
Sensitivity analysis of Wnt β-catenin based transcription complex
might bolster logarithmic psychophysical law and reveal preserved
gene gene interactions

Shriprakash Sinha∗a,‡

Abstract
Sensitivity analysis plays a crucial role in observing the behaviour of output of a variable given variations in the input. In
colorectal cancer, β-catenin based transcription complex (TRCMPLX) plays a major role in driving the Wnt signaling pathway.
In this manuscript, the variation in the effect of the predictive behaviour of TRCMPLX conditional on the evidences of
regulated gene expressions in normal and tumor samples is observed by varying the initially assigned values of conditional
probability tables (cpt) for TRCMPLX . Preliminary analysis shows that the variation in predictive behaviour of TRCMPLX
conditional on gene evidences follows logarithmic psychophysical law crudely, implying deviations in output are proportional to
increasing function of deviations in input and showing constancy for higher values of input. This points towards stability in the
behaviour of TRCMPLX and is reflected in the preserved gene gene interactions of the Wnt pathway inferred from conditional
probabilities of individual gene activation given the status of another gene activation derived using biologically inspired Bayesian
Network.

Fig. 1 A cartoon of wnt signaling pathway contributed by Verhaegh
et al. 1. Part (A) represents the destruction of β-catenin leading to
the inactivation of the wnt target gene. Part (B) represents activation
of wnt target gene.

1 Introduction

From Sinha2, the following two sections help build the back-
ground before delving into the problem of sensitivity analysis.
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1.1 Canonical Wnt signaling pathway

The canonical Wnt signaling pathway is a transduction mech-
anism that contributes to embryo development and controls
homeostatic self renewal in several tissues (Clevers3). So-
matic mutations in the pathway are known to be associated
with cancer in different parts of the human body. Promi-
nent among them is the colorectal cancer case (Gregorieff
and Clevers4). In a succinct overview, the Wnt signaling
pathway works when the Wnt ligand gets attached to the
Frizzled(fzd)/LRP coreceptor complex. Fzd may interact
with the Dishevelled (Dvl) causing phosphorylation. It is also
thought that Wnts cause phosphorylation of the LRP via ca-
sein kinase 1 (CK1) and kinase GSK3. These developments
further lead to attraction of Axin which causes inhibition of the
formation of the degradation complex. The degradation com-
plex constitutes of Axin, the β-catenin transportation com-
plex APC, CK1 and GSK3. When the pathway is active
the dissolution of the degradation complex leads to stabiliza-
tion in the concentration of β-catenin in the cytoplasm. As
β-catenin enters into the nucleus it displaces the Groucho
and binds with transcription cell factor TCF thus instigat-
ing transcription of Wnt target genes. Groucho acts as lock
on TCF and prevents the transcription of target genes which
may induce cancer. In cases when the Wnt ligands are not cap-
tured by the coreceptor at the cell membrane, Axin helps in
formation of the degradation complex. The degradation com-
plex phosphorylates β-catenin which is then recognized by
Fbox/WD repeat protein β−TrCP . β−TrCP is a compo-
nent of ubiquitin ligase complex that helps in ubiquitination of
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β-catenin thus marking it for degradation via the proteasome.
Cartoons depicting the phenomena of Wnt being inactive and
active are shown in figures 1(A) and 1(B), respectively.

1.2 Epigenetic factors

One of the widely studied epigenetic factors is methylation
(Costello and Plass5, Das and Singal6, Issa7). Its occur-
rence leads to decrease in the gene expression which affects
the working of Wnt signaling pathways. Such characteristic
trends of gene silencing like that of secreted frizzled-related
proteins (SFRP ) family in nearly all human colorectal tu-
mor samples have been found at extracellular level (Suzuki
et al.8). Similarly, methylation of genes in the Dickkopf
(DKKx Niehrs9, Sato et al.10), Dapper antagonist of catenin
(DACTx Jiang et al.11) and Wnt inhibitory factor-1 (WIF1
Taniguchi et al.12) family are known to have significant ef-
fect on the Wnt pathway. Also, histone modifications (a class
of proteins that help in the formation of chromatin which
packs the DNA in a special form Strahl and Allis13) can af-
fect gene expression (Peterson et al.14). In the context of the
Wnt signaling pathway it has been found that DACT gene
family show a peculiar behavior in colorectal cancer (Jiang
et al.11). DACT1 and DACT2 showed repression in tumor
samples due to increased methylation while DACT3 did not
show obvious changes to the interventions. It is indicated that
DACT3 promoter is simultaneously modified by the both re-
pressive and activating (bivalent) histone modifications (Jiang
et al.11).

Information regarding prior biological knowledge in terms
of known influence relations and epigenetic factors have been
depicted in the figure represented by figure 2 from Sinha2.

