ) Pr in Normal Pr in Tumor
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.1 0.1428571 0.1335314 0.01423754 0.09086427
0.6 0.1 0.1666667 0.1541507 0.004384244 0.08052346
0.5 0.1 0.2 0.1823216 0.0005872203 0.07294716
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.2 0.2857143 0.2513144 0.04479181 0.1823758
0.6 0.3 0.5 0.4054651 0.04917605 0.2628992
0.5 0.4 0.8 0.5877867 0.04976327 0.3358464

Table 1 Deviation study for modelMPBK+EI . Pr = mean value of
Pr(TRCMPLX = active|∀gei evidences) over all runs.

Deviation study for modelMPBK

β ∆β ∆β
β log(1 + ∆β

β )Pr in NormalPr in Tumor
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.1 0.1428571 0.1335314 0.06442086 0.1877266
0.6 0.1 0.1666667 0.1541507 0.01762791 0.06204044
0.5 0.1 0.2 0.1823216 0.01393517 0.1718198
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.2 0.2857143 0.2513144 0.2044564 0.2974356
0.6 0.3 0.5 0.4054651 0.2220843 0.359476
0.5 0.4 0.8 0.5877867 0.2360195 0.5312958

Table 2 Deviation study for modelMPBK . Pr = mean value of
Pr(TRCMPLX = active|∀gei evidences) over all runs.

whether these laws are prevalent among the gene-gene inter-
actions in the network.

3 Results and discussion

3.1 Logarithmic-power deviations in predictions of β-
catenin transcription complex

Let γ be Pr(TRCMPLX = active—all gene evidences), β be
the assigned cpt value of TRCMPLX during initialization
of the Bayesian Network models and ∆β be the deviation in
the assigned values of TRCMPLX during initialization. To
compute ∆γ, the 576 predictions of γ observed at β = 90% is
subtracted from the 576 predictions of γ observed at β = 80%
and a mean of the deviations recorded. This mean becomes
∆γ. The procedure is computed again for different value of
β. In this manuscript, the effect of constant and incremental
deviations are observed. Tables 1 and 2 represent the devia-
tions for modelsMPBK+EI andMPBK , respectively.

Figures 3, 4, 5 and 6 show the deviations represented in
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Fig. 3 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK+EI . Red - constant deviation in Normal,
constant deviation in Tumor, Green - constant deviation in Weber’s
law, Cyan - constant deviation in Bernoulli’s law.

tables 1 and 2. Note that the number depicted in the tables
are scaled in a nonuniform manner for observational purpose
in the figures. Before reading the graphs, note that red in-
dicates deviation of mean of Pr(TRCMPLX = active|∀gei
evidences) in normal test samples, blue indicates deviation of
mean of Pr(TRCMPLX = active|∀gei evidences) in tumor
case, green indicates deviations in Weber’s law and cyan indi-
cates deviations in Bernoulli’s law.

For the case of contant deviations (figure 3) in model
MPBK+EI , it was observed that deviations in activation of
TRCMPLX conditional on gene evidences for the tumor
test samples showed a logarithmic behaviour and were di-
rectly proportional to the negative of both the Weber’s and
Bernoulli’s law. This can be seen by the blue curve almost
following the green and cyan curves. For the case of devia-
tions in activation of TRCMPLX conditional on gene ev-
idences for the normal test samples showed an exponential
behaviour and were proportional to negative of both the We-
ber’s and Bernoulli’s law. Similar behaviour was observed for
all the coloured curves in case of incremental deviations as
shown in figure 4. The exponential behaviour for activation
of TRCMPLX being active conditional on gene evidences
correctly supports to the last line of equation 4 which is the
derivation of Weber’s law from Bernoulli’s equation. It actu-
ally point to Fechner’s derivation of Weber’s law from loga-
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Incremental deviations for model with PBK+EI
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Fig. 4 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK+EI . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

