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Abstract

Documenting the full extent of gene flow during speciation poses a challenge,  as

species ranges change over time and current  rates of hybridisation might  not reflect

historical trends. Theoretical work has emphasized the potential for speciation in the

face  of  ongoing hybridisation,  and the genetic  mechanisms that  might  facilitate  this

process. However,  elucidating how the rate of gene flow between species may have

changed  over  time  has  proved  difficult.  Here  we  use  Approximate  Bayesian

Computation (ABC) to fit  a model of speciation between the Neotropical  butterflies

Heliconius melpomene and Heliconius cydno. These species are ecologically divergent,

rarely  hybridize  and display  female  hybrid  sterility.  Nevertheless,  previous  genomic

studies suggests pervasive gene flow between them, extending deep into their past, and

potentially  throughout  the  speciation  process.  By modelling  the  rates  of  gene  flow

during  early  and  later  stages  of  speciation,  we  find  that  these  species  have  been

hybridising for hundreds of thousands of years, but have not done so continuously since

their initial divergence. Instead, it appears that gene flow was rare or absent for as long

as a million years in the early stages of speciation. Therefore, by dissecting the timing

of gene flow between these species, we are able to reject a scenario of purely sympatric

speciation in the face of continuous gene flow. We suggest that the period of minimal

contact early in speciation may have allowed for the accumulation of genomic changes

that later enabled these species to remain distinct despite a dramatic increase in the rate

of hybridisation.
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Introduction

Speciation is widely viewed as the development of reproductive isolation between

lineages. However, there is now considerable evidence that reproductive isolation is not

necessarily  a  genome-wide  phenomenon,  but  rather  that  species  integrity  can  be

maintained despite gene flow affecting a considerable proportion of the genome [1–6].

What  remains  less  clear  is  the  importance  of  gene  flow  (or  lack  thereof)  for  the

establishment of new species. Theory has shown that it may be possible, under certain

genetic  and  selective  conditions,  for  species  to  become  established  in  the  face  of

ongoing gene flow [7–14]. To test this theory, it is necessary either to observe speciation

in real time, or to reconstruct the historical extent and timing of gene flow between

existing species.

In  geographic  terms,  speciation  can  be  described  as  sympatric,  parapatric  or

allopatric. We follow Mallet et al.  [15] in defining these terms: sympatric populations

share  the  same  geographic  area  (but  not  necessarily  the  same  niche),  such  that

individuals from the two populations are liable to encounter one-another frequently over

much of their range. Parapatric populations “occupy separate but adjoining geographic

regions,” such that only a small fraction of individuals at the edge of each range are

liable to encounter the other. Allopatric populations are geographically separated, such

that encounters between them are very rare or impossible.  Despite the abundance of

closely related sympatric species, there are very few cases in which it can be stated with

any certainty that  speciation occurred in sympatry [e.g.  crater-lake cichlids  [16]].  In

terms of gene flow, we can predict that sympatric speciation might involve a gradual

decline over time, with higher rates of historic than contemporary gene flow  [17]. In

allopatric  speciation,  gene  flow  would  be  absent  until  the  populations  came  into

secondary  contact.  Parapatric  speciation  might  fall  somewhere  in  between  these

extremes, with a low level of gene flow throughout, potentially decreasing over time,

but possibly also increasing if the populations later return to a sympatric distribution.
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Genomic data now offers the exciting possibility of reconstructing the history of gene

flow between existing species, illuminating the roles of gene flow and geography in the

origin of new species.