1.3 Problem statement

In Sinha2, it has been hypothesized that the activation state
of TRCMPLX in the Wnt signaling pathway is not always
the same as the state of the test sample (normal/tumorous) un-
der consideration. For this, Sinha2 shows various results on
the predicted state of TRCMPLX conditional on the given
gene evidences, while varying the assigned probability values
of conditional probability tables of TRCMPLX during ini-
tialization of the Bayesian Network (BN). It was found that the
predicted values often increase with an increasing value in the
effect of the TRCMPLX on the genes. In a recent develop-
ment, Goentoro and Kirschner16 point to two findings namely,
• the robust fold changes of β-catenin and • the transcriptional
machinery of the Wnt pathway depends on the fold changes in
β-catenin instead of absolute levels of the same and some gene
transcription networks must respond to fold changes in signals
according to the Weber’s law in sensory physiology.

In accordance with the aforementioned phenomena noted

in Sinha2, it would be important to test the veracity of
the observed logarithmic laws and their derivations (like the
Weber’s law) employed in Goentoro and Kirschner16. In
the current manuscript, preliminary analysis of results in
Sinha2 shows that the variation in predictive behaviour of
TRCMPLX conditional on gene evidences follows logarith-
mic psychophysical law crudely, implying deviations in out-
put are proportional to increasing function of deviations in in-
put and showing constancy for higher values of input. This
points towards stability in the behaviour of TRCMPLX and
is reflected in the preserved gene gene interactions of the Wnt
pathway inferred from conditional probabilities of individual
gene activation given the status of another gene activation de-
rived using biologically inspired Bayesian Network. Note that
Weber’s law has been found to be a special case of Bernoulli’s
logarithmic law (Masin et al.17).

1.4 The logarithmic psychophysical law

Masin et al.17 states the Weber’s law as follows -

Consider a sensation magnitude γ determined
by a stimulus magnitude β. Fechner18 (vol 2, p. 9)
used the symbol ∆γ to denote a just noticeable sen-
sation increment, from γ to γ + ∆γ, and the sym-
bol ∆β to denote the corresponding stimulus incre-
ment, from β to β + ∆β. Fechner18 (vol 1, p. 65)
attributed to the German physiologist Ernst Hein-
rich Weber the empirical finding Weber19 that ∆γ
remains constant when the relative stimulus incre-
ment ∆β

β remains constant, and named this finding
Weber’s law. Fechner18 (vol 2, p. 10) underlined
that Weber’s law was empirical.

It has been found that Bernoulli’s principle (Bernoulli 20) is
different from Weber’s law (Weber19) in that it refers to ∆γ
as any possible increment in γ, while the Weber’s law refers
only to just noticeable increment in γ. Masin et al.17 shows
that Weber’s law is a special case of Bernoulli’s principle and
can be derived as follows - Equation 1 depicts the increment
in sensation represented by ∆γ to be proportional to change
in stimulus represented by ∆β.

γ = b× log
∆β

β
(1)

were b is a constant and α is a threshold. To evaluate the incre-
ment, the following equation 2 and the ensuing simplification
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Fig. 2 Influence diagram of MPBK+EI contains partial prior biological knowledge and epigenetic information in the form of methylation
and histone modification. Diagram drawn using Cytoscape 15. In this model the state of Sample is distinguished from state of TRCMPLX
that constitutes the Wnt pathway.

gives -

∆γ = b× log
β +∆β

α
− b× log

β

α

= b× log(
β +∆β

β
)

= b× log(1 +
∆β

β
) (2)

Since b is a constant, equation 2 reduces to

∆γ ◦ ∆β

β
(3)

were ◦ means ”is constant when there is constancy of” from
Masin et al.17. The final equation 3 is a formulation of We-
ber’s laws in wordings and thus Bernoulli’s principles imply
Weber’s law as a special case. Using Fechner18 derivation, it
is possible to show the relation between Bernoulli’s principles
and Weber’s law. Starting from the last line of equation 2, the
following yields the relation.

.

∆γ = b× log(1 +
∆β

β
)

e∆γ = eb×log(1+∆β
β )

kp = elog(1+
∆β
β )b ; were kp = e∆γ

kp = (1 +
∆β

β
)b; since elog(x) = x

b
�

kp = 1 +
∆β

β

kq × β = β +∆β; were b
�
kp = kq

kq × β − β = ∆β

(kq − 1)× β = ∆β

kq − 1 =
∆β

β

kr =
∆β

β
; the weber’s law s.t. kr =

b
√
e∆γ − 1

(4)

Equation 3 holds true given the last line of equation 4. In the
current study, observation of deviation recorded in predicted
values of state of TRCMPLX conditional on gene evidences
show crude logarithmic behaviour which might bolster We-
ber’s law and Bernoulli’s principles. But it must be noted that
these observations are made on static causal models and ob-
servation of the same behaviour in dynamical setting would
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add more value.

