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Abstract1

The brown rat, Rattus norvegicus, is both a notorious pest and a2

frequently used model in biomedical research. By analysing genome3

sequences of 12 wild-caught brown rats from their ancestral range in4

NE China, along with the sequence of a black rat, R. rattus, we in-5

vestigate the selective and demographic forces shaping variation in the6

genome. We estimate that the recent effective population size (Ne)7

of this species = 1.24 × 105, based on silent site diversity. We com-8

pare patterns of diversity in these genomes with patterns in multi-9

ple genome sequences of the house mouse (Mus musculus castaneus),10

which has a much larger Ne. This reveals an important role for varia-11

tion in the strength of genetic drift in mammalian genome evolution.12

By a Pairwise Sequentially Markovian Coalescent (PSMC) analysis of13

demographic history, we infer that there has been a recent population14

size bottleneck in wild rats, which we date to approximately 20,00015

years ago. Consistent with this, wild rat populations have experienced16

an increased flux of mildly deleterious mutations, which segregate at17

higher frequencies in protein-coding genes and conserved noncoding18

elements (CNEs). This leads to negative estimates of the rate of adap-19

tive evolution (α) in proteins and CNEs, a result which we discuss in20

relation to the strongly positive estimates observed in wild house mice.21

As a consequence of the population bottleneck, wild rats also show a22

markedly slower decay of linkage disequilibrium with physical distance23

than wild house mice.24

Introduction25

Comparative genomics became possible between human and mouse with26

the publication of the mouse genome (Mouse Genome Sequencing Consor-27

tium, 2002), leading to many important new findings, including estimates28
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of the fraction of conserved nucleotide sites, corroboration of downwardly1

revised estimates of protein-coding gene number, and the discovery of ul-2

traconserved non-coding elements (Bejerano et al., 2004). Genome sequenc-3

ing of single individuals naturally led to population genomics, pioneered in4

Drosophila simulans (Begun et al., 2007). This allows detailed inferences5

to be made concerning many important questions in evolutionary genetics,6

including the demographic history of populations (Li and Durbin, 2011), the7

nature and frequency of adaptive evolution (e.g., Hernandez et al., 2011; Sat-8

tath et al., 2011), and the causes of the correlation between recombination9

rate and neutral diversity (Cai et al., 2009).10

Much population genetics has traditionally relied on comparing nucleotide11

polymorphism in one species to divergence from another. With decreas-12

ing sequencing costs, comparative population genomics - the comparison of13

multiple genome sequences from different species - has now become possi-14

ble. This allows reciprocal analysis of polymorphism versus divergence. For15

example, the McDonald-Kreitman test (McDonald and Kreitman, 1991) for16

estimating the relative extent of adaptive evolution, uses polymorphism in17

one species (A) and the divergence between two species (A and B). From the18

assumptions of the test, including a stable demography since the divergence19

between the two species, the reciprocal estimate should yield the same re-20

sult. A significant difference in the estimates could, therefore, indicate that21

an evolutionary important demographic change has occurred since the split.22

For such a reciprocal analysis to be biologically meaningful, the species need23

to be closely related, but not so closely related that they share a substantial24

fraction of nucleotide polymorphism that originated prior to the split be-25

tween the species. This condition is comfortably met in the case of our focal26

species, wild brown rats and mice, which are thought to have diverged at27
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least 12MYA (Benton and Donoghue, 2007), equating to at least 24 million1

generations.2

One of the primary determinants of the efficacy of selection across the3

genome is the strength of genetic drift. The rate of drift is inversely propor-4

tional to the effective population size (Ne), which represents the size of an5

ideal population that would display the observed amount of drift. Ne pre-6

dicts a number of fundamental properties of natural populations, including7

the amount of genetic variation (Ne× mutation rate (µ)), the rate at which8

linkage disequilibrium (LD) is broken down (Ne× recombination rate (r))9

and the strength of selection (Ne× selection coefficient (s)). For example,10

theory predicts that if the scaled selection coefficient is below one (Nes < 1)11

genetic drift will dominate over selection, rendering such mutations ‘effec-12

tively neutral’. The proportion of such mutations is therefore predicted to13

increase across the genome through demographic processes that reduce Ne,14

such as fluctuating population size or bottlenecks. The interaction between15

genetic drift and selection can be manifest in a number of different ways,16

including an increase in the fraction of mutations in functional regions that17

behave as slightly deleterious or a lower rate of adaptive evolution.18

In this paper, we compare a population genomic dataset of wild brown19

rats with a previously published dataset from wild house mice (Baines and20

Harr, 2007; Halligan et al., 2013) and investigate the differential effects of21

drift on the genomic signature of selection acting in protein-coding and con-22

served non-coding DNA in the genome. The effective population size in our23

focal population of wild house mice (Mus musculus castaneus) is nearly two24

orders of magnitude higher than recent Ne for human populations and sub-25

stantially higher than that of inbred lab strains (Salcedo et al., 2007; Baines26

and Harr, 2007; Phifer-Rixey et al., 2012). Halligan et al. (2013) inferred27
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that the protein-coding and conserved noncoding elements (CNE) evolved1

more rapidly than the neutral theory expectation, suggesting that there has2

been substantial genome-wide adaptation in proteins and CNEs of wild mice.3

Moreover, they found reductions in neutral diversity around protein-coding4

exons and CNEs, indicative of frequent selective sweeps and/or background5

selection. In contrast, despite a presumably large contemporary census pop-6

ulation size in wild brown rats (Rattus norvegicus), it has been estimated7

that their Ne is five-fold smaller than wild house mice (Ness et al., 2012).8

The difference in the Ne between mice and rats provides an opportunity to9

investigate the effects of genetic drift in the mammalian genome and the10

way in which selection and drift interact to shape patterns of diversity in11

the genome.12

Using whole genome data from 12 rats collected from their ancestral13

range in NE China and a comparable dataset in wild house mice, we ask14

a number of questions (1) Does reduced Ne in rats lead to reduced efficacy15

of selection on new mutations affecting protein or CNE sequence? (2) How16

does the effect of hitchhiking differ between mice and rats and how does this17

compare between protein-coding exons and conserved non-coding elements?18

(3) Does reduced Ne in rats influence the extent of LD? (4) What can19

patterns of DNA polymorphism tell us about the recent demographic history20

of wild brown rats? We find strong evidence for a population bottleneck that21

has distorted the distribution of allele frequencies throughout the genome22

and altered patterns of LD in wild rats. We also find evidence for a higher23

frequencies of segregating deleterious mutations in wild rats, consistent with24

a reduction in the efficacy of purifying selection. However, neutral diversity25

reductions around protein-coding exons follow a virtually identical pattern in26

the two species, suggesting that selection has had similar effects on diversity27
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at sites linked to exons, and that these patterns are insensitive to recent1