rithmic formulation.
For model MPBK , the above observations do not yield

consistent behaviour. In figure 5, for the case of constant devi-
ations, only the deviations in activation of TRCMPLX con-
ditional on gene evidences for normal test samples exponen-
tial in nature and were found to be directly proportional to the
negative of both the Weber’s and Bernoulli’s law. But the de-
viations in activation of TRCMPLX conditional on gene ev-
idences in tumor test samples show noisy behaviour. But this
observation is not the case in incremental deviations for the
same model. For the case of incremental deviations as repre-
sented in figure 6, the deviations in activation of TRCMPLX
conditional on gene evidences is directly proportional to both
the Weber’s and Bernoulli’s law. The figure actually represent
the plots with inverted values i.e negative values. A primary
reason for this behaviour might be thatMPBK does not cap-
ture and constrain the network as much asMPBK+EI which
include epigenetic information. This inclusion of heteroge-
neous information adds more value to the biologically inspired
network and reveals the hidden natural laws occurring in the
signaling pathway in both normal and tumor cases.

Finally, these observations present a crude yet important
picture regarding the downstream transcriptional behaviour of
signaling pathway in case of colorectal cancer. Psychophysi-
cal laws might not be constrained to a particular domain and
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Fig. 5 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK . Red - constant deviation in Normal, constant
deviation in Tumor, Green - constant deviation in Weber’s law, Cyan
- constant deviation in Bernoulli’s law.

as can be seen here, they might play an important role in shed-
ding light on behaviour of the pathway. In context of Goen-
toro and Kirschner16, the presented results might be crude in
terms of static observations, yet they show corresponding be-
haviour of transcriptional activity in terms of psychophysical
laws. Further investigations using dynamic models might re-
veal more information in comparison to the static models used
in Sinha1. The observations presented here might bolster the
existence of behavioural phenomena in terms of logarithmic
laws and its special cases.

3.2 Preservation of gene gene interactions

The second part of this study was to find interactions between
two genes by observing the conditional probability of activa-
tion status of one gene given the evidence of another gene. Let
g be a gene. To obtain the results, two steps need to be exe-
cuted in a serial manner. The first step is to construct gene
gene interactions based on the available conditional proba-
bilities denoted by Pr(gi = active/repressed|gk evidence) ∀k
genes. The second step is to infer gene gene interaction net-
work based purely on reversible interactions. Note that net-
works are inferred for gene evidences using normal and tumor
test samples separately. The following sections elucidate the
steps before explaining the implications.
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Fig. 6 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

3.2.1 Constructing gene-gene interactionsBefore start-
ing the construction of interactions from the conditional prob-
abilities, assign a variable ggI as an empty list (say in R lan-
guage). Then ∀i genes, execute the following -

1. ∀ 576 runs iterated by a counter j

(a) append xN with the vector whose elements are
Pr(gi = active|gk evidence) ∀k genes in the jth run
for Normal test sample. This creates a matrix at the
end of the runs.

(b) append xT with the vector whose elements are Pr(gi
= active|gk evidence) ∀k genes in the jth run for
Tumor test sample. This creates a matrix at the end
of the runs.

(c) append geN with the vector whose elements are gek
evidence ∀k genes in the jth run for Normal test
sample. This creates a matrix at the end of the runs.

(d) append geT with the vector whose elements are gek
evidence ∀k genes in the jth run for Tumor test
sample. This creates a matrix at the end of the runs.

2. assign variables ge, aaN , arN , raN , rrN , aaT , arT ,
raT , rrT to an empty vector []. Note - a (r) means acti-
vation (repression).
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SFRP5 activation status apropos to gene evidences in Normal and Tumor samples
ge aaN arN raN rrN aaT arT raT rrT ggIN ggIT