2 Materials and methods

The models purported by Sinha2 involving the biologi-
cal knowledge as well as epigenetic information depicted
by MPBK+EI and biological knowledge excluding epige-
netic information MPBK were used to predict the state of
TRCMPLX given the gene evidences. Figure 2 depicts the
model MPBK+EI . The predictions were recorded over the
varying effect of TRCMPLX on gene regulations via as-
signment of different values to conditional probability tables
(cpt) of TRCMPLX while initializing the aforementioned
BN models. This varying effect is represented by the term
ETGN in Sinha2.

As a recapitulation, the design of the experiment is a sim-
ple 2-holdout experiment where one sample from the normal
and one sample from the tumorous are paired to form a test
dataset. Excluding the pair formed in an iteration of 2-hold out
experiment the remaining samples are considered for training
of a BN model. Thus in a data set of 24 normal and 24 tu-
morous cases obtained from Jiang et al.11, a training set will
contain 46 samples and a test set will contain 2 samples (one
of normal and one of tumor). This procedure is repeated for
every normal sample which is combined with each of the tu-
morous sample to form a series of test datasets. In total there
will be 576 pairs of test data and 576 instances of training
data. Note that for each test sample in a pair, the expression
value for a gene is discretized using a threshold computed for
that particular gene from the training set. Computation of the
threshold has been elucidated in Sinha2. This computation is
repeated for all genes per test sample. Based on the avail-
able evidence from the state of expression of all genes, which
constitute the test data, inference regarding the state of both
the TRCMPLX and the test sample is made. These infer-
ences reveal information regarding the activation state of the
TRCMPLX and the state of the test sample. Finally, for
each gene gi, the conditional probability Pr(gi = active|gk ev-
idence) ∀k genes. Note that these probabilities are recorded
for both normal and tumor test samples.

Two observations are presented in this manuscript. The first
observation is regarding the logarithmic deviations in predic-
tion of activation status of TRCMPLX conditional on gene
expression evidences and the second observation is preserva-
tion of gene gene interactions across deviations. To observe
these preservations, first the gene gene interactions have to
be constructed from the predicted conditional probabilities of
one gene given the evidence of another gene (for all gene ev-
idences taken separately). After the construction, further pre-
processing is required before the gene-gene interaction net-
work can be inferred.

Deviation study for model MPBK+EI

β ∆β ∆β
β log(1 + ∆β

β ) Pr in Normal Pr in Tumor
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.1 0.1428571 0.1335314 0.01423754 0.09086427
0.6 0.1 0.1666667 0.1541507 0.004384244 0.08052346
0.5 0.1 0.2 0.1823216 0.0005872203 0.07294716
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.2 0.2857143 0.2513144 0.04479181 0.1823758
0.6 0.3 0.5 0.4054651 0.04917605 0.2628992
0.5 0.4 0.8 0.5877867 0.04976327 0.3358464

Table 1 Deviation study for model MPBK+EI . Pr = mean value of
Pr(TRCMPLX = active|∀gei evidences) over all runs.

Deviation study for model MPBK

β ∆β ∆β
β log(1 + ∆β

β )Pr in NormalPr in Tumor
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.1 0.1428571 0.1335314 0.06442086 0.1877266
0.6 0.1 0.1666667 0.1541507 0.01762791 0.06204044
0.5 0.1 0.2 0.1823216 0.01393517 0.1718198
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.2 0.2857143 0.2513144 0.2044564 0.2974356
0.6 0.3 0.5 0.4054651 0.2220843 0.359476
0.5 0.4 0.8 0.5877867 0.2360195 0.5312958

Table 2 Deviation study for model MPBK . Pr = mean value of
Pr(TRCMPLX = active|∀gei evidences) over all runs.

3 Results and discussion

3.1 Logarithmic deviations in predictions of β-catenin
transcription complex

Let γ be Pr(TRCMPLX = active—all gene evidences), β be
the assigned cpt value of TRCMPLX during initialization
of the Bayesian Network models and ∆β be the deviation in
the assigned values of TRCMPLX during initialization. To
compute ∆γ, the 576 predictions of γ observed at β = 90% is
subtracted from the 576 predictions of γ observed at β = 80%
and a mean of the deviations recorded. This mean becomes
∆γ. The procedure is computed again for different value of
β. In this manuscript, the effect of constant and incremental
deviations are observed. Tables 1 and 2 represent the devia-
tions for models MPBK+EI and MPBK , respectively.