changes in Ne.2

Results3

Inference of selective forces operating in protein-coding genes4

and CNEs5

As a first step to quantify and compare the selective forces acting on vari-6

ation in the wild rat genome, we computed nucleotide diversity (π) within7

brown rats, nucleotide divergence (d) from the house mouse and black rat,8

and Tajima’s D for different classes of sites. We focused on two classes9

of conserved sequences: protein coding exons and CNEs. In exons, 0-fold10

degenerate sites are under the strongest selection, as any nucleotide change11

would result in an amino acid substitution. The 4-fold degenerate sites, on12

the other hand, are typically seen as a neutral standard for these, as mu-13

tations at these sites do not result in amino acid changes. CNEs are not14

translated to proteins, so we consider all sites within CNEs as potentially15

under selection for the purpose of our analysis. As a neutral standard we16

use CNE flanking sequence at a distance of at least 500 bp with the same17

total length as the element (following Halligan et al., 2013).18

Both nucleotide diversity and divergence from the outgroups reflected19

this expected ranking of selection strength (fig. 1, supplementary table S1,20

see also figs. S1, S2, S3, S4). Diversity was lowest at 0-fold sites (0.045%),21

followed by CNEs (0.097%), 2-fold sites (0.112%), 4-fold sites (0.147%) and22

highest in CNE flanks (0.157%). Divergence from the mouse reference se-23

quence (mm10) followed the same rank order (3.1%, 7.1%, 10.9%, 14.2% and24

15.4%). In line with this, Tajima’s D was similar for 0-fold sites and CNEs25
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(-0.43 and -0.41, respectively) and values for these sites were lower than1

at 2-fold sites, 4-fold sites and CNE flanks (-0.27, -0.23 and -0.22, respec-2

tively). Although all of these values are negative (implying a slight excess3

of low-frequency variants), they are much closer to zero than what was pre-4

viously found in wild mice. A recent population bottleneck would affect the5

genome wide diversity spectrum in a way that produces less negative, or6

even positive, Tajima’s D. Additionally, π/d was higher for 0-fold sites and7

CNEs than for the other classes (0.015 (0-fold), 0.014 (CNEs), 0.010 (other8

classes)). This pattern is expected if there are slightly deleterious mutations9

affecting 0-fold sites and CNEs, since they are expected to contribute more10

to π than to d.11

We then estimated distributions of fitness effects (DFE) of new mutations12

using the program DFE-α (Keightley and Eyre-Walker, 2007) and compared13

the results to previous estimates from wild house mice (Halligan et al., 2013)14

(fig. 2). DFE-α compares the folded site frequency spectra (SFSs) of two15

classes of sites, one neutrally evolving and one under selection, to assess16

the DFE. It uses that mutations are purged faster from the selected sites17

when they are more deleterious. In line with theoretical expectations for18

a smaller Ne in the rat, we inferred that there is a substantially larger19

proportion of mildly deleterious mutations (Nes < 1), 0.29 and 0.58 in exons20

and CNEs, respectively, than in the same classes in wild mice (0.17 and 0.44,21

respectively). Concordantly, the proportions of highly deleterious mutations22

(Nes > 10) were lower in the rat (exons: 0.65 and CNEs: 0.29) than in the23

mouse (0.77 and 0.37, respectively). The presence of a higher fraction of24

slightly deleterious mutations is consistent with the increased values of π/d25

that we found for exons and CNEs.26

We also attempted to estimate the fraction of nucleotide differences in27
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exons and CNEs driven to fixation by positive selection (α) and the rate of1

adaptive substitution relative to the rate of neutral substitution (ωa). For2

this we used an extension of the McDonald-Kreitman test incorporated into3

DFE-α (McDonald and Kreitman, 1991; Eyre-Walker and Keightley, 2009).4

This subtracts the number of fixed nucleotide substitutions (relative to the5

mouse) in the selected class of sites that is expected from the fixation of6

neutral and deleterious mutations alone from the actual number of substi-7

tutions. The remainder is contributed to positive selection. We consistently8

obtained negative estimates for α and ωa for both exons (table S2). As we9

discuss below, these negative estimates likely reflect a recent population size10

bottleneck.11

Reduced diversity around exons and CNEs12

Selection operating within CNEs and exons is also expected to affect nu-13

cleotide diversity in closely linked surrounding sequences as a consequence of14

selective sweeps (Maynard Smith and Haigh, 1974) or background selection15

(Charlesworth et al., 1993). We therefore investigated diversity statistics in16

exonic (up to 100 kb) and CNE (up to 20 kb) flanking regions, and again17

compared our results with those previously obtained in wild house mice18

(Halligan et al., 2013) (fig. 3). Although wild house mice have much higher19

diversity than what we observe in the rat, the relative reduction in diversity20

in exon flanks was remarkably similar in both species. The reduction in di-21

versity (π and π/d) around CNEs, on the other hand, was less pronounced22

in rat. Moreover, in the bins directly adjacent to the CNEs, we found an23

increase of π/d, coinciding with a less strong reduction of π than in mouse24

at these strongly conserved sites.25

The reduction of π and d in the CNE flanks appears to exist on two26
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length scales: a strong reduction that decays over ∼500 bp and a second less1

