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Abstract

Recently, psychophysical laws have been observed to be functional in certain fac-
tors working downstream of the Wnt pathway. This work tests the veracity of
the prevalence of such laws, albeit at a coarse level, using sensitivity analysis on
biologically inspired epigenetically influenced computational causal models. In
this work, the variation in the effect of the predictive behaviour of the transcrip-
tion complex (TRCMPLX) conditional on the evidences of gene expressions in
normal/tumor samples is observed by varying the initially assigned values of con-
ditional probability tables (cpt) for TRCMPLX. Preliminary analysis shows that
the variation in predictive behaviour of TRCMPLX follows power-logarithmic
psychophysical law, crudely. More recently, wet lab experiments have proved
the existence of sensors that behave in a logarithmic fashion thus supporting the
earlier proposed postulates based on computational sensitivity analysis of this
manuscript regarding the existence of logarithmic behaviour in the signaling
pathways. It also signifies the importance of systems biology approach where in
silico experiments combined with in vivo/in vitro experiments have the power
to explore the deeper mechanisms of a signaling pathway. Additionally, it is hy-
pothesized that these laws are prevalent at gene-gene interaction level also. The
interactions were obtained by thresholding the inferred conditional probabilities
of a gene activation given the status of another gene activation. The deviation in
the interactions in normal/tumor samples was similarly observed by varying the
initially assigned values of conditional probability tables (cpt) for TRCMPLX.
Analysis of deviation in interactions show prevalence of psychophysical laws and
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is reported for interaction between elements of pairs (SFRP3, MYC), (SFRP2,
CD44) and (DKK1, DACT2). Based on crude static models, it is assumed that
dynamic models of Bayesian networks might reveal the phenomena in a better
way.

Keywords: Psychophysical laws; Wnt pathway; Causal models; Inference;
Bayesian Network; Sensitivity analysis; Gene interaction network

1. Introduction & problem statement1

Ever since the accidental discovery of the Wingless in 1973 by Sharma (1973),2

a tremendous amount of research work has been carried out in the related field3

of Wnt signaling pathway in the past forty years. A majority of the work has4

focused on issues related to • the discovery of genetic and epigenetic factors5

affecting the pathway Thorstensen et al. (2005) & Baron and Kneissel (2013), •6

implications of mutations in the pathway and its dominant role on cancer and7

other diseases Clevers (2006), • investigation into the pathway’s contribution8

towards embryo development Sokol (2011), homeostasis Pinto et al. (2003),9

Zhong et al. (2014) and apoptosis Pećina-Šlaus (2010) and • safety and feasibility10

of drug design for the Wnt pathway Kahn (2014), Garber (2009), Voronkov and11

Krauss (2012), Blagodatski et al. (2014) & Curtin and Lorenzi (2010). More12

recent informative reviews have touched on various issues related to the different13

types of the Wnt signaling pathway and have stressed not only the activation14

of the Wnt signaling pathway via the Wnt proteins Rao and Kühl (2010) but15

also the on the secretion mechanism that plays a major role in the initiation of16

the Wnt activity as a prelude Yu and Virshup (2014).17

In a more recent development, there has been the observation and study of18

psychophysical laws prevailing within the pathway and in this regard Goentoro19

and Kirschner (2009) point to two findings namely, • the robust fold changes of20

β-catenin and • the transcriptional machinery of the Wnt pathway depends on21

the fold changes in β-catenin instead of absolute levels of the same and some22

gene transcription networks must respond to fold changes in signals according23

to the Weber (1834) law in sensory physiology. Note that Weber’s law has been24

found to be a special case of Bernoulli’s logarithmic law Masin et al. (2009). If a25

sensation magnitude γ be determined by a stimulus magnitude β, then the We-26

ber’s law states that ∆γ remains constant when the relative stimulus increment27

∆β remains constant. The law derives from a more general Bernoullis law were28

∆γ ∝ log ∆β
β . In an unrelated work by Sun et al. (2012), it has been shown29

that these laws arise at computational level as Bayes optimal under neurobi-30

ological constraints at implementational and algorithmic levels. The proposed31

mathematical framework for understanding the psychophysical scales as Bayes32

optimal and information theoretically-optimal representation of time sampled33

continuous valued stimuli is based on established neurobiological assumptions.34

Sun et al. (2012) also show that the psychophysical laws connect well to quan-35

tization frameworks and state that only discrete set of output is distinguishable36
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due to biological constraints. This discretization leads to quantization of stim-37

ulus also as the nonlinear scaling of the stimulus that leads to the resultant38

output is invertible. These mathematical insights might explain the indistin-39

guishable insensitive fold changes in levels of β-catenin shown by Goentoro and40

Kirschner (2009).41

Based on the importance of the revealed phenomena, it might be useful to42

know if these observations could be verified using computational models apart43

from analysis of results from wet lab experiments. What is needed is a frame-44

work that can capture the causal semantics of the signaling pathway where the45

influence diagrams involving the interacting extra/intracellular factors working46

in the pathway, represent the biological knowledge/mechanism of the pathway47

to a certain extent. Once a model representation is available, the desired varia-48

tion in the activity of an input factor and the observed variation in the output49

of the activity of factor(s) can be studied. Sensitivity analysis plays a crucial50

role in observing the behaviour of output of a variable given variations in the51

input. As will be seen later, probabilistic graphical models or Bayesian networks52

provide a framework for representing the causal semantics of the pathway under53

investigation.54

To address these issues, the current work uses the Bayesian network model55

proposed in Sinha (2014) and conducts sensitivity analysis on the model to56

check the observations regarding the prevalence of the reported psychophysical57

laws. In Sinha (2014), it was shown via hypothesis testing that the active58

(repressed) state of TRCMPLX in the Wnt signaling pathway for colorectal59

cancer cases is not always correspond to the tumorous (normal) state of the60

test sample under consideration. For this, Sinha (2014) shows various results61

on the predicted state of TRCMPLX conditional on the given gene evidences,62

while varying the assigned probability values of conditional probability tables of63

TRCMPLX during initialization of the biologically inspired Bayesian Network64

model. Here, the degree of belief in the activity of TRCMPLX is denoted by65

the prior probability assigned to the node of TRCMPLX in the network. It66

was found that the predicted values often increase with an increasing value (in67

conditional probability tables) of the activity of TRCMPLX on certain genes.68

What this asks for is that for the recorded deviations due to the changes made69

in these prior probabilities (i.e the input deviations), is it possible to observe the70

prevalent logarithmic laws and their deviations (like the Weber’s law) as shown71

by Goentoro and Kirschner (2009), using computational causal modeling?72

In this manuscript, the preliminary analysis of deviations computed from73

variation in prior and estimated conditional probability values using Bayesian74

network model in Sinha (2014) show that the variation in predictive behaviour75

of TRCMPLX conditional on gene evidences (i.e the output deviation) follows76

power and logarithmic psychophysical law crudely, apropos the variation in77

assigned priors of TRCMPLX (i.e input deviations). This implies that the78

deviations in output are proportional to increasing function of deviations in79

input. This relates to the work of Adler et al. (2014) on power and logarithmic80

law albeit at a coarse level. The granularity is obscured due to the use of81

static data from Jiang et al. (2008) that is used in Sinha (2014) as well as82
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the Bayesian network model that encodes the belief in the factors affecting83

the pathway in terms of probabilities as well as the inferences made based on84

the updating of these probabilities conditional on discretized states of gene85

expression values as evidences. Irrespective of the hurdle posed by the causal86

models, inferences made based on prior biological knowledge and gene expression87

evidences coupled with sensitivity analysis sheds light on the prevalent power-88

logarithmic psychophysical laws in the pathway. Note that the foundations of89

the current work were presented as poster in the International Conference on90

Systems Biology of Human Disease at the German Cancer Research Center91

in Heidelberg (Germany) in 2015. Followup of some of the implications were92

shared with a few labs for verification and it is gladdening to see that in a recent93

development via wet lab experiments by Olsman and Goentoro (2016), it has been94

confirmed that there are existence of sensors that behave in a logarithmic fashion.95

The wet lab work by Olsman and Goentoro (2016) supports the earlier proposed96

crude postulates based on computational sensitivity analysis of this manuscript97

regarding the existence of logarithmic behaviour in the signaling pathways. It also98

signifies the importance of systems biology approach where in silico experiments99

combined with in vivo/in vitro experiments have the power to explore the deeper100

mechanisms of a signaling pathway.101

Adler et al. (2014) show in detail that these laws can be studied empiri-102

cally using models that exhibit the property of fold change detection (FCD).103

What this means is that the output depends on the relative changes in the104

input. The biological feedback models employed for these studies consider var-105

ious parameters like rates of production of a compound, removal removal of106

a compound, repression of a compound, levels of scaffolds, kinases, etc. that107

might be responsible for exhibiting these laws. The current work using the108

static Bayesian network model might not propose feedback loops directly as109

used by Adler et al. (2014), yet it could reveal existence of the loops via causal110

inference even while using static data. The drawback of the current work is111

its inability to consider cyclic loops. This can be rectified by use of dynamic112

Bayesian network models that incorporate interaction represented in time se-113

ries data. Also, the use of Bayesian network models can help in studying the114

problem from a multiparameter setting as various factors affecting the pathway115

can be connected in the influence diagrams of the network through the principle116

of d-connectivity/separability. This connectivity will be explained later in the117

required theory section.118

Note that Goentoro and Kirschner (2009) show results for the behaviour119

of fold change of β-catenin with respect to changes in the single parameter120

values i.e the Wnt. On similar lines, the current work takes into account the121

behaviour of TRCMPLX conditional on affects of multiple parameters in the122

form of evidences of various intra/extracellular gene expression values working123

in the pathway, based on the changes made in the assigned prior probabilities124

for TRCMPLX. The difference here is that one can analyse changes in nodes125

of a computational model to explore an inherent law in comparison to use of126

wet lab experiments. The issue here is that FCD which is recorded with re-127

spect to changes in levels of concentration can now be recorded via changes in128
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Figure 1: A cartoon of Wnt signaling pathway adapted from Sinha (2014). Part (A) represents
the destruction of β-catenin leading to the inactivation of the Wnt target gene. Part (B)
represents activation of Wnt target gene.

the strength of belief in the occurrence of an event. For example, suppose it129

is not known by what degree the TRCMPLX plays a major role in the sig-130

naling pathway quantitatively, then it is possible to encode the degree of belief131

regarding the role of TRCMPLX in the form of prior or conditional probabil-132

ities during initialization of the network. By recording the deviations in these133

probabilities and observing the output deviations, it is possible to study cer-134

tain psychophysical laws. Finally, this does not mean that probabilities related135

to actual concentrations cannot be encoded. Thus, Bayesian networks help in136

capturing the desired biological knowledge via various causal arcs and condi-137

tional probabilities and sensitivity analysis aids in the study of the such natural138

behaviour.139

As a second observation, the forgoing result points towards stability in the140

behaviour of TRCMPLX and this stability is reflected in the preserved gene141

gene interactions across the changing values of the priors of TRCMPLX. The142

interactions are inferred from conditional probabilities of individual gene activa-143

tion given the status of another gene activation. Finally, as a third observation,144

it would be interesting to note if the psychophysical laws are prevalent among145

the dual gene-gene interactions or not. If the results are affirmative then the146

following important speculations might hold true • Not just one factor but147

components of the entire network might be exhibiting such a behavior at some148

stage or the other. • The psychophysical law might not be restricted to individ-149

ual intra/extracellular components but also to the interactions among the the150
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intra/extracellular components in the pathway. This might mean that the inter-151

actions manifest during the prevalence of power and logarithmic laws. Further152

wet lab analysis is needed to very these computational claims.153

It is important to be aware of the fact that the presented results are derived154

from a static Bayesian network model. It is speculated that dynamic models155

might give much better and more realistic results.156

2. Revisiting the requisite theory157

To understand the logical flow of the current paper, some details of the above158

related topics from Sinha (2014) are revisited here in order and subdivided into159

descriptions of - (1) general working of canonical Wnt signaling pathway and160

some of the involved epigenetic factors (2) introduction to Bayesian networks161

and (3) the intuition behind the Bayesian network model employed. This is162

followed by Weber’s law and its derivation and finally the notations and termi-163

nologies to understand the results and discussion section.164

2.1. Canonical Wnt signaling pathway165

The canonical Wnt signaling pathway is a transduction mechanism that con-166

tributes to embryo development and controls homeostatic self renewal in several167

tissues Clevers (2006). Somatic mutations in the pathway are known to be as-168

sociated with cancer in different parts of the human body. Prominent among169

them is the colorectal cancer case Gregorieff and Clevers (2005). In a succinct170

overview, the Wnt signaling pathway works when the Wnt ligand gets attached171

to the Frizzled(fzd)/LRP coreceptor complex. Fzd may interact with the Di-172

shevelled (Dvl) causing phosphorylation. It is also thought that Wnts cause173

phosphorylation of the LRP via casein kinase 1 (CK1) and kinase GSK3.174

These developments further lead to attraction of Axin which causes inhibition175

of the formation of the degradation complex. The degradation complex consti-176

tutes of Axin, the β-catenin transportation complex APC, CK1 and GSK3.177

When the pathway is active the dissolution of the degradation complex leads to178

stabilization in the concentration of β-catenin in the cytoplasm. As β-catenin179

enters into the nucleus it displaces the Groucho and binds with transcription180

cell factor TCF thus instigating transcription of Wnt target genes. Groucho181

acts as lock on TCF and prevents the transcription of target genes which may182

induce cancer. In cases when the Wnt ligands are not captured by the corecep-183

tor at the cell membrane, Axin helps in formation of the degradation complex.184

The degradation complex phosphorylates β-catenin which is then recognized185

by Fbox/WD repeat protein β − TrCP . β − TrCP is a component of ubiq-186

uitin ligase complex that helps in ubiquitination of β-catenin thus marking it187

for degradation via the proteasome. Cartoons depicting the phenomena of Wnt188

being inactive and active are shown in figures 1(A) and 1(B), respectively.189
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2.2. Epigenetic factors190