A number of methods exist to fit a model of “isolation with migration” (IM) using

patterns of DNA sequence variation, thereby testing for post-speciation gene flow. This

can be achieved by maximising the likelihood of observed genetic data in a coalescent

framework,  either  directly  [18–22]  or  using  Markov Chain  Monte  Carlo  (MCMC)

approximation  [23–26].  However,  these  approaches  lack  power  and  accuracy  to

examine change in the rate of gene flow over time [27,28], owing to characteristics of

the  standard  IM  model  itself  [29].  This  limitation  could  be  overcome  through  the

implementation of more complex models  [30], but this is currently not feasible in a

likelihood  framework.  Approximate  Bayesian  Computation  (ABC) offers  a  tractable

means to fit such complex genetic models by avoiding the need to derive likelihoods

[31]. ABC is therefore suited to the problem of reconstructing changes in the rate of

gene  flow during  speciation  [32,33],  offering  the  potential  to  resolve  long-standing

debates in the speciation literature.

Here  we  investigate  the  history  of  gene  flow  during  speciation  in  Heliconius

butterflies. This Neotropical genus is well known for its broad diversity of aposematic

wing patterns, and multiple instances of Müllerian mimicry – where unrelated species

converge in wing pattern, providing a unified signal of toxicity to predators. Closely

related species usually differ in wing pattern, and it is thought that pattern divergence

between populations adapting to mimic different locally-abundant patterns could lead to

parapatric  speciation  [34,35].  We  examine  Heliconius melpomene and  Heliconius

cydno, closely related species that have diverged in wing pattern and other ecological

traits  during  the  past  million  years,  but  continue  to  hybridise  at  low  frequency

[36] where their  ranges  overlap in  the western parts  of  South  America  and Central

America. The ability to compare sympatric and allopatric populations of H. cydno and
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H. melpomene provides an ideal opportunity to detect the genetic signatures of recent

gene flow. Indeed, whole-genome studies have found evidence of abundant gene flow

between these species, affecting a large proportion of the genome and extending deep

into the past [3,4]. However, it has remained uncertain whether this pair diverged in the

face of ongoing gene flow, or experienced a period of isolation early during speciation.

We used ABC to reconstruct the genealogical history of three populations: H. cydno

from  Panama,  H.  melpomene  rosina from  Panama  (sympatric  with  cydno)  and  H.

melpomene melpomene from French Guiana (allopatric) (Fig. 1A). Our model allowed

for  hybridisation  between  H.  cydno and  H.  melpomene throughout  speciation,  and

accounted for the possibility of a change in the rate of hybridisation during this time by

considering two separate periods with distinct migration rates, the duration or which

could vary. This enabled us to test various hypotheses under a single model, including a

clean split without gene flow, continuous gene flow throughout speciation or gene flow

restricted to ancient or recent time periods.

H. cydno H. m. rosina H. m. melpomene

H. cydno chioneus

H. melpomene rosina

H. melpomene
melpomene
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Figure  1.  Species  distributions,  sample  locations,  summary  statistic  and  model

design. A. Distributions (shaded) of H. melpomene (light red) and H. cydno (grey), based

on Rosser et al. [37]. Sampling locations in Panama and French Guiana are indicated. B.

The composite summary statistic used consisted of the proportions of the 13 possible

biallelic genotype combinations, where one individual is sampled from each population

(given to the right). '0' and '2' indicate alternative homozygous states and '1' indicates the

heterozygous state. Given that four individuals were sampled from each population, the

proportion of biallelic SNPs carrying each pattern was averaged over all 64 possible sets

of three samples. Although 25 SNP states are theoretically possible, twelve of these can

be folded if we ignore major and minor alleles (e.g. 2-0-1 is equivalent to 0-2-1) and so

these  were  counted  together,  to  give  13  unique  states.  C. The  model  had  ten  free

parameters:  four  population sizes  (Na,  Nc,  Nmr and  Nmm)  (the  ancestral  H. melpomene

population size was assumed to be the average of Nmr and Nmm); migration rates between

H. cydno and H. melpomene in Periods 1 and 2 (Mcm1 and Mcm2) the time dividing Periods

1 and 2 (td); migration rate between the two  H. melpomene populations (Mm) , and the

split times for the two species (t1) and the two H. melpomene populations (t2). 