pronounced reduction that decays over tens of kb. We therefore investigated2

to what extent this second length scale could be the result of the proximity of3

CNEs to exons. We first computed the distribution of distances from CNEs4

to the nearest exon (figs. S5, S6). Due to the power law-like distribution5

of distances between neighbouring exons, bases tend to “cluster” around6

exons; this means that more bases are located as a particular short (e.g.7

10 bp) distance from the nearest exon than at a particular large distance8

(e.g. 100 kb) from it (fig. 3G). Taking this into account, there remains a9

two-fold overrepresentation of CNEs near exons (fig. S5). Yet when we10

used the distribution of distances from CNEs to their nearest exon (fig.11

S6) to convolute (≈ blur; see methods) the exon flanks, the resulting slope12

“far away” from the CNEs, i.e., fitted between 5 and 20 kb away, was much13

shallower than the long length scale in the CNE flanks (fig. S7). This implies14

that the proximity to exons of many CNEs can only explain a small part of15

the long length scale we observed in the decay of π in CNE flanks.16

LD decay in rat and mouse genomes17

To gain an understanding of the striking similarity of the diversity reduc-18

tions in the exon flanks between rat and mouse and the less similar patterns19

in CNE flanks, we investigated the decay of linkage disequilibrium (LD)20

around focal SNPs in wild rats and mice. For this, we computed the pair-21

wise genomic r2 (Rogers and Huff, 2009), and averaged over all SNPs at a22

particular distance from each focal SNP (using a bin size of 20 bp). As focal23

SNPs, we used either all SNPs, SNPs within exons or SNPs within CNEs24

(fig. 4AB).25

In wild house mice, average r2 (written
〈
r2
〉
) decayed much faster than26
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in wild rats, and the peak value was lower, consistent with the larger Ne1

in mice. To quantify the difference, we first fitted exponential functions to2

the decay of
〈
r2
〉

with physical distance: f(x) = (a − c) × exp(−x/b) + c.3

For our purposes, characteristic length b is the biologically most important4

parameter, as this is the distance over which the relevant information,
〈
r2
〉
−5

c, decays by a factor 1/e (to ∼37% of its original value). Maximum value a is6

the intercept and c is the offset, which has a theoretical minimum of 1/(n−1)7

for a sample of n individuals (see supplementary text 2) and increased with8

decreasing Ne (Hill, 1981).9

We found that it was impossible, however, to obtain a good fit with this10

kind of curve (fig. 4C). The structure of the residuals of the best fitting11

curves (fig. S8AB) suggested that LD (
〈
r2
〉
) decays first faster, then slower12

than exponential, which is a property of a stretched exponential g(x) =13

(a−c)×exp(−(x/b)d)+c, with stretching exponent 0 < d < 1. See discussion14

for the biological meaning of d. We obtained good fits to the data with this15

formula (figs. 4D, S9, table S3A). The rat:mouse ratios of c−1/(n−1) were16

all larger than 1, consistent with a larger Ne in mouse.17

We fitted all curves again with a fixed stretch exponent of d = 0.5 to allow18

a more direct comparison of the characteristic length parameters b (figs. 4D,19

S9, table S3B). This effectively exploits the fact that stretched exponentials20

are notoriously hard to fit to our kind of data. By these means, we found21

that LD decays 6-7 times faster in mouse than in rat (rat:mouse ratios of b:22

7.14 exons; 6.31 CNEs “noOverlap”; 5.96 CNEs “strict”; 5.76 all SNPs).23

Recent bottleneck in the rat population24

The preceding analysis provides several lines of evidence for a recent pop-25

ulation size bottleneck in wild rats: the much lower diversity than in wild26
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mice (figs. 1B, 3), the negative estimates of α and ωa (table S2), the values1

of Tajima’s D (fig. 1A) that are much larger than in mice and near zero for2

some functional categories of exons.3

To further investigate the possibility of changes in population size, we4

used the method of Li and Durbin, PSMC, (Li and Durbin, 2011) to infer5

population history based on the length distribution of genome stretches that6

are identical by state. Based on the non-CpG prone sites, the 12 rat genomes7

showed a 3-fold decline in Ne up to 10,000 – 20,000 YA (fig. 5).8

A similar trend was found using all sites (i.e., including the CpG-prone9

sites and adjusting mutation rates accordingly; fig. S10), using a different10

published mutation rate for rat of µ = 4.2 × 10−9 (Ness et al., 2012) (fig.11

S11B) and by varying the parameter (md) of the proximity filter (fig. S11),12

which is the filter that had most impact information used by PSMC, i.e.,13

the distribution homozygous runs (HHn from MacLeod et al., 2013, see fig.14

S12). For more details, see supplementary text 3.15

From this we conclude that the rat genomes contain a strong and robust16

signal for a bottleneck between 10,000 and 50,000 YA. The actual bottleneck17

may have been sharper than the PSMC traces show – and, if it has been18

fairly short, also more severe – as simulations have shown that PSMC has19

a tendency to smoothen sharp transitions (Li and Durbin, 2011).20

Discussion21

Previous work suggests that wild brown rats have a much lower effective22

population size than wild house mice (Ness et al., 2012). Re-estimating23

the mutation rate based on our measured divergence from mouse at 4-fold24

degenerate sites (14.2%), assuming a divergence time of 12 MYA (Benton25

and Donoghue, 2007) and 2 generations per year (Halligan et al., 2013;26
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Ness et al., 2012), yields µ = 2.96 × 10−9(2.94 × 10−9 − 2.98 × 10−9).1