Figures 3, 4, 5 and 6 show the deviations represented in
tables 1 and 2. Note that the number depicted in the tables
are scaled in a nonuniform manner for observational purpose
in the figures. Before reading the graphs, note that red in-
dicates deviation of mean of Pr(TRCMPLX = active|∀gei
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Fig. 3 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used is MPBK+EI . Red - constant deviation in Normal,
constant deviation in Tumor, Green - constant deviation in Weber’s
law, Cyan - constant deviation in Bernoulli’s law.

evidences) in normal test samples, blue indicates deviation of
mean of Pr(TRCMPLX = active|∀gei evidences) in tumor
case, green indicates deviations in Weber’s law and cyan indi-
cates deviations in Bernoulli’s law.

For the case of contant deviations (figure 3) in model
MPBK+EI , it was observed that deviations in activation of
TRCMPLX conditional on gene evidences for the tumor
test samples showed a logarithmic behaviour and were di-
rectly proportional to the negative of both the Weber’s and
Bernoulli’s law. This can be seen by the blue curve almost
following the green and cyan curves. For the case of devia-
tions in activation of TRCMPLX conditional on gene ev-
idences for the normal test samples showed an exponential
behaviour and were proportional to negative of both the We-
ber’s and Bernoulli’s law. Similar behaviour was observed for
all the coloured curves in case of incremental deviations as
shown in figure 4. The exponential behaviour for activation
of TRCMPLX being active conditional on gene evidences
correctly supports to the last line of equation 4 which is the
derivation of Weber’s law from Bernoulli’s equation. It actu-
ally point to Fechner’s derivation of Weber’s law from loga-
rithmic formulation.

For model MPBK , the above observations do not yield
consistent behaviour. In figure 5, for the case of constant devi-
ations, only the deviations in activation of TRCMPLX con-
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Fig. 4 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used is MPBK+EI . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

ditional on gene evidences for normal test samples exponen-
tial in nature and were found to be directly proportional to the
negative of both the Weber’s and Bernoulli’s law. But the de-
viations in activation of TRCMPLX conditional on gene ev-
idences in tumor test samples show noisy behaviour. But this
observation is not the case in incremental deviations for the
same model. For the case of incremental deviations as repre-
sented in figure 6, the deviations in activation of TRCMPLX
conditional on gene evidences is directly proportional to both
the Weber’s and Bernoulli’s law. The figure actually represent
the plots with inverted values i.e negative values. A primary
reason for this behaviour might be that MPBK does not cap-
ture and constrain the network as much as MPBK+EI which
include epigenetic information. This inclusion of heteroge-
neous information adds more value to the biologically inspired
network and reveals the hidden natural laws occurring in the
signaling pathway in both normal and tumor cases.

Finally, these observations present a crude yet important
picture regarding the downstream transcriptional behaviour of
signaling pathway in case of colorectal cancer. Psychophysi-
cal laws might not be constrained to a particular domain and
as can be seen here, they might play an important role in shed-
ding light on behaviour of the pathway. In context of Goen-
toro and Kirschner16, the presented results might be crude in
terms of static observations, yet they show corresponding be-
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Fig. 5 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used is MPBK . Red - constant deviation in Normal, constant
deviation in Tumor, Green - constant deviation in Weber’s law, Cyan
- constant deviation in Bernoulli’s law.

haviour of transcriptional activity in terms of psychophysical
laws. Further investigations using dynamic models might re-
veal more information in comparison to the static models used
in Sinha2. The observations presented here might bolster the
existence of behavioural phenomena in terms of logarithmic
laws and its special cases.

3.2 Preservation of gene gene interactions

The second part of this study was to find interactions between
two genes by observing the conditional probability of activa-
tion status of one gene given the evidence of another gene. Let
g be a gene. To obtain the results, two steps need to be exe-
cuted in a serial manner. The first step is to construct gene
gene interactions based on the available conditional proba-
bilities denoted by Pr(gi = active/repressed|gk evidence) ∀k
genes. The second step is to infer gene gene interaction net-
work based purely on reversible interactions. Note that net-
works are inferred for gene evidences using normal and tumor
test samples separately. The following sections elucidate the
steps before explaining the implications.

3.2.1 Constructing gene-gene interactionsBefore start-
ing the construction of interactions from the conditional prob-
abilities, assign a variable ggI as an empty list (say in R lan-
guage). Then ∀i genes, execute the following -
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Fig. 6 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used is MPBK . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

1. ∀ 576 runs iterated by a counter j

(a) append xN with the vector whose elements are
Pr(gi = active|gk evidence) ∀k genes in the jth run
for Normal test sample. This creates a matrix at the
end of the runs.

(b) append xT with the vector whose elements are Pr(gi
= active|gk evidence) ∀k genes in the jth run for
Tumor test sample. This creates a matrix at the end
of the runs.