Results

Genotype data and summary statistics

Whole  genome  resequence  data  from  twelve  wild-caught  butterflies,  with  four

representatives from each of the three sampled populations, H. cydno, H. m. rosina and

H. m. melpomene, were used for model fitting (S1 Table, data from Martin et al. 2013).

Only intergenic  regions,  as defined by the  Heliconius melpomene reference  genome

annotation v1.1 [38], with high-quality genotype calls (see Materials and Methods) for

all  twelve  samples,  were  considered.  We  also  excluded  all  scaffolds  on  the  Z

chromosome, which is known to experience strongly reduced gene flow [4], as well as

putative CpG clusters, which can have unusual mutation rates. These criteria gave ~60

million  sites  (22% of  the genome),  of which approximately 10% were polymorphic

(Single Nucleotide Polymorphisms, SNPs). The composite summary statistic used for

model  fitting  consisted  of  the  proportion  of  bi-allelic  sites  carrying  each  possible

combination  of  genotypes  among  three  diploid  individuals.  These  proportions  were

averaged  over  all  possible  triplets,  where  each  population  is  represented  by  one
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individual, and folded such that major and minor alleles were not distinguished (Fig.

1B, see Materials and Methods for details). This composite summary statistic is similar

to  a  three-dimensional  site  frequency  spectrum.  It  provides  a  nearly  exhaustive

summary of the available SNP data among the ingroup taxa, is independent of linkage

effects and scalable to any number of sites.

As expected, the most common SNP patterns were singletons, where one individual

was heterozygous and the other two were homozygous for the same allele (0-0-1, 0-1-0,

and 1-0-0; Fig. 1B). The most common pattern overall was 1-0-0, where  H. cydno is

heterozygous and both H. melpomene individuals are homozygous. This is unsurprising,

given the longer branch leading to H. cydno (Fig. 1B). The pattern 0-0-1, where H. m.

melpomene from French Guiana is heterozygous, was also considerably more common

than 0-1-0, where H. m. rosina is heterozygous. This is consistent with increased shared

variation between H. cydno and the sympatric H. m. rosina. Similarly, 1-1-0 was more

common than 1-0-1, and 0-0-2 was more common than 0-2-0.

Estimating the timing and extent of gene flow

We consider a model with three populations (Fig. 1C), corresponding to  H. cydno

(which splits from the ancestral melpomene population at time t1), and H. m. rosina and

H. m. melpomene (which split at time t2). Each lineage has a separate population size,

except for the ancestral melpomene population, which is assumed to have a size equal to

the mean of the two melpomene populations. Because the two melpomene populations

represent extremes of a somewhat continuous range, migration between them is allowed

at  a  continuous  rate  Mm.  Migration  is  also  allowed  between  H.  cydno and  H.

melpomene, although after the split between the melpomene populations (t2) only H. m.

rosina is able to exchange migrants with  H. cydno. Two distinct periods of between-

species migration are modelled, with rates Mcm1 and Mcm2. These periods are divided at a

time  td such that Period 1 begins at  t1 and ends at  td, and Period 2 runs from td to the

present. This model had ten free parameters: four population sizes, two split times, three
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migration rates and one time dividing the migration periods. Model parameters were

estimated  using  Approximate  Bayesian  Computation  (ABC)  based  on  the  summary

statistics described above (see Materials and Methods for details). Uniform priors were

used for all parameters except for t1 and t2, for which prior distributions were estimated

by analysis of mitochondrial sequence data (see Materials and Methods for details).

Our model pointed toward a dramatic change in the rate of inter-specific migration

(i.e. hybridisation resulting in gene flow) from early to later stages of speciation (Fig.

2). Migration was minimal in Period 1 (Mcm1~0.08 migrants per year [posterior mean]),

and around tenfold greater in Period 2 (Mcm2~0.81 migrants per year) (Fig. 2A, Table 1).