Equating π at 4-fold degenerate sites to 4Neµ, we obtain an estimate of2

Ne = 1.24 × 105(1.20 × 105 − 1.28 × 105), marginally smaller than the3

1.3 × 105 estimate previously published. We obtained a very similar Ne4

estimate using divergence and diversity from our other neutral class, the5

CNE flanking sites: Ne = 1.22 × 105 (1.21 × 105 − 1.23 × 105) (and µ =6

3.21× 10−9 (3.20× 10−9 − 3.23× 10−9)).7

From our PSMC demographic inference we obtain a minimum Ne of8

approximately 4× 104 at 2× 104 years ago and a 3-4 times larger ancestral9

size (i.e., the most ancient Ne that can be detected with this method). The10

Ne estimate based on silent site diversity lies between these values, which is11

likely explained by the fact that it is affected by the whole recent population12

history. An effective population size of 4×104 appears small for the present13

day, given the abundance and widespread distribution of brown rats, and the14

small amount of population structure that appears to be present in wild rat15

brown populations (Ness et al., 2012). However, it is likely that the effective16

size of the brown rat population has increased dramatically since the origins17

of human agriculture, which provided them with a large and stable source18

of food. None of the methods we have used, however, can reliably estimate19

contemporary Ne.20

Negative estimates of the rate of adaptive molecular evolution21

Conceptually, the rate of adaptive molecular evolution should always be a22

positive number. We now review the computational method to explain how23

a recent population bottleneck – as suggested by the unusually high values24

of Tajima’s D (fig. 1) and the PSMC demographic inferences (fig. 5) – could25

cause negative estimates of α, the fraction of substitutions driven to fixation26
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by positive selection. ωa, the rate of adaptive substitution relative to the1

rate of neutral substitution, is defined such that it inherits the sign of α2

(Eyre-Walker and Keightley, 2009) OR (Halligan et al., 2013).3

To estimate α (and ωa), DFE-α subtracts an estimate of the fraction4

of (slightly) deleterious substitutions in the selected class (e.g., 0-fold sites)5

from the total number of substitutions in the selected class, and assumes that6

the remaining substitutions have been positively selected. To estimate the7

(slightly) deleterious fraction, the inferred DFE is used along with a single8

effective population size (weighted over the whole evolutionary time period9

under analysis), and the selected (e.g., 0-fold) and neutral (e.g., 4-fold) di-10

vergence from an outgroup. This implicitly assumes that the strength and11

effectiveness of selection (i.e., the DFE) were constant over the evolutionary12

time period under analysis (Eyre-Walker and Keightley, 2009). A recent13

population size bottleneck is expected to cause an over-representation of14

slightly deleterious mutations in the polymorphism data used to infer the15

DFE, which will therefore increase the predicted divergence in the selected16

site class. This implies that the DFE-α method, and all other similar im-17

plementations of the McDonald-Kreitman test, will tend to under-estimate18

the rate of adaptive evolution if there has been a recent population bottle-19

neck. At the heart of this problem lies the fact that divergence is built up20

continually from the moment the two lineages split (in this case 12 MYA),21

whereas polymorphism only reflects a limited window of recent evolution-22

ary history (4Ne generations). As the size of this window is dependent on23

Ne, pre-bottleneck information is rapidly lost from polymorphism data as24

a consequence of a severe bottleneck. Analysing data from species with25

shorter divergence times may mitigate the impact of long term population26

size changes, albeit at the expense of power. Using R. rattus as an outgroup27
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could not mitigate the problem, as the split between both rat species is ∼2.91

MYA (Robins et al., 2008), i.e., long before the bottleneck we inferred from2

our data. Consistently, we again obtained negative estimates of α and ωa3

(table S2).4

Decay of LD with physical distance5

We inferred that there is a roughly 6-7 fold faster LD decay in wild mice6

than wild rats as a function of physical distance in the genome by fitting7

stretched exponential functions of the form (a− c)× exp(−(x/b)d) + c. This8

is consistent with a recent population size bottleneck, as confirmed using9

different information such as our PSMC analysis. We found that a stretched10

exponential including an offset was needed to obtain a satisfactory fit to the11

data, whereas a single exponential gave a poor fit (figs. 4, S9).12

A stretched exponential can be obtained by summing over a large number13

of single exponentials with various exponents (parameter b in our functions),14

(e.g., Johnston, 2006). Assuming that the recombination rate is constant15

over the genome, population genetic theory predicts that LD (
〈
r2
〉
) decay16

follows a single exponential (Charlesworth and Charlesworth, 2010), which17

can be offset by the theoretical minimum for the sample size (1/(n− 1), see18

supplementary text 2) + a residual offset for the expected genome wide LD19

due to finite population size (Laurie-Ahlberg and Weir, 1979; Hill, 1981).20

The single exponential would also fit if fluctuations in recombination rate21

average out over sufficiently short distances.22

Previous estimates of the recombination rate in rat and mouse (Jensen-23

Seaman et al., 2004), however, showed evidence of fluctuations on a scale of24

much more than 10 Mb, i.e., larger than our window for calculating
〈
r2
〉
,25

and also showed evidence for variation in whole chromosome average recom-26
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bination rate. This variation could explain the requirement for a stretched1

exponential. As the major fluctuations in the reported data for mouse and2

rat are on the same length scale, this also explains that we found smaller val-3

ues of the stretch exponent d for mouse than for rat (table S3A): the smaller4

the relevant window for LD decay, the larger the variation in the (weighted)5

average recombination rate over the window. The roughly 6-7 fold faster6

LD decay in mouse also explains why the relative differences among classes7

(exons, CNEs, all data) of the fitted values are larger in mouse.8

In principle, the fitted value of the offset c minus its theoretical minimum9

carries information about Ne (Laurie-Ahlberg and Weir, 1979; Hill, 1981).10

With our window length and limitations on resolution close to the focal SNP,11

however, it is impossible to obtain a reliable estimate of the stretch exponent12

d or the offset c independently. We, therefore, refrain from estimating Ne13

in this way.14

Reductions of nucleotide diversity around protein-coding ex-15

ons and CNEs16

A striking finding from our study is the extremely similar proportional re-17

ductions in mean scaled neutral nucleotide diversity around protein-coding18

exons in wild rats and in wild house mice (fig. 3). The depth, width and19

shape of the reductions in diversity are all similar. The drops in diversity20

are presumably caused by the hitchhiking effect of selection on variants in21

protein-coding exons, which reduces diversity in tightly linked flanking re-22

gions. The previous analysis of the pattern of diversity reduction in wild23

house mice suggests that there is a substantial role for selection of advanta-24

geous mutations, whereas a background selection model alone appears to be25

incapable of explaining the width of the observed mean diversity reduction26

15
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(Halligan et al., 2013). The question then arises as to whether these similar1