1 DKK1 0 360 216 0 0 0 360 216 DKK1 |− <> SFRP5 DKK1 <> −| SFRP5
2 DKK2 360 0 0 216 0 0 216 360 DKK2 <> − <> SFRP5 DKK2 | − | SFRP5
3 DKK3-1 360 0 0 216 0 0 216 360 DKK3-1 <> − <> SFRP5 DKK3-1 | − | SFRP5
4 DKK3-2 133 336 107 0 0 0 336 240 DKK3-2 |− <> SFRP5 DKK3-2 <> −| SFRP5
5 DKK4 0 480 96 0 0 0 460 116 DKK4 |− <> SFRP5 DKK4 <> −| SFRP5
6 DACT1 346 230 0 0 0 0 216 360 DACT1 <> − <> SFRP5 DACT1 | − | SFRP5
7 DACT2 312 218 0 46 0 0 264 312 DACT2 <> − <> SFRP5 DACT2 | − | SFRP5
8 DACT3 504 0 0 72 0 0 69 507 DACT3 <> − <> SFRP5 DACT3 | − | SFRP5
9 SFRP1 552 0 0 24 0 0 46 530 SFRP1 <> − <> SFRP5 SFRP1 | − | SFRP5
10 SFRP2 480 0 0 96 0 0 96 480 SFRP2 <> − <> SFRP5 SFRP2 | − | SFRP5
11 SFRP3 484 0 0 92 0 0 96 480 SFRP3 <> − <> SFRP5 SFRP3 | − | SFRP5
12 SFRP4 82 312 182 0 312 264 0 0 SFRP4 |− <> SFRP5 SFRP4 <> − <> SFRP5
13 WIF1 0 408 168 0 0 0 398 178 WIF1 |− <> SFRP5 WIF1 <> −| SFRP5
14 LEF1 0 480 96 0 0 0 484 92 LEF1 |− <> SFRP5 LEF1 <> −| SFRP5
15 MYC 0 456 120 0 0 0 442 134 MYC |− <> SFRP5 MYC <> −| SFRP5
16 CCND1 0 480 96 0 0 0 480 96 CCND1 |− <> SFRP5 CCND1 <> −| SFRP5
17 CD44 0 376 200 0 0 0 384 192 CD44 |− <> SFRP5 CD44 <> −| SFRP5

Table 3 SFRP5 activation status in test samples conditional on status of individual gene activation (represented by evidence in test data) in
Normal and Tumor samples. Measurements are taken over summation of all predicted values across the different runs of the 2-Hold out
experiment. Here the notations denote the following: a - active, p - passive, N - Normal, T - Tumor, ggIN - gene-gene interaction with
Normal, ggIT - gene-gene interaction with Tumor, <> - active and | - repressed.

3. ∀k genes except the ith one

(a) if(k 6= i)

i. assign variables tmpaaN , tmparN , tmpraN ,
tmprrN , tmpaaT , tmparT , tmpraT and
tmprrT to 0.

ii. ∀ 576 runs iterated by a counter l
A. if(geN [l,k] == 1 and xN [l,k] < 0.5) in-

crement tmprrN by 1
B. else if(geN [l,k] == 1 and xN [l,k] >=

0.5) increment tmparN by 1
C. else if(geN [l,k] == 2 and xN [l,k] < 0.5)

increment tmpraN by 1
D. else if(geN [l,k] == 2 and xN [l,k] >=

0.5) increment tmpaaN by 1
E. if(geT [l,k] == 1 and xT [l,k] < 0.5) in-

crement tmprrT by 1
F. else if(geT [l,k] == 1 and xT [l,k]>= 0.5)

increment tmparT by 1
G. else if(geT [l,k] == 2 and xT [l,k] < 0.5)

increment tmpraT by 1
H. else if(geT [l,k] == 2 and xT [l,k]>= 0.5)

increment tmpaaT by 1
iii. Comment - store results
iv. append ge with gk, rrN with tmprrN ,

arN with tmparN , raN with tmpraN , aaN

with tmpaaN , rrT with tmprrT , arT with
tmparT , raT with tmpraT and aaT with
tmpaaT

(b) store the variables in the previous step to a data
frame (say in R language) to a variable stats.

(c) Comment - 1 means aa, 2 means ar, 3 means ra, 4
means rr

(d) assign variables ggIN and ggIT as empty vector []

(e) ∀j gene except the ith one under consideration

i. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4

ii. if(idxN == 1) append ggIN with interaction
string stats§gj <> − <> gi

iii. else if(idxN == 2) append ggIN with interac-
tion string stats§gej |− <> gi

iv. else if(idxN == 3) append ggIN with interac-
tion string stats§gj <> −|gi

v. else if(idxN == 4) append ggIN with interac-
tion string stats§gj | − |gi

vi. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4

vii. if(idxT == 1) append ggIT with interaction
string stats§gj <> − <> gi

viii. else if(idxT == 2) append ggIT with interac-
tion string stats§gj |− <> gi
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Fig. 7 Gene gene interactions for normal case while usingMPBK+EI . Note that the effect of initialized cpt for TRCMPLX is 90% in
tumorous case and 10% in normal case. Diamond <> means activation and straight bar | means repression.