One of the widely studied epigenetic factors is methylation Costello and Plass191

(2001), Das and Singal (2004), Issa (2007). Its occurrence leads to decrease in192

the gene expression which affects the working of Wnt signaling pathways. Such193

characteristic trends of gene silencing like that of secreted frizzled-related pro-194

teins (SFRP ) family in nearly all human colorectal tumor samples have been195

found at extracellular level Suzuki et al. (2004). Similarly, methylation of genes196

in the Dickkopf (DKKx Niehrs (2006), Sato et al. (2007), Dapper antagonist197

of catenin (DACTx Jiang et al. (2008) and Wnt inhibitory factor-1 (WIF1198

Taniguchi et al. (2005) family are known to have significant effect on the Wnt199

pathway. Also, histone modifications (a class of proteins that help in the for-200

mation of chromatin which packs the DNA in a special form Strahl and Allis201

(2000) can affect gene expression Peterson et al. (2004). In the context of the202

Wnt signaling pathway it has been found that DACT gene family show a pe-203

culiar behavior in colorectal cancer Jiang et al. (2008). DACT1 and DACT2204

showed repression in tumor samples due to increased methylation while DACT3205

did not show obvious changes to the interventions. It is indicated that DACT3206

promoter is simultaneously modified by the both repressive and activating (bi-207

valent) histone modifications Jiang et al. (2008).208

2.3. Bayesian Networks209

In reverse engineering methods for control networks Gardner and Faith210

(2005) there exist many methods that help in the construction of the networks211

from the data sets as well as give the ability to infer causal relations between212

components of the system. A widely known architecture among these methods213

is the Bayesian Network (BN). These networks can be used for causal reasoning214

or diagnostic reasoning or both. It has been shown through reasoning and ex-215

amples in Roehrig (1996) that the probabilistic inference mechanism applied via216

Bayesian networks are analogous to the structural equation modeling in path217

analysis problems.218

Initial works on BNs in Pearl (1988) and Pearl (2000) suggest that the net-219

works only need a relatively small amount of marginal probabilities for nodes220

that have no incoming arcs and a set of conditional probabilities for each node221

having one or more incoming arcs. The nodes form the driving components of222

a network and the arcs define the interactive influences that drive a particular223

process. Under these assumptions of influences the joint probability distribution224

of the whole network or a part of it can be obtained via a special factorization225

that uses the concept of direct influence and through dependence rules that de-226

fine d-connectivity/separability as mentioned in Charniak (1991) and Needham227

et al. (2007). This is illustrated through a simple example in Roehrig (1996).228

The Bayesian networks work by estimating the posterior probability of the229

model given the data set. This estimation is usually referred to as the Bayesian230

score of the model conditioned on the data set. Mathematically, let S represent231

the model given the data D and ξ is the background knowledge. Then according232

to the Bayes Theorem Bayes and Price (1763):233
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P(S|D, ξ) =
P(S ∩D|ξ)
P(D|ξ)

=
P(S|ξ)× P(D|S, ξ)

P(D|ξ)

posterior =
prior × likelihood

constant
(1)

Thus the Bayesian score is computed by evaluating the posterior distribution234

P(S|D, ξ) which is proportional to the prior distribution of the model P(S|ξ)235

and the likelihood of the data given the model P(D|S, ξ). It must be noted236

that the background knowledge is assumed to be independent of the data. Next,237

since the evaluation of probabilities require multiplications a simpler way is to238

take logarithmic scores which boils down to addition. Thus the estimation takes239

the form:240

logP(S|D, ξ) = logP(S|ξ) + logP(D|S, ξ)− logP(D|ξ)
= logP(S|ξ) + logP(D|S, ξ) + constant (2)

Finally, the likelihood of the function can be evaluated by averaging over all241

possible local conditional distributions parameterized by θi’s that depict the242

conditioning of parents. This is equated via:243

P(D|S, ξ) =

�

θ1

...

�

θn

P(D, θi|S)dθi

=

�

θ1

...

�

θn

P(D|θiS)P(θi|S)dθi (3)

Work on biological systems that make use of Bayesian networks can also be244

found in Friedman et al. (2000), Hartemink et al. (2001), Sachs et al. (2002),245

Sachs et al. (2005) and Peer et al. (2001). Bayesian networks are good in gen-246

erating network structures and testing a targeted hypothesis which confine the247

experimenter to derive causal inferences Brent and Lok (2005). But a major248

disadvantage of the Bayesian networks is that they rely heavily on the condi-249

tional probability distributions which require good sampling of datasets and are250

computationally intensive. On the other hand, these networks are quite robust251

to the existence of the unobserved variables and accommodates noisy datasets.252

They also have the ability to combine heterogeneous data sets that incorporate253

different modalities.254

In Sinha (2014), simple static Bayesian Network models have been developed255

with an aim to show how • incorporation of heterogeneous data can be done to256

increase prediction accuracy of test samples • prior biological knowledge can be257

embedded to model biological phenomena behind the Wnt pathway in colorectal258

cancer • to test the hypothesis regarding direct correspondence of active state259
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Figure 2: Influence diagram of MPBK+EI contains partial prior biological knowledge and
epigenetic information in the form of methylation and histone modification. Diagram drawn
using CYTOSCAPE Shannon et al. (2003). In this model the state of Sample is distinguished
from state of TRCMPLX that constitutes the Wnt pathway.

of β-catenin based transcription complex and the state of the test sample via260

segregation of nodes in the directed acyclic graphs of the proposed models and261

• inferences can be made regarding the hidden biological relationships between262

a particular gene and the β-catenin transcription complex. This work uses263

MATLAB implemented BN toolbox from Murphy et al. (2001).264

2.4. Intuition behind the causal semantics of the biologically inspired Bayesian265

network266

The NB model Ver assumes that the activation (inactivation) of β-catenin267

based transcription complex is equivalent to the fact that the sample is cancerous268

(normal). This assumption needs to be tested and Sinha (2014) proposes a269

newly improvised models based on prior biological knowledge and epigenetic270

information regarding the signaling pathway with the assumption that sample271

prediction may not always mean that the β-catenin based transcription complex272

is activated. These assumptions are incorporated by inserting another node273

of Sample for which gene expression measurements were available. This is274

separate from the TRCMPLX node that influences a particular set of known275

genes in the human colorectal cancer. For those genes whose relation with276

the TRCMPLX is currently not known or biologically affirmed, indirect paths277

through the Sample node to the TRCMPLX exist, technical aspect of which278

is described next.279

For those factors whose relations were not yet confirmed but known to be280

involved in the pathway, the causal arcs were segregated via a latent variable281

introduced into the Bayesian network. The latent variable in the form of Sample282

(see figure 2) is extremely valuable as it connects the factors whose relations have283

not been confirmed till now, to factors whose influences have been confirmed284
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in the pathway. Finally, the introduction of latent variable in a causal model285

opens the avenue to assume the presence of measurements that haven’t been286

recorded. Intuitively, for cancer samples the hidden measurements might be287

different from those for normal samples. The connectivity of factors through288

the variable provides an important route to infer biological relations.289

Since all gene expressions have been measured from a sample of subjects290

the expression of genes is conditional on the state of the Sample. Here both291

tumorous and normal cases are present in equal amounts. The transcription292

factor TRCMPLX under investigation is known to operate with the help of293

interaction between β-catenin with TCF4 and LEF1 Waterman (2004), Kriegl294

et al. (2010). It is also known that the regions in the TSS of MYC Yochum295

(2011), CCND1 Schmidt-Ott et al. (2007), CD44 Kanwar et al. (2010), SFRP1296

Caldwell et al. (2006), WIF1 Reguart et al. (2004), DKK1 González-Sancho297

et al. (2004) andDKK4 Pendas-Franco et al. (2008), Baehs et al. (2009) contain298

factors that have affinity to β-catenin based TRCMPLX. Thus expression of299

these genes are shown to be influenced by TRCMPLX, in figure 2.300

Roles ofDKK2 Matsui et al. (2009) andDKK3 Zitt et al. (2008), Veeck and301

Dahl (2012) have been observed in colorectal cancer but their transcriptional302

relation with β-catenin based TRCMPLX is not known. Similarly, SFRP2 is303

known to be a target of Pax2 transcription factor and yet it affects the β-catenin304

Wnt signaling pathway Brophy et al. (2003). Similarly, SFRP4 Feng Han et al.305

(2006), Huang et al. (2010) and SFRP5 Suzuki et al. (2004) are known to have306

affect on the Wnt pathway but their role with TRCMPLX is not well studied.307

SFRP3 is known to have a different structure and function with respect to the308

remaining SFRPx gene family Hoang et al. (1996). Also, the role of DACT2 is309

found to be conflicting in the Wnt pathway Kivimäe et al. (2011). Thus for all310

these genes whose expression mostly have an extracellular affect on the pathway311

and information regarding their influence on β-catenin based TRCMPLX node312

is not available, an indirect connection has been made through the Sample node.313

This connection will be explained at the end of this section.314

Lastly, it is known that concentration of DV L2 (a member of Disheveled315

family) is inversely regulated by the expression of DACT3 Jiang et al. (2008).316

High DV L2 concentration and suppression of DACT1 leads to increase in stabi-317

lization of β-catenin which is necessary for the Wnt pathway to be active Jiang318

et al. (2008). But in a recent development Yuan et al. (2012) it has been found319

that expression of DACT1 positively regulates β-catenin. Both scenarios need320

to be checked via inspection of the estimated probability values for β-catenin321

using the test data. Thus there exists direct causal relations between parent322

nodes DACT1 and DV L2 and child node, β-catenin. Influence of methylation323

(yellow hexagonal) nodes to their respective gene (green circular) nodes repre-324

sent the affect of methylation on genes. Influence of histone modifications in325

H3K27me3 and H3K4me3 (blue octagonal) nodes to DACT3 gene node repre-326

sents the affect of histone modification onDACT3. The β-catenin (blue square)327

node is influenced by concentration of DV L2 (depending on the expression state328

of DACT3) and behavior of DACT1.329

The aforementioned established prior causal biological knowledge is imposed330
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Figure 3: Cases for d-connectivity and d-separation. Black (Gray) circles mean evidence is
available (not available) regarding a particular node.

in the Bayesian network model with the aim to computationally reveal unknown331

biological relationships. The influence diagram of this model is shown in figure332

2 with nodes on methylation and histone modification.333

In order to understand indirect connections further it is imperative to know334

about d-connectivity/separability. In a BN model this connection is estab-335

lished via the principle of d-connectivity which states that nodes are connected336

in a path when there exists no node in the path that has more than one incom-337

ing influence edge or there exits nodes in path with more than one incoming338

influence edge which are observed (i.e evidence regarding such nodes is avail-339

able) Charniak (1991). Conversely, via principle of d-separation nodes are340

separated in a path when there exists nodes in the path that have more than341

one incoming influence edge or there exists nodes in the path with at most one342

incoming influence edge which are observed (i.e evidence regarding such nodes343

is available). Figure 3 represents three different cases of connectivity and sep-344

aration between nodes A and C when the path between them passes through345

node B. Connectivity or dependency exists between nodes A and C when •346

evidence is not present regarding node B in the left graphs of I. and II. in figure347

3 or • evidence is present regarding node B in the right graph of III. in figure348

3. Conversely, separation or independence exits between nodes A and C when349

• evidence is present regarding node B in the right graphs of I. and II. in figure350

3 or • evidence is not present regarding node B in the left graph of III. in figure351

3.352
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It would be interesting to know about the behaviour of TRCMPLX given353

the evidence of state of SFRP3. To reveal such information paths must ex-354

ist between these nodes. It can be seen that there are multiple paths between355

TRCMPLX and SFRP2 in the BN model in figure 2. These paths are enu-356

merated as follows:357

1. SFRP3, Sample, SFRP1, TRCMPLX358

2. SFRP3, Sample, DKK1, TRCMPLX359

3. SFRP3, Sample, WIF1, TRCMPLX360

4. SFRP3, Sample, CD44, TRCMPLX361

5. SFRP3, Sample, DKK4, TRCMPLX362

6. SFRP3, Sample, CCND1, TRCMPLX363

7. SFRP3, Sample, MYC, TRCMPLX364

8. SFRP3, Sample, LEF1, TRCMPLX365

9. SFRP3, Sample, DACT3, DV L2, β-catenin, TRCMPLX366

10. SFRP3, Sample, DACT1, β-catenin, TRCMPLX367

Knowledge of evidence regarding nodes of SFRP1 (path 1), DKK1 (path 2),368

WIF1 (path 3), CD44 (path 4), DKK4 (path 5), CCND1 (path 6) and MYC369

(path 7) makes Sample and TRCMPLX dependent or d-connected. Further,370

no evidence regarding state of Sample on these paths instigates dependency or371

connectivity between SFRP3 and TRCMPLX. On the contrary, evidence re-372

garding LEF1, DACT3 andDACT1 makes Sample (and child nodes influenced373

by Sample) independent or d-separated from TRCMPLX through paths (8) to374

(10). Due to the dependency in paths (1) to (7) and the given state of SFRP3375

(i.e evidence regarding it being active or passive), the BN uses these paths dur-376

ing inference to find how TRCMPLX might behave in normal and tumorous377

test cases. Thus, exploiting the properties of d-connectivity/separability, impos-378

ing a biological structure via simple yet important prior causal knowledge and379

incorporating epigenetic information, BN help in inferring many of the unknown380

relation of a certain gene expression and a transcription complex.381

2.5. The logarithmic psychophysical law382

Masin et al. (2009) states the Weber’s law as follows -383

Consider a sensation magnitude γ determined by a stimulus mag-384

nitude β. Fechner (1860) (vol 2, p. 9) used the symbol ∆γ to denote385

a just noticeable sensation increment, from γ to γ + ∆γ, and the386

symbol ∆β to denote the corresponding stimulus increment, from β387

to β + ∆β. Fechner (1860) (vol 1, p. 65) attributed to the Ger-388

man physiologist Ernst Heinrich Weber the empirical finding Weber389

(1834) that ∆γ remains constant when the relative stimulus incre-390

ment ∆β
β remains constant, and named this finding Weber’s law.391

Fechner (1860) (vol 2, p. 10) underlined that Weber’s law was em-392

pirical.393
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It has been found that Bernoulli’s principle Bernoulli (1738) is different from
Weber’s law Weber (1834) in that it refers to ∆γ as any possible increment in
γ, while the Weber’s law refers only to just noticeable increment in γ. Masin
et al. (2009) shows that Weber’s law is a special case of Bernoulli’s principle
and can be derived as follows - Equation 4 depicts the Bernoulli’s principle and
increment in sensation represented by ∆γ is proportional to change in stimulus
represented by ∆β.