patterns around exons in the two species can be reconciled with the differ-2

ence in the effectiveness of selection between the species (caused by lower3

Ne in rats) and the presence of substantially greater LD in rats than in4

mice. If diversity at linked sites is reduced by selection of newly arising ad-5

vantageous mutations in exons of large selective effect(s) that go to fixation6

in both species (i.e., classic selective sweeps such that Nes � 1), and the7

rate and strength of advantageous mutations and the rate of recombination8

per physical distance are the same in the two species (0.555 cM/Mb in rat9

and 0.528 cM/Mb in mouse (Jensen-Seaman et al., 2004)), then equivalent10

patterns of diversity reduction are predicted, and these are not expected to11

depend on Ne or LD (Maynard Smith and Haigh, 1974). A similar argument12

can be made for the case of background selection (BGS) involving strongly13

deleterious mutations (Nordborg et al., 1996). Alternatively, if diversity re-14

ductions are caused by positive selection on standing variation, the pattern15

of diversity reduction is expected to depend on the effective population size16

during the phase in which a variant can rise to a high frequency by drift,17

and subsequently be positively selected to fixation (Przeworski et al., 2005).18

Specifically, a higher Ne increases the difference between the pattern of di-19

versity change seen under a classic sweep model and a model of standing20

variation. The similarity of the diversity reduction patterns surrounding21

protein-coding exons we observe between mice and rats, species which differ22

substantially in recent Ne, is therefore indirect evidence in favour of the23

classic selective sweeps model.24

Narrower and shallower scaled diversity reductions in the regions sur-25

rounding CNEs are also present, but these have somewhat different patterns26

in mice and rats (fig. 3). Specifically, diversity reductions are shallower in27

16
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rats and diversity returns to a genomic background level more slowly in rats1

than mice. It was previously shown in mice that the diversity reductions can2

be explained by a BGS model, although a role for positive selection was not3

excluded (Halligan et al., 2013). If diversity reductions are mainly caused4

by BGS, a weaker effect is expected in rats than mice if there are substantial5

numbers of CNE mutations which have selective effects < 1/Ne in rats and6

> 1/Ne in mice, because these would behave as nearly neutral in rats and7

therefore have a smaller influence on linked neutral diversity than in mice.8

This is consistent with our estimates of the DFE in the two species, which9

suggest that there are substantially more deleterious mutations in CNEs10

with selective effects < 1/Ne in rats than mice (fig. 2).11

Conclusion12

We have conducted a whole genome polymorphism study to quantify the13

selective forces shaping recent wild brown rat evolution and compared our14

findings to a similar study in wild house mice. We found a larger proportion15

of slightly deleterious mutations in rats than in mice for both protein-coding16

exons and CNEs, in line with the theoretical expectation for a larger Ne in17

mice. The data also shows evidence for a recent population bottleneck in18

rats, which we dated at roughly 20,000 years ago using a PSMC analysis,19

followed by a likely explosion of population size starting roughly at the same20

time as the rise of agriculture in humans. The population size bottleneck21

distorted the allele frequency distribution, leading to unusually high, but still22

negative, Tajima’s D values, and led to substantially more LD than observed23

in wild mice. Strikingly, however, we found a very similar pattern in the24

reduction of π/d in the tens of kbs flanking protein-coding exons, which are25

consistent with recurrent selective sweeps on newly arising advantageous26

17
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mutations.1

Methods2

Samples3

We obtained genomic DNA from 22 wild R. norvegicus trapped in a ∼500-4

km2 area around the city of Harbin, Heilongjiang Province, China in 20115

(Ness et al., 2012) from locations a minimum of 100 m apart to avoid sam-6

pling of closely related individuals. We selected 12 of these individuals for7

whole-genome sequencing. DNA from one individual black rat (R. rattus)8

that died of natural causes was obtained from Bristol Zoo’s colony.9

Sequencing10

Genomic DNA was extracted from a small piece of kidney tissue. Standard11

Illumina 100bp PE libraries for the HiSeq sequencer with an insert size of12

approximately 450bp were prepared according to manufacturers recommen-13

dations. The Illumina sequencing was performed at the Wellcome Trust14

Sanger Institute. We obtained a modal coverage of 19x – 46x per sample15

for R. norvegicus and 33x for R. rattus (table S4). Reads were aligned to16

the rn5 reference (from Ensembl release 71) using BWA version 0.5.10-mt Li17

and Durbin (2009). All lanes from the same library were then merged into18

a single BAM file using Picard tools (http://picard.sourceforge.net)19

and PCR duplicates were marked using Picard tools ’MarkDuplicates’. Fi-20

nally, the library BAM files were merged into a single BAM containing all21

sequencing reads for that sample.22

18
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SNP calling and filtering1

We used the Genome Analysis Toolkit (GATK) UnifiedGenotyper version2

2.8-1-g932cd3a for SNP calling (DePristo et al., 2011), using the following3

non-default arguments: output mode: emit all confident sites; genotype4

likelihoods model: both; stand emit conf: 10. By choosing the latter pa-5

rameter value, we obtained information about sites called with relatively6

low confidence, which were filtered subsequently, as described below.7

Before SNP calling, we first performed indel realignment using GATK8

IndelRealigner with default parameters on the BAM files containing the9

aligned reads simultaneously on all 12 samples. There is a SNP database10

available for R. norvegicus from Ensembl, but this contains only 10% of11

the putative variant sites in our data (estimated from release 71, ftp://ftp.12

ensembl.org/pub/release-71/variation/vcf/rattus_norvegicus/). Re-13

calibrating bases using a limited SNP data set after realignment may have14

introduced a significant bias, so we did not do this. It has been shown,15

moreover, that the combination of local realignment and base recalibration16

is likely to result in biased SNP calls (Guo et al., 2012). We used all putative17

indels from a first round of SNP calling to mask all sites near putative indels18