ix. else if(idxT == 3) append ggIT with interac-
tion string stats§gj <> −|gi

x. else if(idxT == 4) append ggIT with interac-
tion string stats§gj | − |gi

(f) assign stats§ggIN with ggIN
(g) assign stats§ggIT with ggIT
(h) Comment - ith gene influenced

(i) ggI [[i]] < − list(ig = gi, stats = stats)

Based on the above execution, for each gene a matrix is ob-
tained that shows the statistics of how the status of gene is af-
fected conditional on the individual evidences of the remain-
ing genes. Table 3 represents one such tabulation for gene
SFRP5. For all runs and all test samples, the following was
tabulated in table 3 : aaN - SFRP5 is active (a) when a gene
is active (a) in Normal (N) sample, arN - SFRP5 is active
(a) when a gene is repressed (r) in Normal (N) sample, raN -
SFRP5 is repressed (r) when a gene is active (a) in Normal

(N) sample, rrN - SFRP5 is repressed (r) when a gene is re-
pressed (r) in Normal (N) sample, aaT - SFRP5 is active (a)
when a gene is active (a) in Tumor (T) sample, arT - SFRP5
is active (a) when a gene is repressed (r) in Tumor (T) sample,
paT - SFRP5 is repressed (r) when a gene is active (a) in Tu-
mor (T) sample, ggIN - interaction of SFRP5 given the gene
evidence based on majority voting among aaN , arN , raN and
rrN and finally, ggIT - interaction of SFRP5 given the gene
evidence based on majority voting among aaT , arT , raT and
rrT . The highest score among aaN , arN , raN and rrN (aaT ,
arT , raT and rrT ) confirms the relation between genes using
Normal (Tumor) samples. Active (repressed) for SFRP5 is
based on discretization the predicted conditional probability
Pr(SFRP5 = active|gj evidence) as ≥ 0.5 (< 0.5). Active
(repressed) for a particular gene evidence gj is done using dis-
crete evidence. In table 3, under the columns ggIN and ggIT ,
<> implies the gene is active and | implies the gene is re-
pressed or passive.
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Gene-gene interactions
DACT2 <> −| DKK1, SFRP4 | − | DKK1, DACT1 <> − <> DKK2, SFRP1 <> − <> DKK2, LEF1 |− <> DKK2,
DKK4 |− <> DKK3-1, DACT3 <> − <> DKK3-1, SFRP2 <> − <> DKK3-1, SFRP3 <> − <> DKK3-1, SFRP5
<> − <> DKK3-1, WIF1 |− <> DKK3-1, LEF1 |− <> DKK3-1, MYC |− <> DKK3-1, CCND1 |− <> DKK3-1, CD44
|− <> DKK3-1, DKK1 | − | DKK3-2, DKK2 <> −| DKK3-2, DKK3-1 <> −| DKK3-2, DACT1 <> −| DKK3-2, DACT2
<> −| DKK3-2, SFRP1 <> −| DKK3-2, SFRP4 | − | DKK3-2, DKK3-2 | − | DKK4, DACT3 <> −| DKK4, SFRP2 <> −|
DKK4, SFRP3 <> −| DKK4, SFRP5 <> −| DKK4, WIF1 | − | DKK4, LEF1 | − | DKK4, MYC | − | DKK4, CCND1 | − |
DKK4, CD44 | − | DKK4, DKK4 | − | DACT1, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DKK2
<> − <> DACT2, DKK3-1 <> − <> DACT2, DKK4 |− <> DACT2, DACT3 <> − <> DACT2, SFRP1 <> − <>
DACT2, SFRP2 <> − <> DACT2, SFRP3 <> − <> DACT2, SFRP4 |− <> DACT2, SFRP5 <> − <> DACT2, WIF1
|− <> DACT2, LEF1 |− <> DACT2, MYC |− <> DACT2, CCND1 |− <> DACT2, CD44 |− <> DACT2, DACT1 <> −|
DACT3, DKK3-1 <> − <> SFRP1, DKK4 |− <> SFRP1, SFRP2 <> − <> SFRP1, SFRP3 <> − <> SFRP1, SFRP4
|− <> SFRP1, SFRP5 <> − <> SFRP1, MYC |− <> SFRP1, CCND1 |− <> SFRP1, CD44 |− <> SFRP1, DACT3
<> − <> SFRP2, SFRP3 <> − <> SFRP2, LEF1 |− <> SFRP2, DKK1 |− <> SFRP3, DACT3 <> − <> SFRP3,
SFRP5 <> − <> SFRP3, WIF1 |− <> SFRP3, LEF1 |− <> SFRP3, MYC |− <> SFRP3, CCND1 |− <> SFRP3, CD44
|− <> SFRP3, DKK2 <> −| SFRP4, DKK3-1 <> −| SFRP4, DACT1 <> −| SFRP4, SFRP3 <> −| SFRP4, DKK1 |− <>
SFRP5, DKK2 <> − <> SFRP5, DKK3-2 |− <> SFRP5, DACT1 <> − <> SFRP5, DACT3 <> − <> SFRP5, SFRP2
<> − <> SFRP5, WIF1 |− <> SFRP5, LEF1 |− <> SFRP5, MYC |− <> SFRP5, CCND1 |− <> SFRP5, CD44 |− <>
SFRP5, DKK3-2 | − |WIF1, DACT1 <> −|WIF1, SFRP1 <> − <> WIF1, DKK1 | − | LEF1, DACT3 <> −| LEF1, WIF1
| − | LEF1, MYC | − | LEF1, CCND1 | − | LEF1, CD44 | − | LEF1, DACT3 <> −|MYC, CCND1 | − |MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC | − | CD44, CCND1 | − | CD44