γ = b× log
β

α
(4)

were b is a constant and α is a threshold. To evaluate the increment, the
following equation 5 and the ensuing simplification gives -

∆γ = b× log
β +∆β

α
− b× log

β

α
= b× log(

β +∆β

β
) = b× log(1 +

∆β

β
) (5)

Since b is a constant, equation 5 reduces to

∆γ ◦ ∆β

β
(6)

were ◦ means ”is constant when there is constancy of” from Masin et al. (2009).394

The final equation 6 is a formulation of Weber’s laws in wordings and thus395

Bernoulli’s principles imply Weber’s law as a special case. Using Fechner (1860)396

derivation, it is possible to show the relation between Bernoulli’s principles and397

Weber’s law. Starting from the last line of equation 5, the following yields the398

relation.399

∆γ = b× log(1 +
∆β

β
) =⇒ e

∆γ = e
b×log(1+∆β

β )

kp = e
log(1+∆β

β )b ; were kp = e
∆γ =⇒ kp = (1 +

∆β

β
)b; since e

log(x) = x

b
�
kp = 1 +

∆β

β

kq − 1 =
∆β

β
; were b

�
kp = kq =⇒ kr =

∆β

β
; the weber’s law s.t. kr =

b
√
e∆γ − 1

(7)

Equation 6 holds true given the last line of equation 7. In the current study,400

observation of deviation recorded in predicted values of state of TRCMPLX401

conditional on gene evidences show crude logarithmic behaviour which might402

bolster Weber’s law and Bernoulli’s principles. But it must be noted that these403

observations are made on static causal models and observation of the same404

behaviour in dynamical setting would add more value.405

3. Materials and methods406

The models purported by Sinha (2014) involving the biological knowledge407

as well as epigenetic information depicted by MPBK+EI and biological knowl-408
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edge excluding epigenetic information MPBK were used to predict the state of409

TRCMPLX given the gene evidences. Figure 2 depicts the model MPBK+EI .410

The predictions were recorded over the varying effect of TRCMPLX on gene411

regulations via assignment of different values to conditional probability tables412

(cpt) of TRCMPLX while initializing the aforementioned BN models. This413

varying effect is represented by the term ETGN in Sinha (2014).414

As a recapitulation, the design of the experiment is a simple 2-holdout ex-415

periment where one sample from the normal and one sample from the tumorous416

are paired to form a test dataset. Excluding the pair formed in an iteration of417

2-hold out experiment the remaining samples are considered for training of a418

BN model. Thus in a data set of 24 normal and 24 tumorous cases obtained419

from Jiang et al. (2008), a training set will contain 46 samples and a test set420

will contain 2 samples (one of normal and one of tumor). This procedure is421

repeated for every normal sample which is combined with each of the tumorous422

sample to form a series of test datasets. In total there will be 576 pairs of test423

data and 576 instances of training data. Note that for each test sample in a424

pair, the expression value for a gene is discretized using a threshold computed425

for that particular gene from the training set. Computation of the threshold426

has been elucidated in Sinha (2014). This computation is repeated for all genes427

per test sample. Based on the available evidence from the state of expression of428

all genes, which constitute the test data, inference regarding the state of both429

the TRCMPLX and the test sample is made. These inferences reveal informa-430

tion regarding the activation state of the TRCMPLX and the state of the test431

sample. Finally, for each gene gi, the conditional probability Pr(gi = active|gk432

evidence) ∀k genes. Note that these probabilities are recorded for both normal433

and tumor test samples.434

Three observations are presented in this manuscript. The first observa-435

tion is regarding the logarithmic deviations in prediction of activation status436

of TRCMPLX conditional on gene expression evidences. The second obser-437

vation is preservation of some gene gene interactions across different strength438

of beliefs concerning the affect of TRCMPLX. To observe these preservations,439

first the gene gene interactions have to be constructed from the predicted con-440

ditional probabilities of one gene given the evidence of another gene (for all441

gene evidences taken separately). After the construction, further preprocessing442

is required before the gene-gene interaction network can be inferred. Finally,443

the third observation is to check whether these laws are prevalent among the444

gene-gene interactions in the network or not.445

4. Results and discussion on observation 1446

4.1. Logarithmic-power deviations in predictions of β-catenin transcription com-447

plex448

Let γ be Pr(TRCMPLX = active|all gene evidences), β be the assigned cpt449

value of TRCMPLX during initialization of the Bayesian network models and450

∆β be the deviation in the assigned values of TRCMPLX during initialization.451
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Deviation study for model MPBK+EI

β ∆β
∆β
β log(1 + ∆β

β )∆γ in Normal∆γ in Tumor

0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.10.1428571 0.1335314 0.01423754 0.09086427
0.6 0.10.1666667 0.1541507 0.004384244 0.08052346
0.5 0.1 0.2 0.1823216 0.0005872203 0.07294716
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.20.2857143 0.2513144 0.04479181 0.1823758
0.6 0.3 0.5 0.4054651 0.04917605 0.2628992
0.5 0.4 0.8 0.5877867 0.04976327 0.3358464

Table 1: Deviation study for model MPBK+EI . ∆γ - mean value of Pr(TRCMPLX =
active|∀gei evidences) over all runs, γ - Pr(TRCMPLX = active|all gene evidences), β - the
assigned cpt value of TRCMPLX during initialization of the Bayesian network models and
∆β - the deviation in the assigned values of TRCMPLX during initialization.

To compute ∆γ, the 576 predictions of γ observed at β = 90% is subtracted452

from the 576 predictions of γ observed at β = 80% and a mean of the devia-453

tions recorded. This mean becomes ∆γ. The procedure is computed again for454

different value of β. In this manuscript, the effect of constant and incremental455

deviations are observed. Tables 1 and 2 represent the deviations for models456

MPBK+EI and MPBK , respectively.457

Figures 4, 5, 6 and 7 show the deviations represented in tables 1 and 2. Note458

that the numbers depicted in the tables are scaled in a nonuniform manner for459

observational purpose in the figures. Unscaled values are represented under the460

last two columns on the right of tables 1 and 2. Before reading the graphs, note461

that red indicates deviation of mean of Pr(TRCMPLX = active|∀gei evidences)462

in normal test samples, blue indicates deviation of mean of Pr(TRCMPLX =463

active|∀gei evidences) in tumor case, green indicates deviations in Weber’s law464

and cyan indicates deviations in Bernoulli’s law.465

For the case of contant deviations (figure 4) in model MPBK+EI , it was466

observed that deviations in activation of TRCMPLX conditional on gene ev-467

idences for the tumor test samples showed a logarithmic behaviour and were468

directly proportional to the negative of both the Weber’s and Bernoulli’s law.469

This can be seen by the blue curve almost following the green and cyan curves.470

For the case of deviations in activation of TRCMPLX conditional on gene ev-471

idences for the normal test samples showed an exponential behaviour and were472

proportional to negative of both the Weber’s and Bernoulli’s law. Similar be-473

haviour was observed for all the coloured curves in case of incremental deviations474

as shown in figure 5. The exponential behaviour for activation of TRCMPLX475

being active conditional on gene evidences correctly supports to the last line of476
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Deviation study for model MPBK

β ∆β
∆β
β log(1 + ∆β

β )∆γ in Normal∆γ in Tumor

0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.10.1428571 0.1335314 0.06442086 0.1877266
0.6 0.10.1666667 0.1541507 0.01762791 0.06204044
0.5 0.1 0.2 0.1823216 0.01393517 0.1718198
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.20.2857143 0.2513144 0.2044564 0.2974356
0.6 0.3 0.5 0.4054651 0.2220843 0.359476
0.5 0.4 0.8 0.5877867 0.2360195 0.5312958

Table 2: Deviation study for modelMPBK . ∆γ - mean value of Pr(TRCMPLX = active|∀gei
evidences) over all runs, γ - Pr(TRCMPLX = active|all gene evidences), β - the assigned
cpt value of TRCMPLX during initialization of the Bayesian network models and ∆β - the
deviation in the assigned values of TRCMPLX during initialization.

equation 7 which is the derivation of Weber’s law from Bernoulli’s equation. It477

actually point to Fechner’s derivation of Weber’s law from logarithmic formula-478

tion.479

For model MPBK , the above observations do not yield consistent behaviour.480

In figure 6, for the case of constant deviations, only the deviations in activation481

of TRCMPLX conditional on gene evidences for normal test samples expo-482

nential in nature and were found to be directly proportional to the negative483

of both the Weber’s and Bernoulli’s law. But the deviations in activation of484

TRCMPLX conditional on gene evidences in tumor test samples show noisy485

behaviour. But this observation is not the case in incremental deviations for486

the same model. For the case of incremental deviations as represented in figure487

7, the deviations in activation of TRCMPLX conditional on gene evidences488

is directly proportional to both the Weber’s and Bernoulli’s law. The figure489

actually represent the plots with inverted values i.e negative values. A primary490

reason for this behaviour might be that MPBK does not capture and constrain491

the network as much as MPBK+EI which include epigenetic information. This492

inclusion of heterogeneous information adds more value to the biologically in-493

spired network and reveals the hidden natural laws occurring in the signaling494

pathway in both normal and tumor cases.495

4.2. Intuition behind the curve behaviour496

Lastly, the intuitive idea behind the behaviour of the curves generated from497

constant deviation in table 1 is as follows. It is expected that Pr(TRCMPLX =498

active|all gene evidences) is low (high) in the case of Normal (Tumor) samples.499

The change ∆Pr(TRCMPLX = active|all gene evidences) jumps by power of500
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Figure 4: Constant deviations in β i.e ETGN and corresponding deviations in Pr(TRCMPLX
= active|∀gei evidences) for both normal and tumor test samples. Corresponding Weber
and Bernoulli deviations are also recorded. Note that the plots and the y-axis depict scaled
deviations to visually analyse the observations. The model used is MPBK+EI . Red - constant
deviation in Normal, constant deviation in Tumor, Green - constant deviation in Weber’s law,
Cyan - constant deviation in Bernoulli’s law.

10 as the β values change from 50% to 90% in Normal cases. It can be observed501

from the table that there are low deviations in Pr(TRCMPLX = active|all502

gene evidences) when β is low i.e the effect of transcription complex is low and503

high deviations in Pr(TRCMPLX = active|all gene evidences) when β is high504

i.e the effect of transcription complex is high. But it should be noted that the505

deviations still tend to be small. This implies that the TRCMPLX is switched506

off at a constant rate. Thus changes in β leads to exponential curves as in the507

formulation ∆β
β , ∆β → 0 and β → ∞.508

In tumor cases, ∆Pr(TRCMPLX = active|all gene evidences) behaves near509

to logarithmic curve as β increases from 50% to 90%. The deviations increase in510

a slow monotonic way as β increases. Finally, the ratio ∆β
β shows monotonically511

increasing behaviour as ∆β increases proportionally with β. This means that512

in tumor samples the rate of transcription increases or the effect of rate of tran-513

scription complex increases monotonically as β increases. This points to the fold514

change in β-catenin concentration that might be influencing the transcription515

rate of the transcription complex. In normal case, the β-catenin concentration516

remains constant. Due to this, changes in the rate of transcription by the tran-517

scription complex might remains constant and near to zero. Change in β values518

that is the change in initialization of cpt values of transcription complex causes519

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/015834doi: bioRxiv preprint 

https://doi.org/10.1101/015834
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.50 0.55 0.60 0.65 0.70 0.75 0.80

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.0

Stimulus beta

No
n−

un
ifo

rm
 sc

ale
d d

ev
iat

ion
s

Incremental deviations for model with PBK+EI

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

iDevNormal
iDevTumor
iDevWeber
iDevBernoulli

Figure 5: Incremental deviations in β i.e ETGN and corresponding deviations in
Pr(TRCMPLX = active|∀gei evidences) for both normal and tumor test samples. Corre-
sponding Weber and Bernoulli deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The model used is MPBK+EI .
Red - incremental deviation in Normal, incremental deviation in Tumor, Green - incremental
deviation in Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

the logarithmic curve in deviations of prediction of transcription complex.520

Finally, these observations present a crude yet important picture regarding521

the downstream transcriptional behaviour of signaling pathway in case of col-522

orectal cancer. Though the current model does not measure the fold changes in523

the concentration levels of β-catenin, it can help in measuring the deviations524

in activity of the transcription complex conditional on the gene evidences by525

observing the deviations in the strength of belief assigned as priors in the prob-526

ability tables of the node representing the transcription complex of the network.527

Thus sensitivity analysis facilitates in observing such natural phenomena at528

computational level. In context of the work by Goentoro and Kirschner (2009),529

the presented results are crude in terms of static observations yet they show530

corresponding behaviour of transcriptional activity in terms of psychophysical531

laws. Further investigations using dynamic models might reveal more informa-532

tion in comparison to the static models used in Sinha (2014). The observations533

presented here bolster the existence of behavioural phenomena in terms of log-534

arithmic laws.535
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Figure 6: Constant deviations in β i.e ETGN and corresponding deviations in Pr(TRCMPLX
= active|∀gei evidences) for both normal and tumor test samples. Corresponding Weber and
Bernoulli deviations are also recorded. Note that the plots and the y-axis depict scaled
deviations to visually analyse the observations. The model used is MPBK . Red - constant
deviation in Normal, constant deviation in Tumor, Green - constant deviation in Weber’s law,
Cyan - constant deviation in Bernoulli’s law.