(for deletions: deleted bases + 1 base on either side; for insertions: insert19

length + 1 base on either side of insertion point). We also performed a20

second round of SNP calling using the same parameters (and GATK version21

2.7-4-g6f46d11), but without the indel realignment step. We filtered out22

putative SNPs that did not appear in both sets. Both these steps were done23

because BWA (and any other alignment algorithm) is prone to introduce24

false SNPs near indels, particularly in low complexity regions (as described25

in the online GATK documentation). This occurs because the penalty for26

introducing a small number of false SNPs may be lower than the penalty27

19
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for introducing a gap, and is most likely to occur close to sequencing read1

ends.2

We further filtered sites that had a GATK quality score QUAL<23. This3

threshold was chosen post hoc, based on the distribution of scores of invari-4

ant sites. Our samples contained a very small fraction of invariant sites with5

QUAL <24, above which the density increases markedly (fig. S13). Choos-6

ing our threshold just below this value therefore allows filtering on quality7

without introducing substantial bias against invariant sites. We excluded all8

sites that had an inbreeding coefficient F<-0.8. GATK only computes F for9

a site if at least 10 samples are called at that site (online GATK documenta-10

tion). Using this threshold for F, all sites that have exclusively heterozygous11

individuals are excluded, which is a strong indication of paralogous reads12

mapping to the same region. Following common practice, we filtered out13

high and low coverage regions, since such regions are prone to SNP calling14

errors. We exploited the fact that we have 12 samples by applying relatively15

lenient bounds on a per sample basis (between 25 and 300% of the sample’s16

modal coverage) and using much stricter bounds on the average normalized17

coverage (between 50 and 140%). The latter bounds were derived from the18

distribution of autosome wide average coverages (fig. S14). There was more19

than a factor of two difference between the highest and lowest modal cov-20

erage, so we used each individual sample’s modal coverage, computed from21

the whole autosome, for normalizing coverage. Throughout our analyses,22

we only considered sites that had at least 3/12 samples called after filtering.23

In some analyses we applied a “proximity filter” that removed all variant24

sites less than md = 5 bp from another variant site, regardless of site qual-25

ity. The filter does appear to cause a large number of false negatives, so we26

applied it only to analyses that are highly sensitive to false positives. The27
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proximity filter had a stronger impact on π and D than the precise selection1

criteria for exons/ CNEs, but had little impact on divergence statistics (figs.2

S1, S2, S3, S4). It never affected the rank order of different classes of sites.3

For the R. rattus outgroup we used the same SNP calling pipeline, with4

the following exceptions: 1) we applied indel realignment to the R. rattus5

genome, aligned to the rn5 reference, in isolation. 2) we used a minimum6

base quality cutoff of 13 rather than the GATK default 17, based on an7

analysis of GC content and average base quality using Picard tools Col-8

lectGcBiasMetrics. 3) we used a minimum QUAL cutoff of 30, which was9

determined in the same way as for the R. norvegicus data, and is higher10

because of the higher modal coverage of 33x in the R. rattus sample. 4) we11

masked sites near indels using the R. rattus putative indels. 5) we required12

that sites have a normalized coverage between 40% and 200% of the R. rat-13

tus modal coverage. We have only one R. rattus sample, so filtering against14

likely paralogs based on Hardy-Weinberg frequencies was not possible.15

CpG-prone sites, defined as sites preceded by a C or followed by a G,16

were identified based on the rn5 and mm10 reference sequences as well at17

the R. norvegicus and R. rattus samples. We excluded sites that were CpG-18

prone in any of these sequences from several of our analyses, because the19

hypermutability of the CG dinucleotide strongly violates the assumption of20

a uniform mutation rate across the genome, which is commonly made in21

the theory underpinning many population genetic analyses. Exclusion of22

CpG-prone is an effective way of removing this source of hypermutability23

(Gaffney and Keightley, 2008).24

The R. norvegicus sample consists of four males and eight females. For25

consistency in filtering and statistics, we restricted all our analyses to auto-26

somes, and excluded unplaced contigs.27
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Exons1

We used the Ensembl Rnor5.0.73 annotation file to obtain the locations of2

exons. We confined our analysis to exons that are part of complete tran-3

scripts, i.e., starting with a start codon, terminated by a stop codon and4

containing no premature stop codons. The annotation file contains 25,7255

transcripts, 20,278 of which are complete: 19,530 on the autosomes, 6976

on the X chromosome, 9 on the mitochondrial genome and 42 on unplaced7

contigs.8

Exonic sites were analyzed only if they were consistently 0-fold, 2-fold,9

or 4-fold degenerate over all annotated transcripts in the rat annotation,10

based on computational translation of all canonical and non-canonical tran-11

scripts in R. norvergicus containing the site. Sites with inconsistent de-12

generacy (e.g., a site that is 4-fold degenerate in a canonical transcript, but13

0-fold degenerate in an overlapping non-canonical transcript) were excluded.14

Confidence intervals were computed using n=1,000 bootstrap replicates by15

sampling per transcript. For details see supplementary text 1.16

Conserved noncoding elements (CNEs)17

Noncoding sequences conserved across the mammalian phylogeny, CNEs,18

were defined using phastCons on a mammal phylogeny excluding rodents19

as described in Halligan et al. (2013). This resulted in a set of elements20

comprising 5% of the genome.21

In Halligan et al. (2013), the resulting set of elements was lifted over22

from human hg18 coordinates to mouse mm9 using liftOver. Each liftOver23

step inevitably results in the loss of a subset of the elements. Simply lifting24

over the Halligan et al. (2013) set from mouse mm9 to rat rn5 might,25

therefore, result in a set biased towards higher conservation. To minimize26
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this potential bias, we used three different routes for lifting over the original1

hg18 coordinates to our rat rn5 reference: hg18 → hg19 → rn5; hg18 →2

rn4 → rn5; and hg18 → mm9 → rn5. In case of conflicts, i.e., if different3

liftOver routes placed the same element at different positions on rn5, we only4

retained those that differed by no more than 25% in length from the original5

hg18 element. If different liftOver routes resulted in partially overlapping6

elements, we retained the one with length closest to the original (fig. S15).7

From this set of elements, we removed those segments of the elements that8

overlapped with annotated exons (valid and invalid). This final set of CNEs9

we call “noOverlap”.10

To test how sensitive our results are to the precise definition of CNEs, we11

also created two slightly different sets of CNEs: “strict”: removing all ele-12

ments that have any overlap with annotated exons, not just the overlapping13

segments; and “noOverlap, <1 kb”: the noOverlap set excluding elements14

longer than 1kb. By analyzing the normalized CNE length distributions for15

different sets, we found that length distributions are very similar between16

the human, mouse and rat sets, with a slight inflation of very long elements17

in the rat (“noOverlap”) and mouse sets (fig. S15). The number of elements18

in these inflated tails was small, but because the median CNE length is very19

short, these elements, which are less strongly conserved than the average,20

could have a disproportionate impact on the within-CNE statistics. From21

the cumulative length distribution (fig. S15) it can be seen that in the human22

set, less than 1% of CNE bases occur in elements of over 1kb, whereas in the23

rat and mouse sets this is 5-6%. For this reason we used the “noOverlap,24

<1kb” set as default for the within-CNE statistics. For the CNE flanks there25

was almost no difference between both noOverlap sets, because the number26

of long (>1 kb) elements is only a very small fraction the total number (fig.27
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S16).1