The  date  of  transition  between  these  two  periods  (td)  had  a  fairly  wide  posterior

distribution, with a mean of 0.5 million years ago (Ma), but a 90% posterior density

interval extending from 0.1 Ma to 1.2 Ma (Fig. 2A, Table 1). This was nevertheless

considerably more recent than the inferred time of speciation (t1), which had a fairly

narrow posterior distribution centred around 1.5 Ma (Fig. 2A, Table 1). Therefore, our

results support a case of stronger isolation during the early stages of speciation, with a

large increase in the rate of hybridisation later. The posterior mean of 0.5 Ma for the

date dividing the two periods would imply that hybridisation was rare or absent during

the first two thirds of the time since initial divergence (~1 million years). However, we

note that this transition cannot be dated with great accuracy, and indeed our model does

not  allow  us  to  infer  whether  the  increase  in  hybridisation  was  sharp  or  gradual.

Nevertheless,  it  is  notable  that  the  posterior  mean  for  the  onset  of  more  frequent

hybridisation  coincides  roughly  with  the  split  between  the  two  H.  melpomene

populations (t2~0.53 Ma, Fig. 2A). Interestingly, the inferred rate of gene flow between

H. cydno and H. m. rosina during this second period is several times greater than that

between the two H. melpomene populations (Fig. 2A, Table 1).
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Figure  2.  Posteriors  for  time  and  migration  rate  parameters,  and  a  schematic

representation  of  the  inferred  model.  A. Posterior  distributions  for  the  three  time

perameters  (left)  and  three  migration  rates  (right).  Densities  are  scaled  for  ease  of

comparison. See S2 Figure for all posterior distributions. Posterior means are indicated by

vertical  dashed  lines.  B. A schematic  phylogeny,  where  the  posterior  mean  for  each

parameter  is  indicated.  Colours  correspond  to  those  in  A.  Times  are  indicated  by

horizontal  dashed lines.  Posteriors  for  the  times  are  given on the  right-hand-side  for

reference. Migration rates are indicated by arrows, with the width of the arrow scaled

according to the migration rate. Relative population sizes are indicated by branch widths.

See Table 1 for all values.
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Table 1. Properties of posterior distributions for the ten model parameters

Parameter Mean Mode Median
HPD90

Lower1

HPD90

Upper1

t1 (Ma) 1.5 1.4 1.5 1.2 1.8

t2 (Ma) 0.53 0.53 0.53 0.42 0.65

td (Ma) 0.5 0.3 0.4 0.1 1.2

Mcm1 (ind. /year) 0.08 0.01 0.06 0.01 0.86

Mcm2 (ind. /year) 0.81 0.95 0.84 0.36 1.6

Mm (ind. /Year) 0.26 0.34 0.28 0.06 0.77

Nc (M ind.) 5.3 5.3 5.3 4.6 5.9

Nmr (M ind.) 1.8 1.8 1.8 1.2 2.4

Nmm (M ind.) 3.9 3.9 3.9 3.4 4.4

NA (M ind.) 1.1 1.3 1.1 0.3 2.0

1 Upper and lower bounds of the 90% Highest Posterior Density (HPD) interval.  The

HPD is defined as the set of values making up 90% of the density distribution and within

which all values have higher density than outside.

Estimates of  Ne were generally larger than previous estimates for these species  [3],

with relatively narrow posterior distributions (Table 1, S2 Figure). This difference may

be  driven  by a lower  mutation  rate  used  in  the  present  study.  Consistent  with  this

previous study, the estimated Ne for H. cydno (~5.3 M individuals) was larger than both

H. m. rosina (~1.8 M) and H. m. melpomene (~3.9 M).

Overall,  simulated  summary  statistics  from  the  retained  parameter  combinations

matched the observed summary statistic well (S3 Figure). To investigate the robustness

of our conclusions, we repeated the ABC analysis using the split time priors from model