Table 4 Tabulated gene gene interactions of figure 7 usingMPBK+EI obtained in case of Normal samples. Here, the symbols represent the
following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be reversed, ie. <> −|
in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in tumor and | − | in
normal became <> − <> in tumor.

It was found that DKK1, DKK3 − 2, DKK4 expressed
similar repression behaviour as the standard genes LEF1,
MYC, CCND1 and CD44 in Normal test samples (and vice
versa for Tumor test samples). Also, DKK2 and DKK3− 1
show similar activated behaviour as DACT − 1/2/3 and
SFRP − 1/2/3 in Normal test samples (and vice versa for
Tumor test samples). In comparison to DKK2, DKK3− 1,
DACT − 1/2/3 and SFRP − 1/2/3, which are activated
along with SRFP5 in Normal test samples (repressed in
Tumor test samples), genes DKK1, DKK3 − 2, DKK4,
LEF1, MYC, CCND1 and CD44 were reversed while
SFRP3 is activated in Normal test sample (roles reversed
in Tumor cases). Genes which showed similar behaviour to
SFRP5 might be affected by epigenetic factors, i.e these fac-
tors might play a role in suppressing the gene expression in
Normal test samples. The reverse might be the case for genes
that were suppressed in Tumor test samples.

It can also be seen that most of the interactions are re-
versible except for SFRP4|− <> SFRP5 in Normal test
sample and SFRP4 <> − <> SFRP5 in Tumor test sam-
ple. This kind of interaction is deleted the existing set of inter-
actions as they do not provide concrete information regarding
the functional roles of the genes in normal and tumor cases.
This attributes to one of the following facts (1) noise that

might corrupt prediction values as can be seen in the columns
of aaN (aaT ), arN (arT ), raN (raT ) and rrN (rrT ) or (2)
other multiple genes might be interacting along with SFRP5
in a combined manner and it is not possible to decipher the re-
lation between SFRP5 and other genes. This calls for inves-
tigation of prediction of SFRP5 status conditional on joint
evidences of two or more genes (a combinatorial problem with
a search space order of 217 − 17, which excludes 17 cases of
individual gene evidences which have already been considered
here). Incorporating multiple gene evidences might not be a
problem using Bayesian network models as they are designed
to compute conditional probabilities given joint evidences also
(except at the cost of high computational time).