As a neutral reference for the CNEs, we used sequence elements 500 bp2

upstream and downstream of the CNE, each of half the length of the CNE3

(Halligan et al., 2013). From this set we masked any segments (noOverlap)4

or elements (strict) overlapping with exons or other CNEs (from the full5

noOverlap set).6

We used a bootstrapping approach to obtain confidence intervals for the7

within CNE statistics. We subdivided the genome in 1Mb windows and8

sampled with replacement among the non-empty windows.9

Estimating the impact of exons on the diversity reduction in10

CNE flanks11

Most CNEs occur in the vicinity of exons. We hypothesized that this ex-12

plains (part of) the reduction of diversity in CNE flanks, especially farther13

away from the CNEs. As this effect is likely stronger for CNEs close to exons14

than CNEs far away from them, we “blurred” the exon flanks based on the15

distances from CNEs and compared the slopes of the CNE flanks and the16

“blurred” exon flanks using a linear fit on the data 5-20 kb away from the17

CNEs.18

The idea for the “blurring”, technically called convolution, is taken from19

image analysis and uses the same principle as simple blurring algorithms20

in common image manipulation programs. In those, each pixel of image is21

multiplied with the so called kernel, which determines how far information22

is smeared out over neighbouring pixels. In our case, we used the 100 bp23

bins with which the flanks were computed as “pixels”. Instead of a Gaussian24

kernel, that is typical for image blurring, we used the normalized distribution25

of distances of CNEs (using the “noOverlap” set) to their nearest exon (fig.26

24
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S6), up to a maximum of 200 kb, which covers >98.7% of all CNEs.1

Before convolution, the exon flanks (not using the proximity filter, i.e.,2

md=0) were padded (extended) with 200 kb of 100 bp bins containing the3

average value of π over the regions 60-100 kb away from the exons in order4

to accommodate the full width of the kernel.5

Functional annotation6

For functional annotation of transcripts, we used the eggNog version 4.07

database, downloaded from http://eggnog.embl.de/version_4.0.beta/8

downloads.v4.html on 14/01/2014 (Powell et al., 2014).9

We combined annotations at different taxonomic levels. In cases of10

conflicts, we gave preference to annotations of narrower taxonomic levels11

(e.g. rodents over mammals), with the exception of vague annotations (“R”:12

“General function prediction only” or “S”: “Function unknown”). We used13

“X” for transcripts that did not appear in the database. Of the 25,725 tran-14

scripts in the annotation file, 21,242 appeared in the database, and of those15

16,888 had a function assigned to them (i.e., not R or S). In a subsequent16

analysis we found that the group of X labeled transcripts was a consistent17

outlier compared to all other annotations on a variety of metrics. We there-18

fore repeated the within-exon analysis excluding these transcripts to assure19

that our results do not hinge on this specific subset.20

Genome-wide LD scans21

For each variant site (“focal SNP”) we computed the pairwise r2 statistic22

directly from the genotypic data (Rogers and Huff, 2009) using up to nmax23

= 1,500 neighbouring variant sites and sites up to 40 kb away from the focal24

SNP. We collected averages in bins of 20 bp. The value of nmax was chosen25
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such that it would not lead to the exclusion of sites from the analysis. This1

value allows for an average diversity of 3.75% within the 40kb, >20 times2

the average value we found at 4-fold synonymous sites and in 500 bp outside3

CNEs (fig. 1), before excluding sites. To check this, we verified that the4

number of sites in the most distant bins did not increase by further increasing5

nmax in a preliminary analysis using the entire chromosome 19. Note that6

from the highest diversity estimates reported here, the expected number7

of SNPs within 40kb would be more than an order of magnitude smaller8

than our nmax, leaving a wide margin for variation in SNP density. We9

only considered biallelic sites for which all samples were called and passed10

the default filters. Moreover, we applied the proximity filter with md=5 for11

this analysis, because without it we observed small a depression in the
〈
r2
〉

12

curves within 200 bp of the focal SNP, whereas theory predicts a monotonic13

decline (fig. S8C). This suggests that a fraction of the spurious SNPs that14

are removed by the proximity filter are of a different kind than the genuine15

SNPs, which results in a population of sites with much faster decay of
〈
r2
〉

16

than the others. Sites near indels and CpG-prone sites were not considered17

in this analysis.18

Genome wide LD scans in M. m. castaneus19

Genotypes were obtained from the VCF files generated by (Halligan et al.,20

2013). To treat the data as similarly as possible to the rat data, we calcu-21

lated modal coverage per sample from per sample coverage histograms for22

the autosome and applied the same bounds as on the R. norvegicus data:23

average normalized coverage between 50 and 140% and per sample between24

25 and 300%. We also determined quality histograms for variant and invari-25

ant sites, from which we obtained a minimum quality score of 15. Following26
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the original analysis, we disregarded sites with a χ2 score for HW equilib-1