5. Preservation of gene gene interactions536

The second part of this study was to find interactions between two genes537

by observing the conditional probability of activation status of one gene given538

the evidence of another gene. Let g be a gene. To obtain the results, two steps539

need to be executed in a serial manner. The first step is to construct gene540

gene interactions based on the available conditional probabilities denoted by541

Pr(gi = active/repressed|gk evidence) ∀k genes. The conditional probabilities542

are inferred using the junction tree algorithm that employs two-pass message543

passing scheme. Example code and implementations of the same can be found544

in Murphy et al. (2001). The steps for constructing the gene gene interactions545

based on these conditional probabilities are documented in the Appendix. The546

second step is to infer gene gene interaction network based purely on reversible547

interactions. Note that networks are inferred for gene evidences using normal548

and tumor test samples separately.549

Finally, once the interaction network is ready, the computational empirical550

estimates for deviations in gene-gene interaction is recorded and observation551

on the prevalence of psychophysical laws in these interactions is discussed. An552

important point that needs to be kept in mind is that the inferred interac-553

tion network differs based on the choice of the threshold involved (which is a554
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Figure 7: Incremental deviations in β i.e ETGN and corresponding deviations in
Pr(TRCMPLX = active|∀gei evidences) for both normal and tumor test samples. Cor-
responding Weber and Bernoulli deviations are also recorded. Note that the plots and the
y-axis depict scaled deviations to visually analyse the observations. The model used is MPBK .
Red - incremental deviation in Normal, incremental deviation in Tumor, Green - incremental
deviation in Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

computational issue) but the underlying psychophysical laws remain unchanged555

(which is a natural phenomena irrespective of the components involved). Thus556

the while reading the observations on the psychophysical laws, readers must not557

get confused regarding plots made for interactions from different networks.558

5.1. Constructing gene-gene interactions559

Gene interactions are constructed by labeling the inferred conditional proba-560

bility of activation of gj given the state of gi, for all j�s&i
�
s. Here labels refer to561

assigning <> for an activated gene and | for repressed gene. Thus the following562

possible combinations can be inferred - gj <> − <> gi, gj | − |gi, gj <> −|gi563

and gj |− <> gi. Note that all interactions are basically depicting the degree564

of belief in the state of gi given or conditional on gj i.e Pr(gi|gj). The label565

related to gi is derived by discretizing Pr(gi|gj) with respect to a weighted mean566

or the arbitrary value of 0.5. In any interaction, the label associated with gj567

is the evidence and the label associated with gi is the predicted conditional568

probability. Thus there will always exist two way interactions corresponding to569

Pr(gj |gi) and Pr(gi|gj) in a Normal case. Similar interactions can be inferred for570

the Tumor case. Which interactions to select is based on criteria of reversibility571

and duplication, which is addressed later. To reiterate a final note regarding the572
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SFRP3 activation status apropos gene evidences in Normal and Tumor samples using θ = 0.5
ge aaN arN raN rrN aaT arT raT rrT ggIN ggIT

1 DKK1 192 360 24 0 0 216 360 0 DKK1 |− <> SFRP3 DKK1 <> −| SFRP3
2 DKK2 360 168 0 48 216 217 0 143 DKK2 <> − <> SFRP3 DKK2 |− <> SFRP3
3 DKK3-1 360 160 0 56 216 226 0 134 DKK3-1 <> − <> SFRP3 DKK3-1 |− <> SFRP3
4 DKK3-2 240 336 0 0 336 240 0 0 DKK3-2 |− <> SFRP3 DKK3-2 <> − <> SFRP3
5 DKK4 0 480 96 0 0 116 460 0 DKK4 |− <> SFRP3 DKK4 <> −| SFRP3
6 DACT1 346 230 0 0 216 360 0 0 DACT1 <> − <> SFRP3 DACT1 |− <> SFRP3
7 DACT2 312 264 0 0 264 312 0 0 DACT2 <> − <> SFRP3 DACT2 |− <> SFRP3
8 DACT3 504 0 0 72 69 0 0 507 DACT3 <> − <> SFRP3 DACT3 |− | SFRP3
9 SFRP1 552 24 0 0 46 460 0 70 SFRP1 <> − <> SFRP3 SFRP1 |− <> SFRP3
10 SFRP2 480 0 0 96 96 480 0 0 SFRP2 <> − <> SFRP3 SFRP2 |− <> SFRP3
11 SFRP4 264 312 0 0 312 264 0 0 SFRP4 |− <> SFRP3 SFRP4 <> − <> SFRP3
12 SFRP5 460 0 0 116 115 0 0 461 SFRP5 <> − <> SFRP3 SFRP5 |− | SFRP3
13 WIF1 0 408 168 0 0 178 398 0 WIF1 |− <> SFRP3 WIF1 <> −| SFRP3
14 LEF1 0 480 96 0 0 92 484 0 LEF1 |− <> SFRP3 LEF1 <> −| SFRP3
15 MYC 0 456 120 0 0 134 442 0 MYC |− <> SFRP3 MYC <> −| SFRP3
16 CCND1 0 480 96 0 0 96 480 0 CCND1 |− <> SFRP3 CCND1 <> −| SFRP3
17 CD44 0 376 200 0 0 192 384 0 CD44 |− <> SFRP3 CD44 <> −| SFRP3

SFRP3 activation status apropos gene evidences in Normal and Tumor samples using θ = θN and θ = θT

1 DKK1 0 360 216 0 360 216 0 0 DKK1 |− <> SFRP3 DKK1 <> − <> SFRP3
2 DKK2 360 0 0 216 216 360 0 0 DKK2 <> − <> SFRP3 DKK2 |− <> SFRP3
3 DKK3-1 360 0 0 216 216 360 0 0 DKK3-1 <> − <> SFRP3 DKK3-1 |− <> SFRP3
4 DKK3-2 0 328 240 8 336 240 0 0 DKK3-2 |− <> SFRP3 DKK3-2 <> − <> SFRP3
5 DKK4 0 480 96 0 0 116 460 0 DKK4 |− <> SFRP3 DKK4 <> −| SFRP3
6 DACT1 346 230 0 0 216 360 0 0 DACT1 <> − <> SFRP3 DACT1 |− <> SFRP3
7 DACT2 24 0 288 264 264 312 0 0 DACT2 <> −| SFRP3 DACT2 |− <> SFRP3
8 DACT3 504 0 0 72 69 0 0 507 DACT3 <> − <> SFRP3 DACT3 |− | SFRP3
9 SFRP1 552 0 0 24 46 530 0 0 SFRP1 <> − <> SFRP3 SFRP1 |− <> SFRP3
10 SFRP2 480 0 0 96 96 480 0 0 SFRP2 <> − <> SFRP3 SFRP2 |− <> SFRP3
11 SFRP4 0 77 264 235 312 264 0 0 SFRP4 <> −| SFRP3 SFRP4 <> − <> SFRP3
12 SFRP5 460 0 0 116 115 411 0 50 SFRP5 <> − <> SFRP3 SFRP5 |− <> SFRP3
13 WIF1 0 408 168 0 398 178 0 0 WIF1 |− <> SFRP3 WIF1 <> − <> SFRP3
14 LEF1 0 480 96 0 0 92 484 0 LEF1 |− <> SFRP3 LEF1 <> −| SFRP3
15 MYC 0 456 120 0 0 134 442 0 MYC |− <> SFRP3 MYC <> −| SFRP3
16 CCND1 0 480 96 0 0 96 480 0 CCND1 |− <> SFRP3 CCND1 <> −| SFRP3
17 CD44 0 376 200 0 384 192 0 0 CD44 |− <> SFRP3 CD44 <> − <> SFRP3

Table 3: SFRP3 activation status in test samples conditional on status of individual gene
activation (represented by evidence in test data) in Normal and Tumor samples. Measurements
are taken over summation of all predicted values across the different runs of the 2-Hold out
experiment. Here the notations denote the following: a - active, p - passive, N - Normal, T -
Tumor, ggIN - gene-gene interaction with Normal, ggIT - gene-gene interaction with Tumor,
<> - active and | - repressed.

interactions - the inferred interactions differ based on the choice of the threshold573

involved (which is a computational issue) but if prevalent, the underlying psy-574

chophysical laws remain unchanged (which is a natural phenomena irrespective575

of the components involved).576

The network obtained by using an arbitrary value like 0.5 for labeling the577

gene interactions is different from those obtained using a weighted mean. There578

are advantages of choosing the weighted mean of the training labels for each579

gene - • Each gene has an individual threshold that is different from the other580

as the expression values are different and the discretization used to estimate581

a particular threshold is based on the median value of the training data for582

that particular gene under consideration. • The weighted mean assigns ap-583

propriate weights to the labels under consideration rather than assigning equal584

weights which might not represent the actual threshold. • Due to the properties585

mentioned in the second point, it might be expected that the weighted mean586

generates a sparse network in comparison to that generated using an arbitrary587
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Figure 8: Gene gene interactions for normal case while using MPBK+EI with θ = 0.5. Note
that the effect of initialized cpt for TRCMPLX is 90% in tumorous case and 10% in normal
case. Diamond <> means activation and straight bar | means repression.

value of 0.5. • Finally, the weighted mean could reveal interactions between two588

genes that might be happening at different stages of time. Even though using589

a static model, capturing such intricate interactions is possible as will be seen590

later.591

There is a formulation for weighted means, but the computation of the592

weighted mean for training samples belonging to Normal and Tumor is done593
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Figure 9: Gene gene interactions for normal case while using MPBK+EI with θ = θN . Note
that the effect of initialized cpt for TRCMPLX is 90% in tumorous case and 10% in normal
case. Diamond <> means activation and straight bar | means repression.

separately. The separate formulations are given below -594

θN =
1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )

θT =
1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )

(8)

were, n1,N is the number of Normal training samples with label 1, n2,N is the595

number of Normal training samples with label 2, n1,T is the number of Tumor596

training samples with label 1 and n1,N is the number of Tumor training samples597

with label 2. Note that the sample labels (i,e evidence of gene expression) were598

discretized to passive or 1 (active or 2).599
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Gene-gene interactions using θ = 0.5
DACT2 <> −| DKK1, SFRP4 |− | DKK1, DACT1 <> − <> DKK2, SFRP1
<> − <> DKK2, LEF1 |− <> DKK2, DKK4 |− <> DKK3-1, DACT3 <>

− <> DKK3-1, SFRP2 <> − <> DKK3-1, SFRP3 <> − <> DKK3-1,
SFRP5 <> − <> DKK3-1, WIF1 |− <> DKK3-1, LEF1 |− <> DKK3-
1, MYC |− <> DKK3-1, CCND1 |− <> DKK3-1, CD44 |− <> DKK3-1,
DKK1 |− | DKK3-2, DKK2 <> −| DKK3-2, DKK3-1 <> −| DKK3-2, DACT1
<> −| DKK3-2, DACT2 <> −| DKK3-2, SFRP1 <> −| DKK3-2, SFRP4 |− |
DKK3-2, DKK3-2 | − | DKK4, DACT3 <> −| DKK4, SFRP2 <> −| DKK4,
SFRP3 <> −| DKK4, SFRP5 <> −| DKK4, WIF1 | − | DKK4, LEF1 | − |
DKK4, MYC |− | DKK4, CCND1 |− | DKK4, CD44 |− | DKK4, DKK4 |− |
DACT1, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1,
DKK2 <> − <> DACT2, DKK3-1 <> − <> DACT2, DKK4 |− <> DACT2,
DACT3 <> − <> DACT2, SFRP1 <> − <> DACT2, SFRP2 <> − <>

DACT2, SFRP3 <> − <> DACT2, SFRP4 |− <> DACT2, SFRP5 <> − <>

DACT2, WIF1 |− <> DACT2, LEF1 |− <> DACT2, MYC |− <> DACT2,
CCND1 |− <> DACT2, CD44 |− <> DACT2, DACT1 <> −| DACT3, DKK3-
1 <> − <> SFRP1, DKK4 |− <> SFRP1, SFRP2 <> − <> SFRP1, SFRP3
<> − <> SFRP1, SFRP4 |− <> SFRP1, SFRP5 <> − <> SFRP1, MYC
|− <> SFRP1, CCND1 |− <> SFRP1, CD44 |− <> SFRP1, DACT3 <>

− <> SFRP2, SFRP3 <> − <> SFRP2, LEF1 |− <> SFRP2, DKK1 |− <>

SFRP3, DACT3 <> − <> SFRP3, SFRP5 <> − <> SFRP3, WIF1 |− <>

SFRP3, LEF1 |− <> SFRP3, MYC |− <> SFRP3, CCND1 |− <> SFRP3,
CD44 |− <> SFRP3, DKK2 <> −| SFRP4, DKK3-1 <> −| SFRP4, DACT1
<> −| SFRP4, SFRP3 <> −| SFRP4, DKK1 |− <> SFRP5, DKK2 <> − <>

SFRP5, DKK3-2 |− <> SFRP5, DACT1 <> − <> SFRP5, DACT3 <> − <>

SFRP5, SFRP2 <> − <> SFRP5, WIF1 |− <> SFRP5, LEF1 |− <> SFRP5,
MYC |− <> SFRP5, CCND1 |− <> SFRP5, CD44 |− <> SFRP5, DKK3-2
|− | WIF1, DACT1 <> −| WIF1, SFRP1 <> − <> WIF1, DKK1 |− | LEF1,
DACT3 <> −| LEF1, WIF1 |− | LEF1, MYC |− | LEF1, CCND1 |− | LEF1,
CD44 | − | LEF1, DACT3 <> −| MYC, CCND1 | − | MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC |− | CD44, CCND1 |− | CD44

Table 4: Tabulated gene gene interactions of figure 8 using MPBK+EI obtained in case of
Normal samples. Here, the symbols represent the following - <> activation and | repres-
sion/suppression. Note that for Tumor cases, the interaction roles were found to be reversed,
ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor,
<> − <> in normal became |− | in tumor and |− | in normal became <> − <> in tumor.