(c) append geN with the vector whose elements are gek
evidence ∀k genes in the jth run for Normal test
sample. This creates a matrix at the end of the runs.

(d) append geT with the vector whose elements are gek
evidence ∀k genes in the jth run for Tumor test
sample. This creates a matrix at the end of the runs.

2. assign variables ge, aaN , arN , raN , rrN , aaT , arT ,
raT , rrT to an empty vector []. Note - a (r) means acti-
vation (repression).

3. ∀k genes except the ith one

(a) if(k �= i)
i. assign variables tmpaaN , tmparN , tmpraN ,

tmprrN , tmpaaT , tmparT , tmpraT and
tmprrT to 0.
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SFRP5 activation status apropos to gene evidences in Normal and Tumor samples
ge aaN arN raN rrN aaT arT raT rrT ggIN ggIT

1 DKK1 0 360 216 0 0 0 360 216 DKK1 |− <> SFRP5 DKK1 <> −| SFRP5
2 DKK2 360 0 0 216 0 0 216 360 DKK2 <> − <> SFRP5 DKK2 | − | SFRP5
3 DKK3-1 360 0 0 216 0 0 216 360 DKK3-1 <> − <> SFRP5 DKK3-1 | − | SFRP5
4 DKK3-2 133 336 107 0 0 0 336 240 DKK3-2 |− <> SFRP5 DKK3-2 <> −| SFRP5
5 DKK4 0 480 96 0 0 0 460 116 DKK4 |− <> SFRP5 DKK4 <> −| SFRP5
6 DACT1 346 230 0 0 0 0 216 360 DACT1 <> − <> SFRP5 DACT1 | − | SFRP5
7 DACT2 312 218 0 46 0 0 264 312 DACT2 <> − <> SFRP5 DACT2 | − | SFRP5
8 DACT3 504 0 0 72 0 0 69 507 DACT3 <> − <> SFRP5 DACT3 | − | SFRP5
9 SFRP1 552 0 0 24 0 0 46 530 SFRP1 <> − <> SFRP5 SFRP1 | − | SFRP5
10 SFRP2 480 0 0 96 0 0 96 480 SFRP2 <> − <> SFRP5 SFRP2 | − | SFRP5
11 SFRP3 484 0 0 92 0 0 96 480 SFRP3 <> − <> SFRP5 SFRP3 | − | SFRP5
12 SFRP4 82 312 182 0 312 264 0 0 SFRP4 |− <> SFRP5 SFRP4 <> − <> SFRP5
13 WIF1 0 408 168 0 0 0 398 178 WIF1 |− <> SFRP5 WIF1 <> −| SFRP5
14 LEF1 0 480 96 0 0 0 484 92 LEF1 |− <> SFRP5 LEF1 <> −| SFRP5
15 MYC 0 456 120 0 0 0 442 134 MYC |− <> SFRP5 MYC <> −| SFRP5
16 CCND1 0 480 96 0 0 0 480 96 CCND1 |− <> SFRP5 CCND1 <> −| SFRP5
17 CD44 0 376 200 0 0 0 384 192 CD44 |− <> SFRP5 CD44 <> −| SFRP5

Table 3 SFRP5 activation status in test samples conditional on status of individual gene activation (represented by evidence in test data) in
Normal and Tumor samples. Measurements are taken over summation of all predicted values across the different runs of the 2-Hold out
experiment. Here the notations denote the following: a - active, p - passive, N - Normal, T - Tumor, ggIN - gene-gene interaction with
Normal, ggIT - gene-gene interaction with Tumor, <> - active and | - repressed.

ii. ∀ 576 runs iterated by a counter l
A. if(geN [l,k] == 1 and xN [l,k] < 0.5) in-

crement tmprrN by 1
B. else if(geN [l,k] == 1 and xN [l,k] >=

0.5) increment tmparN by 1
C. else if(geN [l,k] == 2 and xN [l,k] < 0.5)

increment tmpraN by 1
D. else if(geN [l,k] == 2 and xN [l,k] >=

0.5) increment tmpaaN by 1
E. if(geT [l,k] == 1 and xT [l,k] < 0.5) in-

crement tmprrT by 1
F. else if(geT [l,k] == 1 and xT [l,k] >= 0.5)

increment tmparT by 1
G. else if(geT [l,k] == 2 and xT [l,k] < 0.5)

increment tmpraT by 1
H. else if(geT [l,k] == 2 and xT [l,k] >= 0.5)

increment tmpaaT by 1
iii. Comment - store results
iv. append ge with gk, rrN with tmprrN ,

arN with tmparN , raN with tmpraN , aaN
with tmpaaN , rrT with tmprrT , arT with
tmparT , raT with tmpraT and aaT with
tmpaaT

(b) store the variables in the previous step to a data
frame (say in R language) to a variable stats.