F (S3 Table and see above).  The general  findings were largely the same  (data  not

shown), indicating that our conclusions are not strongly influenced by the split  time

priors.
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Discussion

The existence of distinct species that share genetic material through hybridisation, or

have  done  so  in  the  recent  past,  is  no  longer  disputable.  Genome-scale  data  have

provided overwhelming evidence of pervasive gene flow between species, in taxa as

diverse  as  fruit  flies  [39],  flycatchers  [2],  and  hominids  [19,40].  However,

understanding  the  timing  of  gene  flow  during  speciation,  and  the  importance  of

geographical isolation for species establishment remain difficult. Here, we combine a

large-scale  genomic  dataset  with  Approximate  Bayesian  Computation  (ABC)  to

reconstruct  speciation  in  Heliconius butterflies.  Our  findings  support  recent  studies

showing abundant gene flow between  H. melpomene and  H. cydno [3,4], and suggest

that gene flow has been ongoing for approximately half a million years (two million

generations). However, we also find that hybridisation was rare or absent during the

roughly the first million years of divergence between these species, a factor that may

have played an important role in their establishment.

In order to reduce the parameter space explored, we used a fairly narrow joint prior

distribution for the two split times,  t1 and t2. This joint distribution was inferred using

mitochondrial  sequence  data,  under  the  assumption  that  mitochondrial  introgression

between H. cydno and H. melpomene should be unlikely. This is reasonable given the

fact that female hybrids are sterile  [41]. Although one  H. melpomene population from

Colombia is known to carry H. cydno-like mitochondrial haplotypes [42], an analysis of

all  449  unique  haplotypes  available  on  Genbank  has  not  indicated  any  other

mitochondrial introgression events between these species (see Materials and Methods).

Our  cydno-melpomene split time of 1.5 Ma is within the range of values inferred in

previous analyses using IM-based methods [3,42,43]. In addition, posterior distributions

for  both  split  times  were  not  strongly  skewed  toward  the  edge  of  the  priors.  It  is

nevertheless possible that the mitochondrial split times provide inadequate estimates of

the nuclear split times. Even if this were the case, it is likely that our general conclusion
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of reduced migration earlier in speciation will still hold. Indeed, when we repeated the

ABC analysis with a different, but overlapping, set of split time priors, the results were

largely unchanged.

Allopatric  speciation  is  often  the  null  hypothesis  in  speciation  studies  [44].  One

scenario that would be consistent with our results is that speciation began in allopatry,

possibly  with  the  emerging  species  separated  by  the  Andes  mountains.  Subsequent

range expansion of H. melpomene into the western Andes and Central America would

have lead leading to secondary contact. The lower Ne of H. m. rosina compared to H. m.

melpomene is  consistent  with  range  expansion  from  east  to  west,  which  has  been

proposed previously [45]. However, our results may also be consistent with parapatric

speciation, which is probably more common in Heliconius [35,46]. In fact, most pairs of

sister  species  in  the  genus  are  sympatric  or  parapatric  (Rosser  et  al.  In  Review).

Allopatric populations of extant species, for example those on Caribbean islands, tend

not to display phenotypic and ecological divergence from their mainland progenitors. In

contrast,  many  species,  including  H.  melpomene and  H.  cydno,  are  divided  into

numerous parapatric  wing-pattern races across their  mainland ranges.  H. melpomene

and H. cydno are also partially segregated by altitude, so it is plausible that parapatric

adaptation to altitude in the Andes played a role in their speciation. The evolution of

strong assortative mating associated with wing pattern might then have led to nearly

complete  reproductive  isolation  between  the  parapatric  populations.  Indeed,  loci

affecting both mate preference and hybrid sterility are known to be physically linked to

wing patterning loci in these species, which might have enhanced reproductive isolation

following divergence in wing pattern  [47,48]. Ecological divergence, most notably in

host plant use but perhaps also microhabitat preference [49], would then have followed

later, permitting sympatric coexistence without competition [34]. The inferred increase

in gene flow later in speciation might therefore reflect increased contact associated with

the  transition  from parapatric  to  sympatric  ranges.  One  final  piece  of  evidence  for

parapatric speciation is the existence of several other species pairs that may represent an