Based on the steps described in Appendix, for each gene a matrix is obtained600

that shows the statistics of how the status of a gene is affected conditional on601

the individual evidences of the remaining genes. Also, for each of the i
th gene602

the averaged �PrN (gi|gk) is also stored in vector PggN . Same is done for tumor603

cases. These two vectors are later used to test the veracity of existence of604

psychophysical laws in gene-gene interaction network. Table 3 represents one605

such tabulation for gene SFRP3. For all runs and all test samples, the following606

was tabulated in table 3 : aaN - SFRP3 is active (a) when a gene is active (a)607
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Gene interaction using θ = θN

DKK3-1 | − | DKK1, DKK3-2 <> −| DKK1, DACT2 | − | DKK1, SFRP4
<> −| DKK1, DACT1 |− | DKK2, SFRP1 |− | DKK2, DKK4 <> −| DKK3-
1, DACT2 |− <> DKK3-1, DACT3 | − | DKK3-1, LEF1 <> −| DKK3-1,
MYC <> −| DKK3-1, CCND1 <> −| DKK3-1, SFRP1 |− | DKK3-2, DKK3-2
<> − <> DKK4, DKK4 <> − <> DACT1, DACT3 |− <> DACT1, MYC
<> − <> DACT1, CCND1 <> − <> DACT1, DKK1 <> −| DACT2, DKK2
| − | DACT2, DKK3-1 | − | DACT2, DKK3-2 <> −| DACT2, DKK4 <> −|
DACT2, SFRP1 | − | DACT2, SFRP2 | − | DACT2, SFRP3 | − | DACT2,
SFRP4 <> −| DACT2, SFRP5 | − | DACT2, WIF1 <> −| DACT2, LEF1
<> −| DACT2, MYC <> −| DACT2, CCND1 <> −| DACT2, CD44 <> −|
DACT2, DKK1 <> − <> DACT3, DKK2 |− <> DACT3, DKK3-1 |− <>

DACT3, DKK3-2 <> − <> DACT3, DKK4 <> − <> DACT3, DACT1
|− <> DACT3, DACT2 |− <> DACT3, SFRP2 |− <> DACT3, SFRP3 |− <>

DACT3, SFRP4 <> − <> DACT3, SFRP5 |− <> DACT3, WIF1 <> − <>

DACT3, LEF1 <> − <> DACT3, MYC <> − <> DACT3, CCND1 <>

− <> DACT3, CD44 <> − <> DACT3, DKK1 <> − <> SFRP1, DKK2
|− <> SFRP1, DKK3-1 |− <> SFRP1, DKK3-2 <> − <> SFRP1, DACT1
|− <> SFRP1, DACT2 |− <> SFRP1, DACT3 |− <> SFRP1, SFRP4 <>

− <> SFRP1, WIF1 <> − <> SFRP1, CD44 <> − <> SFRP1, DKK2
|− <> SFRP2, DKK3-1 |− <> SFRP2, DKK3-2 <> − <> SFRP2, DACT1
|− <> SFRP2, DACT2 |− <> SFRP2, SFRP1 |− <> SFRP2, SFRP4 <>

− <> SFRP2, LEF1 <> −| SFRP2, CD44 <> − <> SFRP2, DKK4 <> −|
SFRP3, DACT2 |− <> SFRP3, DACT3 | − | SFRP3, LEF1 <> −| SFRP3,
MYC <> −| SFRP3, CCND1 <> −| SFRP3, DKK2 |− <> SFRP4, DKK3-1
|− <> SFRP4, DKK3-2 <> − <> SFRP4, DACT1 |− <> SFRP4, SFRP1
|− <> SFRP4, SFRP3 |− <> SFRP4, DKK1<> −| SFRP5, SFRP4<> − <>

SFRP5, DKK3-2 <> −| WIF1, DACT2 |− | WIF1, SFRP1 |− | WIF1, SFRP4
<> −| WIF1, SFRP5 |− <> WIF1, DKK1 <> − <> LEF1, DKK4 <> − <>

LEF1, DACT3 |− <> LEF1, WIF1 <> − <> LEF1, CCND1 <> − <> LEF1,
CD44 <> − <> LEF1, LEF1 <> − <> MYC, MYC <> − <> CCND1,
CCND1 <> − <> CD44

Table 5: Tabulated gene gene interactions of figure 9 using MPBK+EI obtained in case of
Normal samples. Here, the symbols represent the following - <> activation and | repres-
sion/suppression. Note that for Tumor cases, the interaction roles were found to be reversed,
ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor,
<> − <> in normal became |− | in tumor and |− | in normal became <> − <> in tumor.

in Normal (N) sample, arN - SFRP3 is active (a) when a gene is repressed (r)608

in Normal (N) sample, raN - SFRP3 is repressed (r) when a gene is active (a)609

in Normal (N) sample, rrN - SFRP3 is repressed (r) when a gene is repressed610

(r) in Normal (N) sample, aaT - SFRP3 is active (a) when a gene is active (a)611

in Tumor (T) sample, arT - SFRP3 is active (a) when a gene is repressed (r)612

in Tumor (T) sample, paT - SFRP3 is repressed (r) when a gene is active (a)613

in Tumor (T) sample, ggIN - interaction of SFRP3 given the gene evidence614

based on majority voting among aaN , arN , raN and rrN and finally, ggIT -615
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Missing gene-gene interactions for different values of ETGN using θ = 0.5
90N-T1 80N-T1 (in 90N-T1) MYC |− | DACT1, CCND1 |− | DACT1, SFRP2 <> − <> SFRP5, CCND1 |− |

MYC, DACT3 <> −| CCND1, MYC | − | CD44 (in 80N-T1) SFRP5 <> − <> SFRP2, MYC
|− | CCND1

70N-T1 (in 90N-T1) DACT3 <> −| DACT1, MYC |− | DACT1, CCND1 |− | DACT1, SFRP2 <> − <>

SFRP5, CCND1 |− | MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC |− | CD44 (in
70N-T1) SFRP5 <> − <> SFRP2, MYC |− | CCND1

60N-T1 (in 90N-T1) DACT3 <> −| DACT1, MYC |− | DACT1, CCND1 |− | DACT1, SFRP2 <> − <>

SFRP5, CCND1 |− | MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC |− | CD44 (in
60N-T1) SFRP5 <> − <> SFRP2, MYC |− | CCND1

50N-T1 (in 90N-T1) CD44 |− <> DKK3-1, SFRP1 <> −| DKK3-2, CD44 | − | DKK4, DACT3 <> −|
DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DKK3-1 <> − <> SFRP1, DKK4 |− <>

SFRP1, SFRP2 <> − <> SFRP5, DACT1 <> −| WIF1, CCND1 | − | MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC |− | CD44 (in 50N-T1) SFRP1 <> − <> DKK3-1, CD44
| − | DKK3-2, SFRP1 <> −| DKK4, DKK3-2 |− <> SFRP1, SFRP5 <> − <> SFRP2, MYC
|− <> SFRP2, CCND1 |− <> SFRP2, CD44 |− | SFRP4, MYC |− | CCND1

Missing gene-gene interactions for different values of ETGN using θ = θN

90N-T1 80N-T1 (in 90N-T1) MYC |− <> DKK3-1, SFRP1 <> − <> DKK3-2, MYC |− | DACT1 (in 80N-T1)
MYC |− | SFRP5

70N-T1 (in 90N-T1) DKK4 |− <> DKK3-1, MYC |− <> DKK3-1, SFRP1 <> − <> DKK3-2, MYC
| − | DACT1, CCND1 | − | DACT1, SFRP1 <> −| SFRP2, SFRP1 <> −| SFRP4, CD44 | − |
LEF1 (in 70N-T1) DKK4 |− | SFRP5, MYC |− | SFRP5, CCND1 |− | SFRP5, DKK2 <> − <>

WIF1, DKK3-1 <> − <> WIF1
60N-T1 (in 90N-T1) DKK4 |− <> DKK3-1, MYC |− <> DKK3-1, CCND1 |− <> DKK3-1, SFRP1

<> − <> DKK3-2, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DACT3
<> −| SFRP1, SFRP1 <> −| SFRP2 MYC |− <> SFRP3, SFRP1 <> −| SFRP4, CD44 | − |
LEF1(in 60N-T1) MYC |− | SFRP1, MYC |− | SFRP2, DKK4 |− | SFRP5, MYC |− | SFRP5,
CCND1 |− | SFRP5, DKK2 <> − <> WIF1, DKK3-1 <> − <> WIF1, CD44 |− <> WIF1

50N-T1 (in 90N-T1) DKK4 |− <> DKK3-1, MYC |− <> DKK3-1, CCND1 |− <> DKK3-1, SFRP1
<> − <> DKK3-2, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DACT3
<> −| SFRP1, SFRP1 <> −| SFRP2, MYC |− <> SFRP3, SFRP1 <> −| SFRP4, DKK4 |− |
LEF1, CCND1 | − | LEF1, CD44 | − | LEF1 (in 50N-T1) DKK4 |− <> DKK1, MYC |− <>

DKK1, CCND1 |− <> DKK1, CD44 |− <> DKK1, CD44 |− <> DKK3-2, MYC | − | SFRP1,
DKK4 | − | SFRP2, DACT3 <> − <> SFRP2, MYC | − | SFRP2, CCND1 | − | SFRP2, MYC
| − | SFRP5, CCND1 | − | SFRP5, DKK2 <> − <> WIF1, DKK3-1 <> − <> WIF1, DKK4
|− <> WIF1, MYC |− <> WIF1, CCND1 |− <> WIF1, CD44 |− <> WIF1

Table 6: Tabulated missing gene gene interactions of figure 8 and 9 using MPBK+EI obtained
in case of Normal samples. Interactions found in Normal samples with 80%, 70%, 60% and
50% effect that are not found with 90% and vice versa have been recorded. Here, the symbols
represent the following - <> activation and | repression/suppression. Note that for Tumor
cases, the interaction roles were found to be reversed, ie. <> −| in normal became |− <> in
tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became |− | in tumor
and |− | in normal became <> − <> in tumor.
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interaction of SFRP3 given the gene evidence based on majority voting among616

aaT , arT , raT and rrT . The highest score among aaN , arN , raN and rrN617

(aaT , arT , raT and rrT ) confirms the relation between genes using Normal618

(Tumor) samples. Activation (repression) for SFRP3 is based on discretizing619

the predicted conditional probability Pr(SFRP3 = active|gj evidence) as ≥ θ620

(< θ). Activation (repression) for a particular gene evidence gj is done using621

discrete evidence. In table 3, under the columns ggIN and ggIT , <> implies622

the gene is active and | implies the gene is repressed or passive.623

Gene-gene interaction network when θ = 0.5624

Considering only reversible interactions, in table 3 it was found that evidence625

for DKK1 and DKK4 show similar repression behaviour as the standard genes626

WIF1, LEF1, MYC, CCND1 and CD44 in Normal (Tumor) test samples.627

Only, SFRP5 and DACT3 in Normal (Tumor) test samples shows activation628

(repression). Conditional on the observed activation status of the genes men-629

tioned above, SFRP3 shows activated (repressed) state in Normal (Tumor)630

test samples. SFRP3 showed behaviour similar to SFRP − 1/2/5. Since it is631

known that the activation status of the latter is influenced by epigenetic factors,632

SFRP3 might also be influenced by epigenetic factors.633

Irreversible interactions present in table 3 are deleted as they do not provide634

concrete information regarding the functional roles of the genes in normal and635

tumor cases. This attributes to one of the following facts (1) noise that corrupts636

prediction values as can be seen in the columns of aaN (aaT ), arN (arT ), raN637

(raT ) and rrN (rrT ) or (2) other multiple genes might be interacting along with638