(c) Comment - 1 means aa, 2 means ar, 3 means ra, 4
means rr

(d) assign variables ggIN and ggIT as empty vector []
(e) ∀j gene except the ith one under consideration

i. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4

ii. if(idxN == 1) append ggIN with interaction
string stats§gj <> − <> gi

iii. else if(idxN == 2) append ggIN with interac-
tion string stats§gej |− <> gi

iv. else if(idxN == 3) append ggIN with interac-
tion string stats§gj <> −|gi

v. else if(idxN == 4) append ggIN with interac-
tion string stats§gj | − |gi

vi. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4

vii. if(idxT == 1) append ggIT with interaction
string stats§gj <> − <> gi

viii. else if(idxT == 2) append ggIT with interac-
tion string stats§gj |− <> gi

ix. else if(idxT == 3) append ggIT with interac-
tion string stats§gj <> −|gi

x. else if(idxT == 4) append ggIT with interac-
tion string stats§gj | − |gi

(f) assign stats§ggIN with ggIN
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Fig. 7 Gene gene interactions for normal case while using MPBK+EI . Note that the effect of initialized cpt for TRCMPLX is 90% in
tumorous case and 10% in normal case. Diamond <> means activation and straight bar | means repression.

(g) assign stats§ggIT with ggIT

(h) Comment - ith gene influenced

(i) ggI [[i]] < − list(ig = gi, stats = stats)

Based on the above execution, for each gene a matrix is ob-
tained that shows the statistics of how the status of gene is af-
fected conditional on the individual evidences of the remain-
ing genes. Table 3 represents one such tabulation for gene
SFRP5. For all runs and all test samples, the following was
tabulated in table 3 : aaN - SFRP5 is active (a) when a gene
is active (a) in Normal (N) sample, arN - SFRP5 is active
(a) when a gene is repressed (r) in Normal (N) sample, raN -
SFRP5 is repressed (r) when a gene is active (a) in Normal
(N) sample, rrN - SFRP5 is repressed (r) when a gene is re-
pressed (r) in Normal (N) sample, aaT - SFRP5 is active (a)
when a gene is active (a) in Tumor (T) sample, arT - SFRP5
is active (a) when a gene is repressed (r) in Tumor (T) sample,
paT - SFRP5 is repressed (r) when a gene is active (a) in Tu-
mor (T) sample, ggIN - interaction of SFRP5 given the gene

evidence based on majority voting among aaN , arN , raN and
rrN and finally, ggIT - interaction of SFRP5 given the gene
evidence based on majority voting among aaT , arT , raT and
rrT . The highest score among aaN , arN , raN and rrN (aaT ,
arT , raT and rrT ) confirms the relation between genes using
Normal (Tumor) samples. Active (repressed) for SFRP5 is
based on discretization the predicted conditional probability
Pr(SFRP5 = active|gj evidence) as ≥ 0.5 (< 0.5). Active
(repressed) for a particular gene evidence gj is done using dis-
crete evidence. In table 3, under the columns ggIN and ggIT ,
<> implies the gene is active and | implies the gene is re-
pressed or passive.