3.2.2 Inferring gene-gene interaction networkNext, af-
ter the construction of gene-gene interactions, it is necessary
to infer the network. The inference of the estimated gene-gene
interactions network is based on explicitly reversible roles in
Normal and Tumor test samples. This means that only those
interactions are selected which show the following property -
gj <> − <> gi in Normal if and only if gj | − |gi in Tumor,
gj <> −|gi in Normal if and only if gj |− <> gi in Tumor,
gj |− <> gi in Normal if and only if gj <> −|gi in Tumor
and finally, gj |−|gi in Normal if and only if gj <> − <> gi.
This restricts the network to only reversible gene-gene inter-
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Missing gene-gene interactions for different values of ETGN
90N-T1 80N-T1 (in 90N-T1) MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <> SFRP5, CCND1 | − |

MYC, DACT3 <> −| CCND1, MYC | − | CD44 (in 80N-T1) SFRP5 <> − <> SFRP2, MYC
| − | CCND1

70N-T1 (in 90N-T1) DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <>
SFRP5, CCND1 | − |MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC | − | CD44 (in
70N-T1) SFRP5 <> − <> SFRP2, MYC | − | CCND1

60N-T1 (in 90N-T1) DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <>
SFRP5, CCND1 | − |MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC | − | CD44 (in
60N-T1) SFRP5 <> − <> SFRP2, MYC | − | CCND1

50N-T1 (in 90N-T1) CD44 |− <> DKK3-1, SFRP1 <> −| DKK3-2, CD44 | − | DKK4, DACT3 <> −|
DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DKK3-1 <> − <> SFRP1, DKK4 |− <>
SFRP1, SFRP2 <> − <> SFRP5, DACT1 <> −| WIF1, CCND1 | − | MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC | − | CD44 (in 50N-T1) SFRP1 <> − <> DKK3-1, CD44
| − | DKK3-2, SFRP1 <> −| DKK4, DKK3-2 |− <> SFRP1, SFRP5 <> − <> SFRP2, MYC
|− <> SFRP2, CCND1 |− <> SFRP2, CD44 | − | SFRP4, MYC | − | CCND1

Table 5 Tabulated missing gene gene interactions of figure 7 usingMPBK+EI obtained in case of Normal samples. Interactions found in
Normal samples with 80%, 70%, 60% and 50% effect that are not found with 90% and vice versa have been recorded. Here, the symbols
represent the following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be
reversed, ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in
tumor and | − | in normal became <> − <> in tumor.

actions in Normal and Tumor cases. Note that an interaction
gjIRgi (giIRgj) is depicted by Pr(gi|gj) (Pr(gj |gi)).

Lastly, duplicate interactions are removed from the network
for Normal samples. This is repeated for the network based on
tumor samples also. This removal is done by removing one of
the interactions from the following pairs (gj <> − <> gi
and gi <> − <> gj), (gj <> −|gi and gi|− <> gj),
(gj |− <> gi and gi <> −|gj) and (gj | − |gi and gi| − |gj).
Figure 7 shows one such network after complete interac-
tion construction, inference and removal of duplicate inter-
actions in using Normal test samples with ETGN of 90% in
MPBK+EI . For the case of Tumor test samples with ETGN
90% inMPBK+EI , only the reversal of interactions need to
be done. Table 4 represents these interactions in tabulated
form.

Finally, different networks were generated by varying the
effect of TRCMPLX (ETGN) and compared for the nor-
mal test samples. Table 5 represents the different interactions
that were preserved in network from ETGN 90% with respect
to networks obtained from ETGN with values of 80%, 70%,
60% and 50%. It was found that most of the genetic interac-
tions depicted in figure 7 were found to be preserved across
the different variations in ETGN as shown in table 5. Out of
the total n genes which construct a fully connected graph of
n×(n−1)

2 , it was observed that lesser number of interconnec-
tions were preserved. This preservation indicates towards the
robustness of the genetic contributions in the Wnt signaling
pathway in both normal and tumor test samples. Note that

Deviation study for SFRP5 and MYC for normal case
β ∆β ∆β

β log(1 + ∆β
β )Pr(SFPR5|MYC)Pr(MYC|SFPR5)