SFRP3 in a combined manner and it is not possible to decipher the relation639

between SFRP3 and other genes. This calls for investigation of prediction of640

SFRP3 status conditional on joint evidences of two or more genes (a combina-641

torial problem with a search space order of 217 − 17, which excludes 17 cases of642

individual gene evidences which have already been considered here). Incorpo-643

rating multiple gene evidences is not a problem while using Bayesian network644

models as they are designed to compute conditional probabilities given joint645

evidences also (except at the cost of high computational time).646

It is evident that an arbitrary value of θ = 0.5 will not generate appropriate647

networks. This is due to the fact that 0.5 does not encode the biological knowl-648

edge of thresholding while using discretization. To over come this, a weighted649

mean is employed as shown below.650

Gene-gene interaction network when θ = θ
SFRP3
N651

While employing the weighted mean as the threshold to discretize Pr(SFRP3652

= active|gj evidence), the SFRP3 gene evidences that constitutes the test data653

are used. See step 5.a.iii in Appendix. Note that the test evidences for SFRP3654

are used for two purpose (1) to discretize Pr(SFRP3 = active|gj evidence)655

as discussed above and (2) to compute the probability of activation status of656

another gene conditional on evidence for SRFP3, i.e Pr(gj = active|SFRP3657

evidence). Why to use test evidence or labels to compute weighted mean?658

Since the test evidence for a gene (i.e the discretized label) has been derived659

using the median computed on the corresponding training data for the same660

gene, it absolutely fine to use the discretized test labels to further compute the661
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weighted mean. This is because the median of gene expression is a value which662

is much higher than the probability value of 1 and cannot be used to discretize a663

predicted conditional probability value. Also, estimating the density estimates664

from a small population of gene expression values has its own weakness. To665

converge on a plausible realistic value the discretized test samples can be used666

to estimate a weighted mean which represents the summary of the distribution667

of the discretized values. This weighted mean of SFRP3 test samples then668

discretizes Pr(SFRP3 = active|gj evidence) according to the inherently repre-669

sented summary. More realistic estimates like kernel density estimates could670

also be used.671

In comparison to the interactions derived using θ = 0.5 in table 3, it was672

found that a more restricted list of DKK4, DACT − 2/3, LEF1, MYC and673

CCND1 showed reversible behaviour with SFRP3 using the weighted mean.674

This reduction in the reversible interactions is due to the fact that the weighted675

mean carries an idiosyncrasy of the test label data distribution and is more676

restricted in comparison to the use of 0.5 value that was arbitrarily chosen.677

Finally, using the proposed weighted mean reveals more than one interaction678

between two genes. These interactions point to important hidden biological679

phenomena that require further investigation in the form of wet lab experiments680

and the ensuing in silico analysis. It also points to the fact that a particular681

gene may be showing different behaviour at different times in the network while682

interacting with multiple genes. An example of this will be addressed later.683

Again, dynamic models will bring more clarity to the picture. Table 3 shows684

these interactions using θ ∈ {0.5, θN , θT }.685

5.2. Inferring gene-gene interaction network686

Next, after the construction of gene-gene interactions, it is necessary to infer687

the network. The inference of the estimated gene-gene interactions network is688

based on explicitly reversible roles in Normal and Tumor test samples. This689

means that only those interactions are selected which show the following prop-690

erty - gj <> − <> gi in Normal if and only if gj | − |gi in Tumor, gj <> −|gi691

in Normal if and only if gj |− <> gi in Tumor, gj |− <> gi in Normal if and692

only if gj <> −|gi in Tumor and finally, gj | − |gi in Normal if and only if693

gj <> − <> gi. This restricts the network to only reversible gene-gene inter-694

actions in Normal and Tumor cases. Note that an interaction gjIRgi (giIRgj)695

is depicted by Pr(gi|gj) (Pr(gj |gi)).696

Reversibility helps in tracking the behaviour of gene-gene interaction in both697

normal and tumor case simultaneously and thus give more weight to confirma-698

tory results. Irreversible reactions here mean that the state of activation of a699

gene in both normal and tumor sample remains invariant given the evidence700

of the other gene in the gene-gene interaction. This helps in eliminating the701

interactions that might not be happening at all from biological perspective. To702

confirm the computational results wet lab experiments are needed. See table 3703

for reversible and irreversible interactions.704

Next, duplicate interactions are removed from the network for normal sam-705

ples. This is repeated for the network based on tumor samples also. This is706
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Deviation study for SFRP3 and MYC for normal case

β ∆β
∆β
β log(1 + ∆β

β ) ∆γ ∆γ

Pr(SFPR3|MYC)Pr(MYC|SFPR3)
0.8 0.1 0.125 0.117783 0.003014287 0.00324456
0.7 0.10.1428571 0.1335314 0.002766111 0.00324456
0.6 0.10.1666667 0.1541507 0.002504868 0.00324456
0.5 0.1 0.2 0.1823216 0.002228110 0.00324456
0.8 0.1 0.125 0.117783 0.010513376 0.01297824
0.7 0.20.2857143 0.2513144 0.007499089 0.00973368
0.6 0.3 0.5 0.4054651 0.004732978 0.00648912
0.5 0.4 0.8 0.5877867 0.002228110 0.00324456

Table 7: Deviation study for Pr(SFRP3|MY C) and Pr(MY C|SFRP3) for normal case

achieved by removing one of the interactions from the following pairs (gj <>707

− <> gi and gi <> − <> gj), (gj <> −|gi and gi|− <> gj), (gj |− <> gi708

and gi <> −|gj) and (gj | − |gi and gi| − |gj). This process is done to remove709

redundant interactions that are recorded via steps mentioned in construction of710

gene-gene interaction network. Figure 8 shows one such network after complete711

network construction, interaction labeling, consideration of reversible interac-712

tions and removal of duplicate interactions using Normal test samples with713

ETGN of 90% in MPBK+EI . For the case of Tumor test samples with ETGN714

90% in MPBK+EI , only the reversal of interactions need to be done. Table715

4 and 5 represents these interactions in figures 8 and 9 in a tabulated form,716

respectively.717

Finally, different networks were generated by varying the effect of TRCMPLX718

(ETGN) and compared for the normal test samples. Table 6 represents the dif-719

ferent interactions that were preserved in network from ETGN 90% with respect720

to networks obtained from ETGN with values of 80%, 70%, 60% and 50%. It721

was found that most of the genetic interactions depicted in figures 8 and 9722

were found to be preserved across the different variations in ETGN as shown723

in table 6. Out of the total n genes which construct a fully connected graph of724

n×(n−1)
2 , it was observed that lesser number of interconnections were preserved.725

This preservation indicates towards the robustness of the genetic contributions726

in the Wnt signaling pathway in both normal and tumor test samples. Note727

that these observations are made from static models and dynamic models might728

reveal greater information.729

6. Results and discussion on observations 2 & 3730

6.1. Logarithmic-power deviations in prediction of gene-gene interactions731

In the previous section, it was found that some of the interactions remain732

preserved as there was change in the affect of transcription complex. The first733
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Deviation study for SFRP3 and MYC for tumor case

β ∆β
∆β
β log(1 + ∆β

β ) ∆γ ∆γ

Pr(SFPR5|MYC)Pr(MYC|SFPR5)
0.8 0.1 0.125 0.117783 -0.006463410 0.000000e+00
0.7 0.10.1428571 0.1335314 -0.006967724 5.551115e-17
0.6 0.10.1666667 0.1541507 -0.007515486 -5.551115e-17
0.5 0.1 0.2 0.1823216 -0.008112496 0.000000e+00
0.8 0.1 0.125 0.117783 -0.029059115 0.000000e+00
0.7 0.20.2857143 0.2513144 -0.022595705 0.000000e+00
0.6 0.3 0.5 0.4054651 -0.015627982 -5.551115e-17
0.5 0.4 0.8 0.5877867 -0.008112496 0.000000e+00

Table 8: Deviation study for Pr(SFRP3|MY C) and Pr(MY C|SFRP3) for tumor case

observation of this work was that deviations in the activity of the transcription734

complex followed a logarithmic-power psychophysical law. The manifestation735

of these laws at transcriptional levels can be attributed to the fold changes in736

β-catenin levels and the prevalence of Weber’s law observed by Goentoro and737

Kirschner (2009). In this perspective, it would be interesting to observe if these738

laws are prevalent among the gene-gene interactions in the network or not.739

Case: <> −| or |− <> with θ = θN740

In Sinha (2014), the unknown behaviour of SFRP3 in the Wnt pathway741

has been revealed slightly using computational causal inference. In figure 8,742

SFRP3 shows preservation in the network and it’s interaction with other ge-743

netic factors involved in the model proposed in Sinha (2014) has been depicted.744

In one such paired interaction between SFRP3 and MYC, SFRP3 showed745

activation (repression) and MYC showed repression (activation) in normal (tu-746

mor) samples. As the change in the effect of transcription complex was induced747

by changing the initially assigned cpt values for TRCMPLX node, the devi-748

ations in the prediction of the gene-gene interaction network was observed to749

follow the logarithmic-power law crudely. What this means is that deviations750

or fold changes might also be prevalent at the gene-gene interaction level due751

to the upstream fold changes in β-catenin that induces transcriptional activity.752

More specifically, the deviation in the joint interaction that is represented by753

the degree of belief via the conditional probability of status of one gene given754

the evidence or activation status regarding another gene i.e Pr(gi|gj), is influ-755

enced by the fold changes upstream of the pathway and thus exhibit similar756

psychophysical laws.757

Table 7 and 8 show these deviations in the prediction of the interactions758

for both the normal and the tumor cases. The tables show how deviations are759

affected when the changes in the effect of the transcription complex are done at760

constant and incremental rate. To summarize the results in these tables, graphs761
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were plotted in figures 10 for Pr(SFRP3|MYC) (constant deviations), 11 for762

Pr(MYC|SFRP3) (constant deviations), 12 for Pr(SFRP3|MYC) (incremen-763

tal deviations) and 11 for Pr(MYC|SFRP3) (incremental deviations).764

Considering figure 10, when deviations are constant in both Weber and765

Bernoulli formulation, the deviations in the prediction of Pr(SFRP3|MYC)766

is observed to be logarithmic in the normal samples (apropos the Weber and767

Bernoulli deviations represented by green and cyan curves). Deviation in pre-768

dictions are depicted by the red (blue) curves for normal (tumor) samples. Such769

a behaviour is not observed for Pr(MYC|SFRP3) as is depicted in figure 11.770

Note that the interaction for SFRP3 given MYC was observed to be reversible771

in normal and tumor cases. But this is not so with the interaction for MYC772

given SFRP3. It might be expected that the non conformance of logarithmic-773

power law for Pr(MYC|SFRP3) may be due to the non preservation/existence774

of the interaction ofMYC given SFRP3. This is so because Pr(SFRP3|MYC)775

depicts a reversible SFRP3 <> −|MYC (MYC <> −|SFRP3) in the net-776

work on normal (tumor) samples, while Pr(MYC|SFRP3) does not depict a777

reversible MYC|− <> SFRP3 (MYC|− |SFRP3) in the network on normal778

(tumor) samples.779

Similar behaviour was observed in the case of incremental deviations as de-780

picted in figures 12 and 13. Analysis of the behaviour of other gene-gene interac-781

tions showing <> −| or |− <> can be observed in a similar way and can be pro-782

duced by executing the R code in Weber Fechner law.r provided in Google drive783

https://drive.google.com/folderview?id=0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=784

sharing. Note that plots need manual axis and title adjustments. Some of the785

plot results has been compressed in the zip file titled Results-2015.zip.786

Case: |− | or <> − <> with θ = θN787

Again, as pointed out in Sinha (2014), the unknown behaviour of SFRP2788

in the Wnt pathway has been captured using computational causal inference.789

In figure 9, SFRP2 shows preservation in the network and it’s interaction with790

other genetic factors involved in the model proposed in Sinha (2014) has been791

depicted. In one such paired interaction between SFRP2 and CD44, both792

showed repression (activation) in normal (tumor) samples. As the change in the793

effect of transcription complex was induced via sensitizing the initially assigned794

cpt values, the deviations in the prediction of the gene-gene interaction network795

was observed to follow the logarithmic-power law crudely.796

Table 9 and 10 show these deviations in the prediction of the interactions797

for both the normal and the tumor cases. The tables show how deviations are798

affected when the changes in the effect of the transcription complex are done799

at constant and incremental level. To summarize the results in these tables,800

graphs were plotted in figures 14 for Pr(SFRP2|CD44) (constant deviations),801

15 for Pr(CD44|SFRP2) (constant deviations), 16 for Pr(SFRP2|CD44) (in-802

cremental deviations) and 15 for Pr(CD44|SFRP2) (incremental deviations).803

Considering figure 14, when deviations are constant in both Weber and804

Bernoulli formulation, the deviations in the prediction of Pr(SFRP2|CD44)805

is observed to be logarithmic in the normal samples (apropos the Weber and806

Bernoulli deviations represented by green and cyan curves). Deviation in pre-807
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Figure 10: Constant deviations in β i.e ETGN and corresponding deviations in
Pr(SFRP3|MY C) for both normal and tumor test samples. Corresponding Weber and
Bernoulli deviations were also recorded. Note that the plots and the y-axis depict scaled devi-
ations to visually analyse the observations. The model used is MPBK+EI . Red - deviation in
Pr(SFRP3|MY C) in Normal case using Weber’s law, Blue - deviation in Pr(SFRP3|MY C)
in Tumor using Weber’s law, Green - constant deviation in Webers law, Cyan - constant
deviation in Bernoullis law.

dictions are depicted by the red (blue) curves for normal (tumor) samples.808

Such a behaviour is not observed for Pr(CD44|SFRP2) as is depicted in figure809

15. Even though Pr(CD44|SFRP2) was computationally estimated through a810

model, the interaction for CD44 given SFRP2 was not observed in both normal811

and tumor cases while the interaction for SFRP2 given CD44 was observed to812

be reversible. This points to a crucial fact that the interactions interpreted from813

conditional probabilities are not always two sided. Thus the interpretation for814

Pr(gi|gj) is investigated in both directions as giIRgj and gjIRgi to get a full815

picture. Not that the results are wrong, but all angles of interpretations need816

to be investigated to get the picture between any two genes. Similar behaviour817

was observed in the case of incremental deviations as depicted in figures 16 and818

17. Note that graph for incremental deviation in Pr(CD44|SFRP2) is just a819

cumulative effect and does not state anything about the logarithmic law.820

Finally, note that the predicted conditional probability a gene i given ev-821

idence for gene j does not change but the inferred gene-gene interactions do822

change depending on the choice of the threshold. These changes are depicted823

in the figures 8 (table 4)and 9 (table 5). Dual interactions were inferred using824

the weighted mean as a discretization factor, as is shown next. These are dual825
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Figure 11: Same as figure 10 but for Pr(MY C|SFRP3).
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Figure 12: Same as figure 10 but for Pr(SFRP3|MY C). Instead of constant deviations,
incremental deviations are represented.
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Figure 13: Same as figure 10 but for Pr(MY C|SFRP3). Instead of constant deviations,
incremental deviations are represented.