It was found that DKK1, DKK3 − 2, DKK4 expressed
similar repression behaviour as the standard genes LEF1,
MYC, CCND1 and CD44 in Normal test samples (and vice
versa for Tumor test samples). Also, DKK2 and DKK3− 1
show similar activated behaviour as DACT − 1/2/3 and
SFRP − 1/2/3 in Normal test samples (and vice versa for
Tumor test samples). In comparison to DKK2, DKK3− 1,
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Gene-gene interactions
DACT2 <> −| DKK1, SFRP4 | − | DKK1, DACT1 <> − <> DKK2, SFRP1 <> − <> DKK2, LEF1 |− <> DKK2,
DKK4 |− <> DKK3-1, DACT3 <> − <> DKK3-1, SFRP2 <> − <> DKK3-1, SFRP3 <> − <> DKK3-1, SFRP5
<> − <> DKK3-1, WIF1 |− <> DKK3-1, LEF1 |− <> DKK3-1, MYC |− <> DKK3-1, CCND1 |− <> DKK3-1, CD44
|− <> DKK3-1, DKK1 | − | DKK3-2, DKK2 <> −| DKK3-2, DKK3-1 <> −| DKK3-2, DACT1 <> −| DKK3-2, DACT2
<> −| DKK3-2, SFRP1 <> −| DKK3-2, SFRP4 | − | DKK3-2, DKK3-2 | − | DKK4, DACT3 <> −| DKK4, SFRP2 <> −|
DKK4, SFRP3 <> −| DKK4, SFRP5 <> −| DKK4, WIF1 | − | DKK4, LEF1 | − | DKK4, MYC | − | DKK4, CCND1 | − |
DKK4, CD44 | − | DKK4, DKK4 | − | DACT1, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DKK2
<> − <> DACT2, DKK3-1 <> − <> DACT2, DKK4 |− <> DACT2, DACT3 <> − <> DACT2, SFRP1 <> − <>
DACT2, SFRP2 <> − <> DACT2, SFRP3 <> − <> DACT2, SFRP4 |− <> DACT2, SFRP5 <> − <> DACT2, WIF1
|− <> DACT2, LEF1 |− <> DACT2, MYC |− <> DACT2, CCND1 |− <> DACT2, CD44 |− <> DACT2, DACT1 <> −|
DACT3, DKK3-1 <> − <> SFRP1, DKK4 |− <> SFRP1, SFRP2 <> − <> SFRP1, SFRP3 <> − <> SFRP1, SFRP4
|− <> SFRP1, SFRP5 <> − <> SFRP1, MYC |− <> SFRP1, CCND1 |− <> SFRP1, CD44 |− <> SFRP1, DACT3
<> − <> SFRP2, SFRP3 <> − <> SFRP2, LEF1 |− <> SFRP2, DKK1 |− <> SFRP3, DACT3 <> − <> SFRP3,
SFRP5 <> − <> SFRP3, WIF1 |− <> SFRP3, LEF1 |− <> SFRP3, MYC |− <> SFRP3, CCND1 |− <> SFRP3, CD44
|− <> SFRP3, DKK2 <> −| SFRP4, DKK3-1 <> −| SFRP4, DACT1 <> −| SFRP4, SFRP3 <> −| SFRP4, DKK1 |− <>
SFRP5, DKK2 <> − <> SFRP5, DKK3-2 |− <> SFRP5, DACT1 <> − <> SFRP5, DACT3 <> − <> SFRP5, SFRP2
<> − <> SFRP5, WIF1 |− <> SFRP5, LEF1 |− <> SFRP5, MYC |− <> SFRP5, CCND1 |− <> SFRP5, CD44 |− <>
SFRP5, DKK3-2 | − | WIF1, DACT1 <> −| WIF1, SFRP1 <> − <> WIF1, DKK1 | − | LEF1, DACT3 <> −| LEF1, WIF1
| − | LEF1, MYC | − | LEF1, CCND1 | − | LEF1, CD44 | − | LEF1, DACT3 <> −| MYC, CCND1 | − | MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC | − | CD44, CCND1 | − | CD44

Table 4 Tabulated gene gene interactions of figure 7 using MPBK+EI obtained in case of Normal samples. Here, the symbols represent the
following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be reversed, ie. <> −|
in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in tumor and | − | in
normal became <> − <> in tumor.

DACT − 1/2/3 and SFRP − 1/2/3, which are activated
along with SRFP5 in Normal test samples (repressed in
Tumor test samples), genes DKK1, DKK3 − 2, DKK4,
LEF1, MYC, CCND1 and CD44 were reversed while
SFRP3 is activated in Normal test sample (roles reversed
in Tumor cases). Genes which showed similar behaviour to
SFRP5 might be affected by epigenetic factors, i.e these fac-
tors might play a role in suppressing the gene expression in
Normal test samples. The reverse might be the case for genes
that were suppressed in Tumor test samples.

It can also be seen that most of the interactions are re-
versible except for SFRP4|− <> SFRP5 in Normal test
sample and SFRP4 <> − <> SFRP5 in Tumor test sam-
ple. This kind of interaction is deleted the existing set of inter-
actions as they do not provide concrete information regarding
the functional roles of the genes in normal and tumor cases.
This attributes to one of the following facts (1) noise that
might corrupt prediction values as can be seen in the columns
of aaN (aaT ), arN (arT ), raN (raT ) and rrN (rrT ) or (2)
other multiple genes might be interacting along with SFRP5
in a combined manner and it is not possible to decipher the re-
lation between SFRP5 and other genes. This calls for inves-
tigation of prediction of SFRP5 status conditional on joint
evidences of two or more genes (a combinatorial problem with

a search space order of 217 − 17, which excludes 17 cases of
individual gene evidences which have already been considered
here). Incorporating multiple gene evidences might not be a
problem using Bayesian network models as they are designed
to compute conditional probabilities given joint evidences also
(except at the cost of high computational time).

3.2.2 Inferring gene-gene interaction networkNext, af-
ter the construction of gene-gene interactions, it is necessary
to infer the network. The inference of the estimated gene-gene
interactions network is based on explicitly reversible roles in
Normal and Tumor test samples. This means that only those
interactions are selected which show the following property -
gj <> − <> gi in Normal if and only if gj | − |gi in Tumor,
gj <> −|gi in Normal if and only if gj |− <> gi in Tumor,
gj |− <> gi in Normal if and only if gj <> −|gi in Tumor
and finally, gj |−|gi in Normal if and only if gj <> − <> gi.
This restricts the network to only reversible gene-gene inter-
actions in Normal and Tumor cases.