0.8 0.1 0.125 0.117783 0.002803756 0.003196908
0.7 0.1 0.1428571 0.1335314 0.002333440 0.003196908
0.6 0.1 0.1666667 0.1541507 0.002574599 0.003196908
0.5 0.1 0.2 0.1823216 0.002078026 0.003196908
0.8 0.1 0.125 0.117783 0.009789821 0.000000e+00
0.7 0.2 0.2857143 0.2513144 0.006986065 0.000000e+00
0.6 0.3 0.5 0.4054651 0.004411466 5.551115e-17
0.5 0.4 0.8 0.5877867 0.002078026 0.000000e+00

Table 6 Deviation study for Pr(SFRP5|MYC) and
Pr(MYC|SFRP5) for normal case

these observations are made from static models and dynamic
models might reveal greater information.

3.3 Logarithmic-power deviations in prediction of gene-
gene interactions

In the penultimate section on preservation of gene-gene in-
teraction, it was found that some of the interactions remain
preserved as there was change of the effect transcription com-
plex. The transcription complex itself was found to follow
a logarithmic-power psychophysical law. It would be interest-
ing to observe if these laws are prevalent among the gene-gene
interactions in the network.

In1, the unknown behaviour of SFRP5 in the Wnt pathway
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Deviation study for SFRP5 and MYC for tumor case
β ∆β ∆β

β log(1 + ∆β
β )Pr(SFPR5|MYC)Pr(MYC|SFPR5)

0.8 0.1 0.125 0.117783 0.001049836 0.000000e+00
0.7 0.1 0.1428571 0.1335314 0.001129522 0.000000e+00
0.6 0.1 0.1666667 0.1541507 0.001216178 -5.551115e-17
0.5 0.1 0.2 0.1823216 0.001310739 5.551115e-17
0.8 0.1 0.125 0.117783 0.004706275 0.000000e+00
0.7 0.2 0.2857143 0.2513144 0.003656439 0.000000e+00
0.6 0.3 0.5 0.4054651 0.002526918 0.000000e+00
0.5 0.4 0.8 0.5877867 0.001310739 5.551115e-17

Table 7 Deviation study for Pr(SFRP5|MYC) and
Pr(MYC|SFRP5) for tumor case

has been revealed slightly using computational causal infer-
ence. In figure 7, SFRP5 shows preservation in the network
and it’s interaction with other genetic factors involved in the
model proposed in1 has been depicted. In one such paired
interaction between SFRP5 and MYC, SFRP5 showed
activation (repression) and MYC showed repression (activa-
tion) in normal (tumor) samples. As the change in the effect
of transcription complex was induced via sensitizing the ini-
tially assigned cpt values, the deviations in the prediction of
the gene-gene interaction network was observed to follow the
logarithmic-power law crudely.

Table 6 and 7 show these deviations in the prediction of the
interactions for both the normal and the tumor cases. The ta-
bles show how deviations are affected when the changes in
the effect of the transcription complex are done at constant
and incremental level. To summarize the results in these ta-
bles, graphs were ploted in figures 8 for Pr(SFRP5|MYC)
(constant deviations), 9 for Pr(MYC|SFRP5) (constant de-
viations), 10 for Pr(SFRP5|MYC) (incremental deviations)
and 9 for Pr(MYC|SFRP5) (incremental deviations).

Considering figure 8, when deviations are constant in both
Weber and Bernoulli formulation, the deviations in the pre-
diction of Pr(SFRP5|MYC) is observed to be logarithmic
in the normal samples (apropos to the Weber and Bernoulli
deviations represented by green and cyan curves). Deviation
in predictions are depicted by the red (blue) curves for nor-
mal (tumor) samples. Such a behaviour is not observed for
Pr(MYC|SFRP5) as is depicted in figure 9. Note that the
interaction for SFRP5 given MYC was observed to be re-
versible in normal and tumor cases. But this is not so with
the interaction for MYC given SFRP5. It might be ex-
pected that the non conformance of logarithmic-power law
for Pr(MYC|SFRP5) may be due to the non preservation
of the interaction of MYC given SFRP5. This is so be-
cause Pr(SFRP5|MYC) depicts a reversible SFRP5 <>
−|MYC (MYC <> −|SFRP5) in the network on normal
(tumor) samples, while Pr(MYC|SFRP5) does not depict a
reversible MYC|− <> SFRP5 (MYC| − |SFRP5) in the
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Fig. 8 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(SFRP5|MYC) for both normal and tumor test
samples. Corresponding Weber and Bernoulli deviations were also
recorded. Note that the plots and the y-axis depict scaled deviations
to visually analyse the observations. The model used is
MPBK+EI . Red - deviation in Pr(SFRP5|MYC) in Normal case
using Weber’s law, Blue - deviation in Pr(SFRP5|MYC) in
Tumor using Weber’s law, Green - constant deviation in Webers law,
Cyan - constant deviation in Bernoullis law.