Deviation study for SFRP2 and CD44 for normal case

β ∆β
∆β
β log(1 + ∆β

β ) ∆γ ∆γ

Pr(SFRP2|CD44)Pr(CD44|SFRP2)
0.8 0.1 0.125 0.117783 -0.0007505445 0.0002943409
0.7 0.10.1428571 0.1335314 -0.0009398116 0.0002943409
0.6 0.10.1666667 0.1541507 -0.0011360011 0.0002943409
0.5 0.1 0.2 0.1823216 -0.0013397022 0.0002943409
0.8 0.1 0.125 0.117783 -0.004166059 0.0011773636
0.7 0.20.2857143 0.2513144 -0.003415515 0.0008830227
0.6 0.3 0.5 0.4054651 -0.002475703 0.0005886818
0.5 0.4 0.8 0.5877867 -0.001339702 0.0002943409

Table 9: Deviation study for Pr(SFRP2|CD44) and Pr(CD44|SFRP2) for normal case

interactions are marked in red colour in figure 9.826

Case: Dual interactions with θ = θN827

The dual interactions revealed using weighted means indicate an important828

phenomena between any two genes. These interactions reveal that gene acti-829

vation interplay might not always be constant for normal (tumour) samples.830

These in silico observations imply that a gene that was found to be actively831
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Deviation study for SFRP2 and CD44 for tumor case

β ∆β
∆β
β log(1 + ∆β

β ) ∆γ ∆γ

Pr(SFRP2|CD44)Pr(CD44|SFRP2)
0.8 0.1 0.125 0.117783 0.02291329 0.01491512
0.7 0.10.1428571 0.1335314 0.02132802 0.01491512
0.6 0.10.1666667 0.1541507 0.01962443 0.01491512
0.5 0.1 0.2 0.1823216 0.01779600 0.01491512
0.8 0.1 0.125 0.117783 0.08166175 0.05966047
0.7 0.20.2857143 0.2513144 0.05874846 0.04474535
0.6 0.3 0.5 0.4054651 0.03742044 0.02983024
0.5 0.4 0.8 0.5877867 0.01779600 0.01491512

Table 10: Deviation study for Pr(SFRP2|CD44) and Pr(CD44|SFRP2) for tumor case
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Figure 14: Constant deviations in β i.e ETGN and corresponding deviations in
Pr(SFRP2|CD44) for both normal and tumor test samples. Corresponding Weber and
Bernoulli deviations were also recorded. Note that the plots and the y-axis depict scaled devi-
ations to visually analyse the observations. The model used is MPBK+EI . Red - deviation in
Pr(SFRP2|CD44) in Normal case using Weber’s law, Blue - deviation in Pr(SFRP2|CD44)
in Tumor using Weber’s law, Green - constant deviation in Webers law, Cyan - constant
deviation in Bernoullis law.

expressed in normal sample might reverse activity at some stage or the other832

(an vice versa). Here, one such interaction is discussed in detail. Interpretations833
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Figure 15: Same as figure 14 but for Pr(CD44|SFRP2).
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Figure 16: Same as figure 14 but for Pr(SFRP2|CD44). Instead of constant deviations,
incremental deviations are represented.
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Figure 17: Same as figure 15 but for Pr(CD44|SFRP2). Instead of constant deviations,
incremental deviations are represented.

of the other dual interactions can be done in the same way. Results for other834

interactions are available but not presented here.835

Also, a point to be observed is that the weighted means show much more836

crisp discretization during inference of gene-gene interaction in comparison to837

use of an arbitrary value of 0.5. To determine this distinction between the in-838

ferred gene-gene interactions obtained via weighted threshold and the arbitrary839

threshold of 0.5, the receiver operator curves (ROC) along with its correspond-840

ing area under the curve (AUC) are plotted. The ROCs are plotted using the841

discretized predicted values and the discretized labels obtained using the thresh-842

olds (computed from the training data) on the test data. The ROC graphs and843

their respective AUC values indicate how the predictions on the test data be-844

haved under different values assigned to the TRCMPLX while training. Ideally,845

high values of AUC and steepness in ROC curve indicate good quality results.846

Finally, two sample Kolmogorov-Smirnov (KS) test was employed to measure847

the statistical significance between the distribution of predictions. If the cumu-848

lative distributions are not similar the KS test returns a small p-value. This849

small p-value indicates the existing statistical significance between the distribu-850

tions under consideration.851

Finally the ROC plots and AUC values for dual gene-gene interactions are852

also plotted and KS test is conducted to find the existence of statistical signif-853

icance if any. These reveal the significance of existence of dual interactions in854

the signaling pathway which might not have been revealed using the arbitrary855
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Figure 18: Kernel density estimates for predicted Pr(DKK1|DACT2) and
Pr(DACT2|DKK1) in Normal and Tumor cases. Gaussian kernel is used for smooth-
ing the density estimate. The bandwidth of the kernel is selected using the pilot estimation
of derivative as proposed by Sheather and Jones (1991) and implemented in R programming
language.

threshold value of 0.5. Plots are made using functions from the PRROC package856

provided by Grau et al. (2015).857

Interaction between DKK1 and DACT2 using θ ∈ {θN , θT } - Dual in-858

teractions DACT2 <> − <> DKK1 and DKK1|− <> DACT2 (DACT2|−859

|DKK1 and DKK1 <> −|DACT2) in normal (tumor) sample were found as860

depicted in figure 9. Figure 18 shows the kernel density estimate of the pre-861

dicted conditional probabilities for both normal and tumor test cases. Using862

the weighted mean of the discretized values of the test samples (discretization863

done using median estimated from the training data as mentioned before), the864

predicted Pr(DKK1|DACT2) and Pr(DACT1|DKK1) are classified as active865
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or passive. It might be useful to note that instead of using 0.5 as an arbi-866

trary value, the weighted mean captures the distribution of labels in a much867

more realistic manner and helps infer interactions among the factors in the Wnt868

pathway.869

Note the distributions depicted in figure 18. In the first column of the870

figure, the median for Pr(DKK1|DACT2) in normal (tumor) case is 0.4853088871

(0.5006437). These medians point to the mid value of the belief in the gene-872

gene interaction depicted by the range of predicted conditional probabilities.873

The weighted threshold θ
DKK1
N (θDKK1

T ) based on labels for normal (tumor)874

test case was estimated at 0.5138889 (0.4861111). The estimations come from875

the following computations in equation 9 -876

θ
DKK1
N =

1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )
=

1× 264 + 2× 312

3× 576
= 0.5138889

θ
DKK1
T =

1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )
=

1× 312 + 2× 264

3× 576
= 0.4861111 (9)

Similarly, in the second column of the figure, the median for Pr(DACT2|DKK1)877

in normal (tumor) case is 0.5606946 (0.2985911). The weighted threshold θ
DACT2
N878

(θDACT2
T ) based on labels for normal (tumor) test case was estimated at 0.4583333879

(0.5416667). The estimations come from the following computations in equation880

10 -881

θ
DACT2
N =

1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )
=

1× 360 + 2× 216

3× 576
= 0.4583333

θ
DACT2
T =

1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )
=

1× 216 + 2× 360

3× 576
= 0.5416667(10)

It can be observed that the discretization is more realistic and strict using the882

weighted threshold rather than using the arbitrary value of 0.5. The multiple883

peaks point to the different frequencies at which the predicted probabilities were884

recorded. Note that the probabilities here represent the belief in the activation885

status and the discretization only calibrates the belief into active and repressed886

state. To evaluate the results further wet lab tests are needed.887

Using these distributions and distributions obtained using arbitrary value,888

the respective ROC are plotted and corresponding AUC values estimated. Fi-889

nally, KS test is used to find the existence of statistical significance between890

the valid permutations of the distributions. These estimates further help derive891

insights about the interactions at a computational level. Figure 19 shows the892

ROC plots and the respective AUC values for the dual interactions observed via893

the in silico experiments. The following are compared -894

1. labels of test data geN and discretized values of Pr(DKK1|DACT2) and895

Pr(DACT2|DKK1) using weighted mean in Normal case896

2. labels of test data geT and discretized values of Pr(DKK1|DACT2) and897

Pr(DACT2|DKK1) using weighted mean in Tumor case898
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Figure 19: Column wise ROCs for Pr(DKK1|DACT2) (1st column) and Pr(DACT2|DKK1)
(2nd column) have been plotted with ETGN value for the 90%. Row wise the plots depict the
curves generated using weighted mean for Normal case and weighted mean for Tumor case.
Respective AUC values for the ROC curves appear on the title of each of the graphs.

In figure 19 column wise the ROCs for Pr(DKK1|DACT2) (1st column) and899

Pr(DACT2|DKK1) (2nd column) have been plotted with ETGN value for the900

90%. Row wise the plots depict the curves generated using weighted mean901

for Normal case and weighted mean for Tumor case. It can be seen that us-902

ing the weighted mean, the subfigure 19(a) and 19(d) convey a good guess903

regarding the type of interaction prevailing in normal and tumor case. Thus904

DACT2 <> − <> DKK1 i.e Pr(DKK1|DACT2) is highly favoured in Nor-905

mal case whileDKK1 <> −|DACT2 i.e Pr(DACT2|DKK1) is highly favoured906

in Tumor case. Why this is so is because the normal cases show better results907

in terms of prediction in comparison to the tumor cases. This points to the908

fact that the interaction DACT2 <> − <> DKK1 is strongly supported in909

the normal case in comparison to DACT2| − |DKK1 which is weakly sup-910

ported in the tumor case. Even though the algorithm showed that interaction911
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was reversible at computational level, ROC curves and corresponding AUC val-912

ues indicate weakness in the belief that DACT2| − |DKK1 prevails in tumor913

cases. On the other hand, the interaction depicted by Pr(DACT2|DKK1)914

shows higher predictive quality in the tumor case with respect to the nor-915

mal case. This means that DKK1 <> −|DACT2 has more weight in tu-916

mor case than its reversible DKK1|− <> DACT2 counter part in the nor-917

mal case. Taken together, the dual interactions do exist but with different918

strengths of belief as shown conditional probability values. The curves in sub-919

figure 19(b) and 19(c) indicate a bad guess and thus do not support the in-920

teractions DKK1|− <> DACT2 i.e Pr(DACT2|DKK1) in Normal case and921

DACT2|− |DKK1 i.e Pr(DKK1|DACT2) in Tumor case.922

Interaction between DKK1 and DACT2 using θ = 0.5923

In comparison to use of the weighted θ, the analysis of single interaction924

using θ = 0.5 is also presented. Figure 8 shows the interaction between DKK1925

and DACT2 as DACT2 <> −|DKK1, i.e Pr(DKK1|DACT2). Using a 0.5926

threshold on 18 it is possible to see that discretization of kernel density estimates927

of Pr(DKK1|DACT2) induces a degree of belief which is not exactly 0(1).928

This is not the case with Pr(DACT2|DKK1), were the discretization leads929

to an exact 0(1) which removes the degree of belief. Bayesian networks often930

represent the degree of belief in terms of some real valued number and exact931

probabilities of 0(1) are considered with suspicion.932

Figure 20 shows the ROC plots and the respective AUC values for the dual933

interactions observed via the in silico experiments. The following are compared934

-935

1. labels of test data geN and discretized values of Pr(DKK1|DACT2) and936

Pr(DACT2|DKK1) using arbitrary value of 0.5 in Normal case937

2. labels of test data geT and discretized values of Pr(DKK1|DACT2) and938

Pr(DACT2|DKK1) using arbitrary value of 0.5 in Tumor case939

In figure 20 column wise the ROCs for Pr(DKK1|DACT2) (1st column) and940

Pr(DACT2|DKK1) (2nd column) have been plotted with ETGN value for the941

90%. Row wise the plots depict the curves generated using arbitrary thresh-942

old of 0.5 for Normal case and Tumor case. It can be seen that using the943

a value of 0.5, the subfigure 20(a) conveys a negligibly good guess regarding944

the type of interaction prevailing in normal. Thus DACT2 <> −|DKK1 i.e945

Pr(DKK1|DACT2) is highly favoured in Normal case. On the other hand the946

20(c) conveys a very bad guess regarding the reversal of interaction in Tumor947

case for Pr(DKK1|DACT2). Finally, it was noted that the degree of belief948

in Pr(DACT2|DKK1) was not at all recorded via thresholding. Thus even949

though 20(b) and 20(d) show recorded ROCs but the discretization of 0.5 does950

not capture the involved interaction. Thus the arbitrary value of 0.5 is not a951

good factor for inferring interactions.952

Comparing figures 20 and 19, it is clear that the later gives a better guess953

in terms of the interpretation of the interaction obtained by discretizing the954

kernel density estimates of inferred conditional probabilities. To evaluate the955

statistical significance of the predicted probabilities, the values of the KS test956
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Figure 20: Column wise ROCs for Pr(DKK1|DACT2) (1st column) and Pr(DACT2|DKK1)
(2nd column) have been plotted with ETGN value for the 90%. Row wise the plots depict
the curves generated using arbit value of 0.5 for Normal case and arbit value of 0.5 for Tumor
case. Respective AUC values for the ROC curves appear on the title of each of the graphs.