rium ≥ 0.0002 (against paralogs) and near indels. We removed CpG prone2

sites based on CpG prone status in M. m. castaneus, M. m. famulus and3

R. norvegicus (rn4). As with the rat data, all samples had to pass all fil-4

ters. The mouse sample has a much higher sequence diversity than the rat5

sample, so to cut computational cost, and because a preliminary analysis6

showed a much faster decay of
〈
r2
〉

than in rat, we only considered sites7

up to 20 kb away from the focal site. We used nmax = 7,500, equivalent8

to 15,000 on 40kb or 10x the nmax used for rat, whereas the difference in9

diversity in regions >80 kb from exons is less than five fold. The proximity10

filter had virtually no impact on the mouse data (fig. S8C).11

Inference of population history12

We used the inference method and software Pairwise Sequentially Markovian13

Coalescent, PSMC from (Li and Durbin, 2011). For prediction of population14

size at the most recent time scales, this method is known to be sensitive to15

false positive heterozygote sites (MacLeod et al., 2013). We therefore re-16

quired that at least 10/12 individuals were called, so that inbreeding coeffi-17

cient estimates are available in the GATK output. We applied the proximity18

filter with md=5 (and md=10 for further sensitivity analysis) and at the in-19

dividual sample level we only considered calls with a genotype quality ≥ 20.20

Following (Li and Durbin, 2011), we binned the genome into 100 bp windows21

and created a fasta-like sequence consisting of the letters “K” (at least one22

heterozygous site in the bin), “T” (no heterozygous sites) and “N” (less than23

10% of sites in the bin called and remaining after filtering). These sequences24

were then directly input to PSMC using the following arguments: -N80 -25

r0.63 (for not CpG-prone only) or 1.33 (all sites) -t15 -p “2*4+18*2+4+6”.26
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These parameters differ from the defaults recommended for the analysis of1

human data in the PSMC documentation https://github.com/lh3/psmc2

in three ways. First, we used a much larger number of iterations, after find-3

ing that the default (N=25) was insufficient for convergence (convergence4

of all inferences checked in fig. S17). Second, we reduced the number of5

free parameters to prevent overfitting (default: -p “4+25*2+4+6”). Third,6

we initiated r, the ratio θ/ρ, to per base pair estimates of µ/c (default:7

r=5). Parameter t (initial value for history length in units of number of8

generations/2N0) was taken from the online documentation, claimed to give9

good results on human data. The program failed to produce meaningful10

results using a higher starting value of t=20.11

To scale the inferred demographic histories to real time, we assumed a12

recombination rate of 0.6 cM/Mb (Jensen-Seaman et al., 2004) and a com-13

bination of a generation time of 0.5 years (Ness et al., 2012) and a mutation14

rate of 2.96×10−9 per base pair (calculated from our data of divergence15

from mouse on 4-fold synonymous sites) on the data excluding CpG-prone16

sites and 5×10−9 or 8×10−9 on the full sequence data to reflect the higher17

mutation rate of CpG-prone sites. The latter mutation rate corresponds,18

for example, to a 2.7 or 5.3 times higher mutation rate, respectively, and19

CpG-prone sites taking up 40% of the genome and was chosen because it20

produced either same length genealogies (5×10−9) or had the main local21

minimum coinciding in time (8×10−9). As the model assumes that the mu-22

tation rate is constant over time and throughout the genome, we considered23

inferences based on all sequence as less reliable than those based on the24

non-CpG prone sites, but did produce them as a qualitative control. For25

details on testing the robustness of the inference, see supplementary text 3.26
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Data access1

FastQ and BAM files containing all reads aligned to the rn5 reference genome2

are deposited in the European Nucleotide Archive as study ERP0012763

http://www.ebi.ac.uk/ena/data/view/ERP001276&display=html.4
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Figure legends1

List of Figures2

1 Tajima’s D (A), diversity (B) and divergence from mouse3

(mm10; C) and R. Rattus (D) for wild R. norvegicus data.4

Error bars show 95% confidence intervals based on 1000 boot-5

strapping replicates. See supplementary material for impact6

of proximity filter, exon/CNE selection rules (figs. S1, S2, S37

and S4) and restricting analysis to sites with corresponding8

R. rattus bases (table S1). . . . . . . . . . . . . . . . . . . . . 349

2 DFE of deleterious mutations for rat exons (red), mouse exons10

(blue), rat CNEs (magenta) and mouse CNEs (cyan). Error11

bars indicate 95% confidence intervals from 1000 bootstrap-12

ping replicates. Mouse data after Halligan et al. (2013). . . . 3513
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3 Exon (A, C, E, G) and CNE (B, D, F, H) flanks. A,B: di-1

vergence between rat and mouse. C,D: Diversity (π). To fa-2

cilitate comparison of relative changes between both species,3

rat values are indicated on the left axis, mouse values on the4

right axis. E,F: π/d. G,H: Number of sites per bin. Each site5

was only counted once, in relation to its nearest exon/CNE.6

We used a bin size of 1 kb for exon flanks (up to 100 kb)7

and 100 bp for CNE flanks (up to 5 kb). Rat data in cyan,8

mouse data in red. We assessed the impact of the proximity9

filter (with md=5) on nucleotide diversity in exon and CNE10

flanks. This resulted in an overall reduction of π of ∼17% and11

some increase of the π/d spike directly surrounding the CNEs,12

without further changing the general shape of the curves (fig.13

S16). The magnitude of this reduction was 1-2 times as large14

as the proximity filter’s impact within exons (0-fold: 17%,15

4-fold: 9%) or CNEs (11%).). . . . . . . . . . . . . . . . . . 3616

4 LD measured by genomic
〈
r2
〉

as a function of distance from17

focal SNP. A,B:
〈
r2
〉

for all chromosomes combined, with all18

SNPs, or only those within exons or CNEs as focal SNP. A:19

rat, B: mouse. All values are averages over 20 bp bins. C:20

Average of r2 for all chromosomes combined, all rat SNPs,21

with offset exponential fit f(x) = (a− c) ∗ exp(−x/b) + c. D:22

Same curve, with an offset stretched exponential fit: g(x) =23

(a− c) ∗ exp(−(x/b)d) + c. . . . . . . . . . . . . . . . . . . . 3724
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5 Inferred population history from distribution of IBS (identical1

by state) tract length distributions Li and Durbin (2011).2

Curves represent the inferred population history of individual3

rat samples. Estimates are based on non-CpG prone sites only4

and using a proximity filter of md = 5 bp. see figs. S10 and5

S11 for effects of these choices. . . . . . . . . . . . . . . . . . 386
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Figure 3
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