network on normal (tumor) samples.
Similar behaviour was observed in the case of incremental

deviations as depicted in figures 10 and 11. Analysis of be-
haviour of other gene-gene interactions can be observed in a
similar way.

4 Future directions

In context of the above observations, dynamic models might
reveal greater information regarding the psychophysical laws.
Work by Goentoro and Kirschner16 employs sensitivity anal-
ysis methods to reveal such laws by tuning single parameters.
There might be a few ways to measure fold change in sin-
gle an multi parameter settings. Future work might involve
deeper study of the phenomena based on multi-parameter set-
ting in a dynamic bayesian network model. If one incorpo-
rates nodes in between two time snapshots of β-catenin con-
centration in a dynamic bayesian network, one might be able
to measure the changes at different phases of the signaling
pathway. For example, in figure 12 a set of nodes measur-
ing the different concentrations of β-catenin (say N ) are de-
picted. In a dynamic bayesian network, the previous concen-
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Fig. 9 Same as figure 9 but for Pr(MYC|SFRP5).
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Fig. 10 Same as figure 9 but for Pr(SFRP5|MYC). Instead of
constant deviations, incremental deviations are represented.

tration at t is connected to the next concentration at t + 1.
Also, to measure the effect of difference (∆N ), a change in
concentration can be measured. Computations regarding fold
change (∆N ) could then be estimated as posterior probabil-
ities given the two concentrations, which the Bayesian net-
works can easily handle. In case more parameters need to
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Fig. 11 Same as figure 9 but for Pr(MYC|SFRP5). Instead of
constant deviations, incremental deviations are represented.

be involved (say the effect of Wnt and APC together), nodes
might be added as shown below. Then the fold change is con-
ditional onN(t+1),N(t+2), ∆Wnt and ∆APC and is esti-
mated as Pr(∆N(t+1)|N(t+1), N(t+2),∆Wnt,∆APC).

Regarding sensitivity analysis, in nonlinear problems, it
might be useful to use Sobol’22 indices to estimate the sen-
sitivity of the parameters. These indices are a way to esti-
mate the changes in a multiparameter setting thus helping one
to conduct global sensitivity analysis instead of local sensi-
tivity analysis (Glen and Isaacs23). Finally, with respect to
the robustness of the gene-gene interaction network, the cur-
rent work employs a very simple algorithm to construct the
network and infer preserved interactions across the range of
values set for a particular parameter. This helps in eliminat-
ing interactions that do not contribute enough biological in-
formation in the pathway or are non existant and require fur-
ther analysis by integration of more data. Work in these lines
would require incorporation of bigger datasets.

5 Conclusion

In this preliminary work via sensitivity analysis, the varia-
tion in predictive behaviour of β-catenin based transcription
complex conditional on gene evidences follows logarithmic
psychophysical law crudely, implying deviations in output
are proportional to increasing function of deviations in input
and show constancy for higher values of input. This points
towards stability in the behaviour of transcriptional activity
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Fig. 12 A schematic diagram of a dynamic bayesian network model
that might help study the fold change and the logarithmic
psychophysical laws behind the changes.

downstream of the Wnt pathway. As a further development,
this stability might reflect the preserved gene gene interactions
of the Wnt pathway inferred from conditional probabilities of
individual gene activation given the status of another gene ac-
tivation derived using biologically inspired Bayesian Network.
Finally, based on the sensitivity analysis it was observed that
the psychophysical laws are prevelant among the gene-gene
interaction network also.
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