are tabulated and analyzed. Table 11 represents the computed values. The957

first four rows show the existing significance between the predictions for which958

the ROC curves have be plotted and described earlier. The next describes the959

significance between predictions based on thresholds for both normal and tu-960

mor cases. Note that some tests show no significance at all as is the case with961

Pr(DACT2|DKK1). In general, significance values differ depending on differ-962

ent interactions. Finally, significance values between interactions are also tabu-963

lated. It was found that there exists statistical difference between the inferred964

dual interactions as shown by the low p-values. Similar interpretations can be965

derived and respective measures can be plotted from the in silico observations.966
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Kolmogorov-Smirnov test
Sr. No. Discretized Val. vs Labels p-value Discretized Val. vs Labels p-value

Pr(DKK1|DACT2) Pr(DACT2|DKK1)
1. wtd. mean (N) vs geN D = 0.5417 wtd. mean (N) vs geN D = 0.625

p-value < 2.2e−16 p-value < 2.2e−16

2. wtd. mean (N) vs geN D = 0.1059 wtd. mean (N) vs geN D = 0.625
p-value = 0.003129 p-value < 2.2e−16

3. wtd. mean (N) vs geT D = 0.5417 wtd. mean (T) vs geT D = 0.625
p-value < 2.2e−16 p-value < 2.2e−16

4. wtd. mean (N) vs geT D = 0.4844 wtd. mean (T) vs geT D = 0.625
p-value < 2.2e−16 p-value < 2.2e−16

KS test between predictions using wtd. mean and arbitrary value of 0.5
Sr. No. Pr(DKK1|DACT2) KS value Pr(DKK2|DACT1) KS value

1. wtd. mean vs arbit. (N) D = 0.4358 wtd. mean vs arbit. (N) D = 0
p-value < 2.2e−16 p-value = 1

2. wtd. mean vs arbit. (T) D = 0.0573 wtd. mean vs arbit. (T) D = 0
p-value = 0.3009 p-value = 1

KS test between predictions of interactions I1 and I2

1. wtd. mean - I1 (N) vs I2 (N) D = 1 wtd. mean - I1 (T) vs I2 (T) D = 1
p-value < 2.2e−16 p-value < 2.2e−16

2. arbit. - I1 (N) vs I2 (N) D = 0.5642 arbit. - I1 (T) vs I2 (T) D = 0.9427
p-value < 2.2e−16 p-value < 2.2e−16

Table 11: Kolmogorov-Smirnov test indicating statistical significance between the distribution
of predictions. Statistical significance is evaluated by observing the p-value. Small p-value
indicates that significant difference. Significance test is conducted between (1) discretized
values of predictions and existing test labels (2) discretized values of predictions based on
weighted threshold and discretized values of predictions based on arbit threshold and (3)
between predictions representing the dual interactions (obtained using both thresholds). I1
and I2 correspond to interactions inferred from Pr(DKK1|DACT2) and Pr(DACT2|DKK1),
respectively.

7. Caveats967

This work does not take into account the time series data which contains968

much more crucial information rather than the static data of gene expression.969

The inferences have been made regarding a natural phenomena based on the970

exploration of a computational causal model via sensitivity analysis. The results971

discussed are based on deviations of inferred conditional probabilities which en-972

code a degree of belief in the occurrence of an event. Even if dynamic bayesian973

models are used, the observations will be made on degree of beliefs only. Also,974

the current bayesian network model does not encode the cyclic feedback loops.975

This has serious implications in the fact that the model might not capture cor-976

rect interactions. The problem can be overcome to a certain extent by encoding977

the biological knowledge such that concepts of d-connectivity/separability ex-978

ploit the inherent prior knowledge and thus help in proper inferences. More979

specifically, the model captures a snapshot in time but by varying the parame-980

ters or the prior/conditional probability tables, it is possible to verify the natural981

phenomena under investigation.982
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8. Future directions983

In context of the above observations, dynamic models might reveal greater in-984

formation regarding the psychophysical laws. Work by Goentoro and Kirschner985

(2009) employs sensitivity analysis methods to reveal such laws by tuning sin-986

gle parameters. There might be a few ways to measure fold change in single987

an multi parameter settings. Future work might involve deeper study of the988

phenomena based on multi-parameter setting in a dynamic bayesian network989

model. If one incorporates nodes in between two time snapshots of β-catenin990

concentration in a dynamic bayesian network, one might be able to measure991

the changes at different phases of the signaling pathway. For example, in figure992

21 a set of nodes measuring the different concentrations of β-catenin (say N)993

are depicted. In a dynamic bayesian network, the previous concentration at t994

is connected to the next concentration at t + 1. Also, to measure the effect of995

difference (∆N), a change in concentration can be measured. Computations996

regarding fold change (∆N) could then be estimated as posterior probabilities997

given the two concentrations, which the Bayesian networks can easily handle.998

In case more parameters need to be involved (say the effect of Wnt and APC999

together), nodes might be added as shown below. Then the fold change is1000

conditional on N(t + 1), N(t + 2), ∆Wnt and ∆APC and is estimated as1001

Pr(∆N(t+ 1)|N(t+ 1), N(t+ 2),∆Wnt,∆APC).1002

Regarding sensitivity analysis, in nonlinear problems, it might be useful to1003

use Sobol’ (1990) indices to estimate the sensitivity of the parameters. These1004

indices are a way to estimate the changes in a multiparameter setting thus1005

helping one to conduct global sensitivity analysis instead of local sensitivity1006

analysis Glen and Isaacs (2012). Finally, with respect to the robustness of the1007

gene-gene interaction network, the current work employs a very simple algorithm1008

to construct the network and infer preserved interactions across the range of1009

values set for a particular parameter. This helps in eliminating interactions1010

that do not contribute enough biological information in the pathway or are non1011

existant and require further analysis by integration of more data. Work in these1012

lines would require incorporation of bigger datasets.1013

9. Conclusions1014

In this preliminary work via sensitivity analysis, the variation in predictive1015

behaviour of β-catenin based transcription complex conditional on gene evi-1016

dences is shown to follow power-logarithmic psychophysical law crudely. This1017

implies deviations in output are proportional to increasing function of devia-1018

tions in the input and show constancy for higher values of input. This points1019

towards stability in the behaviour of transcriptional activity downstream of the1020

Wnt pathway. As a further development, computational analysis shows that1021

the preserved gene-gene interactions are also subject to these power-logarithmic1022

psychophysical laws. The prevalence of these laws is reported for interaction1023

between elements of pairs of (SFRP3, MYC), (SFRP2, CD44) and (DKK1,1024

DACT2). As a precursor to the analysis of these laws at interaction level,1025
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Figure 21: A schematic diagram of a dynamic bayesian network model that might help study
the fold change and the logarithmic psychophysical laws behind the changes.

the biologically inspired epigenetically influenced computational causal models1026

were used to infer gene-gene interaction from conditional probabilities of indi-1027

vidual gene activation given the status of another gene activation. In relation1028

of colorectal cancer cases, it is now possible to infer the type of interaction that1029

might be happening among the genes at a pair wise level using BN models and1030

further wet lab studies can be developed to investigate the inferred prevalence1031

of power-logarithmic psychophysical laws at interaction level within the path-1032

way. To assert the fact, in a recent development via wet lab experiments by1033

Olsman and Goentoro (2016), it has been confirmed that there are existence1034

of sensors that behave in a logarithmic fashion. The wet lab work by Olsman1035

and Goentoro (2016) supports the earlier proposed crude postulates based on1036

computational sensitivity analysis of this manuscript regarding the existence of1037

logarithmic behaviour in the signaling pathways. It also signifies the impor-1038

tance of systems biology approach where in silico experiments combined with1039

in vivo/in vitro experiments have the power to explore the deeper mechanisms1040

of a signaling pathway.1041
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Appendix1053

9.1. Steps for construction of gene gene interaction networks1054

Before starting the construction of interactions from the conditional prob-1055

abilities, assign a variable ggI as an empty list (say in R language). Then ∀i1056

genes, execute the following -1057

1. ∀ 576 runs iterated by a counter j1058

(a) append xN with the vector whose elements are Pr(gi = active|gk1059

evidence) ∀k genes in the jth run for Normal test sample. This creates1060

a matrix at the end of the runs.1061

(b) append xT with the vector whose elements are Pr(gi = active|gk1062

evidence) ∀k genes in the jth run for Tumor test sample. This creates1063

a matrix at the end of the runs.1064

(c) append geN with the vector whose elements are gek evidence ∀k genes1065

in the j
th run for Normal test sample. This creates a matrix at the1066

end of the runs.1067

(d) append geT with the vector whose elements are gek evidence ∀k genes1068

in the j
th run for Tumor test sample. This creates a matrix at the1069

end of the runs.1070

2. assign variables ge, aaN , arN , raN , rrN , aaT , arT , raT , rrT , PggN , PggT1071

to an empty vector c() (say in R language). Note - a (r) means activation1072

(repression).1073

3. compute mean across columns of xN and xT to obtain averaged �PrN (gi|gk)1074

and �PrT (gi|gk) ∀k gene evidences and ∀i genes. Note k, i ∈ 1, ..., n if n is1075

the total number of genes.1076

4. assign a vector of �PrN (gi|gk) ∀k genes to PggN and a vector of �PrT (gi|gk)1077

∀k genes to PggT1078

5. ∀k genes except the i
th one1079

(a) if(k �= i)1080

i. assign variables tmpaaN , tmparN , tmpraN , tmprrN , tmpaaT ,1081

tmparT , tmpraT and tmprrT to 0.1082

ii. assign threshold values θ to either a fixed value (say 0.5) or a1083

weighted mean.1084
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iii. if assigning a weighted mean, compute the threshold θN as the1085

weighted mean of the labels of the test data i.e evidences for the1086

i
th gene, in the case of Normal samples (top formula in equation1087

8). Similarly, compute the threshold θT as the weighted mean of1088

the labels of the test data i.e evidences for the i
th gene, in the1089

case of Tumor samples (bottom formula in equation 8).1090

iv. ∀ 576 runs iterated by a counter l1091

A. if(geN [l,k] == 1 and xN [l,k] < θ) increment tmprrN by 11092

B. else if(geN [l,k] == 1 and xN [l,k] >= θ) increment tmparN1093

by 11094

C. else if(geN [l,k] == 2 and xN [l,k] < θ) increment tmpraN by1095

11096

D. else if(geN [l,k] == 2 and xN [l,k] >= θ) increment tmpaaN1097

by 11098

E. if(geT [l,k] == 1 and xT [l,k] < θ) increment tmprrT by 11099

F. else if(geT [l,k] == 1 and xT [l,k] >= θ) increment tmparT1100

by 11101

G. else if(geT [l,k] == 2 and xT [l,k] < θ) increment tmpraT by1102

11103

H. else if(geT [l,k] == 2 and xT [l,k] >= θ) increment tmpaaT1104

by 11105

v. Comment - store results1106

vi. append ge with gk, rrN with tmprrN , arN with tmparN , raN1107

with tmpraN , aaN with tmpaaN , rrT with tmprrT , arT with1108

tmparT , raT with tmpraT and aaT with tmpaaT1109

(b) store the variables in the previous step to a data frame (say in R1110

language) to a variable stats.1111

(c) Comment - 1 means aa, 2 means ar, 3 means ra, 4 means rr1112

(d) assign variables ggIN and ggIT as empty vector []1113

(e) ∀j gene except the i
th one under consideration1114

i. find the index idxN in stats that corresponds to 1 or 2 or 3 or 41115

ii. if(idxN == 1) append ggIN with interaction string stats§gj <>1116

− <> gi1117

iii. else if(idxN == 2) append ggIN with interaction string stats§gej |− <>1118

gi1119

iv. else if(idxN == 3) append ggIN with interaction string stats§gj <>1120

−|gi1121

v. else if(idxN == 4) append ggIN with interaction string stats§gj |−1122

|gi1123

vi. find the index idxN in stats that corresponds to 1 or 2 or 3 or 41124

vii. if(idxT == 1) append ggIT with interaction string stats§gj <>1125

− <> gi1126

viii. else if(idxT == 2) append ggIT with interaction string stats§gj |− <>1127

gi1128

ix. else if(idxT == 3) append ggIT with interaction string stats§gj <>1129

−|gi1130
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x. else if(idxT == 4) append ggIT with interaction string stats§gj |−1131

|gi1132

(f) assign stats§ggIN with ggIN1133

(g) assign stats§ggIT with ggIT1134

(h) Comment - ith gene influenced1135

(i) ggI [[i]] < − list(ig = gi, stats = stats, PggN = PggN , PggT =1136

PggT )1137
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González-Sancho, J., Aguilera, O., Garćıa, J., Pendás-Franco, N., Peña, C., Cal, S., de Herreros,1179
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