Lastly, duplicate interactions are removed from the net-
works for both Normal and Tumor cases. This removal is done
by removing one of the interactions from the following pairs
(gj <> − <> gi and gi <> − <> gj), (gj <> −|gi and
gi|− <> gj), (gj |− <> gi and gi <> −|gj) and (gj | − |gi
and gi| − |gj). Figure 7 shows one such network after com-
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Deviations in gene-gene interactions for different values of ETGN
90N-T1 80N-T1 (in 90N-T1) MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <> SFRP5, CCND1 | − |

MYC, DACT3 <> −| CCND1, MYC | − | CD44 (in 80N-T1) SFRP5 <> − <> SFRP2, MYC
| − | CCND1

70N-T1 (in 90N-T1) DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <>
SFRP5, CCND1 | − | MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC | − | CD44 (in
70N-T1) SFRP5 <> − <> SFRP2, MYC | − | CCND1

60N-T1 (in 90N-T1) DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <>
SFRP5, CCND1 | − | MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC | − | CD44 (in
60N-T1) SFRP5 <> − <> SFRP2, MYC | − | CCND1

50N-T1 (in 90N-T1) CD44 |− <> DKK3-1, SFRP1 <> −| DKK3-2, CD44 | − | DKK4, DACT3 <> −|
DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DKK3-1 <> − <> SFRP1, DKK4 |− <>
SFRP1, SFRP2 <> − <> SFRP5, DACT1 <> −| WIF1, CCND1 | − | MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC | − | CD44 (in 50N-T1) SFRP1 <> − <> DKK3-1, CD44
| − | DKK3-2, SFRP1 <> −| DKK4, DKK3-2 |− <> SFRP1, SFRP5 <> − <> SFRP2, MYC
|− <> SFRP2, CCND1 |− <> SFRP2, CD44 | − | SFRP4, MYC | − | CCND1

Table 5 Tabulated missing gene gene interactions of figure 7 using MPBK+EI obtained in case of Normal samples. Interactions found in
Normal samples with 80%, 70%, 60% and 50% effect that are not found with 90% and vice versa have been recorded. Here, the symbols
represent the following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be
reversed, ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in
tumor and | − | in normal became <> − <> in tumor.

plete interaction construction, inference and removal of dupli-
cate interactions in using Normal test samples with ETGN of
90% in MPBK+EI . For the case of Tumor test samples with
ETGN 90% in MPBK+EI , only the reversal of interactions
need to be done. Table 4 represents these interactions in tabu-
lated form.

Finally, different networks were generated by varying the
effect of TRCMPLX (ETGN) and compared for the nor-
mal test samples. Table 5 represents the different interactions
that were preserved in network from ETGN 90% with respect
to networks obtained from ETGN with values of 80%, 70%,
60% and 50%. It was found that most of the genetic interac-
tions depicted in figure 7 were found to be preserved across
the different variations in ETGN as shown in table 5. Out of
the total n genes which construct a fully connected graph of
n×(n−1)

2 , it was observed that lesser number of interconnec-
tions were preserved. This preservation indicates towards the
robustness of the genetic contributions in the Wnt signaling
pathway in both normal and tumor test samples. Note that
these observations are made from static models and dynamic
models might reveal greater information.

4 Future Work

In context of the above observations, dynamic models might
reveal greater information regarding the psychophysical laws.
Work by Goentoro and Kirschner16 employs sensitivity anal-

ysis methods to reveal such laws by tuning single parameters.
Future work might involve deeper study of the phenomena
based on multi-parameter setting in a dynamic bayesian net-
work model. Regarding the robustness of the gene-gene inter-
action network, the current work employs a very simple algo-
rithm to construct the network and infer preserved interactions
across the range of values set for a particular parameter. This
helps in eliminating interactions that do not contribute enough
biological information in the pathway or are non existant and
require further analysis by integration of more data. Work in
these lines would require incorporation of bigger datasets.

5 Conclusion

In this preliminary work via sensitivity analysis, the varia-
tion in predictive behaviour of β-catenin based transcription
complex conditional on gene evidences follows logarithmic
psychophysical law crudely, implying deviations in output
are proportional to increasing function of deviations in input
and show constancy for higher values of input. This points
towards stability in the behaviour of transcriptional activity
downstream of the Wnt pathway. As a further development,
this stability might reflect the preserved gene gene interactions
of the Wnt pathway inferred from conditional probabilities of
individual gene activation given the status of another gene ac-
tivation derived using biologically inspired Bayesian Network.
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