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 1, 2015. ; https://doi.org/10.1101/015800doi: bioRxiv preprint 

https://doi.org/10.1101/015800
http://creativecommons.org/licenses/by-nc/4.0/


13

intermediate step in this process. The best studied are Heliconius himera and H. erato,

which are  largely  parapatric  with  only  narrow zones  of  overlap.  They are  strongly

differentiated genetically  [50] and display assortative mating based on colour pattern

[51]. However, they have not diverged in host plant usage [52], which perhaps prevents

their sympatric coexistance through competitive exclusion.

Regardless of its cause, we can speculate that an initial period of reduced gene flow

contributed  to  the  formation  of  these  species.  Reduced  gene  flow  can facilitate  the

accumulation  of  Dobzhanzky-Muller  incompatibilities  [53,54],  which  would  help  to

maintain species integrity even after the rate of hybridisation increased. For example,

gene flow is minimal across the entire Z chromosome [4], consistent with a high density

of incompatibility loci in this part of the genome. Interestingly, in these species there are

also genetic associations between wing pattern, host preference and mate preference loci

which likely facilitate coexistence in sympatry [47,48]. However it is unclear whether

such associations have arisen since hybridisation became widespread, or whether they

fortuitously  pre-dated  the  period  of  extensive  contact.  Finer-scale  analysis  of  the

patterns of introgression across the genome,  combined with mapping incompatibility

loci and structural  differences in the genome will  help to dissect the various factors

contributing to species persistence.

Despite  our  finding  that  hybridisation  was  rare  or  absent  for  approximately  two

thirds of the time since speciation, this nevertheless implies that the hybridisation has

now been ongoing for around two million generations.  Our model  assumes a single

change in the rate of gene flow, while it is highly probably that this rate has changed

more  gradually  through  time.  The  wide  posterior  distribution  for  the  time  of  this

transition is consistent with a gradual increase over perhaps hundreds of thousands of

generations. There is also reason to believe that the rate of gene flow has recently begun

to decrease. The existence of character displacement (sympatric males display stronger

mate discrimination than allopatric males [55], suggests that selection may have acted to

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 1, 2015. ; https://doi.org/10.1101/015800doi: bioRxiv preprint 

https://doi.org/10.1101/015800
http://creativecommons.org/licenses/by-nc/4.0/


14

reinforce  reproductive  isolation  in  sympatry.  Nevertheless,  there  remains  strong

evidence that gene flow continues today, both in the occurance of natural F1 hybrids

[36], and in geographic patterns of shared variation [4]. Specifically, H. cydno samples

from Panama share an excess of variation with H. melpomene samples from the same

location  compared  to  those  from  about  100  km  away  [4].  A recent  study  of  the

hybridising mouse subspecies Mus musculus musculus and M. m. domestica supported a

similar scenario to that described here, with gene flow occurring over the last 25% of

time since initial divergence, although at a lower rate (<0.2 ind/gen) [32].  Our estimate

of ~0.84 migrants per generation represents the effective number of hybrids, but it is

certain  that  the  number  of  actual  F1 hybrid  butterflies  produced exceeds  this  value

considerably, for two reasons. Firstly, in accordance with Haldane's Rule, female (ZW)

F1 hybrids  are  sterile  [41],  and  therefore  do  not  contribute  to  observed  gene  flow.

Secondly,  F1 hybrids  are  subject  to  increased  predation  owing to their  non-mimetic

wing patterns [56].

Finally, it is worth considering the consequences of continued hybridisation between

these  species.  Although  a  whole-genome  phylogeny  groups  the  H.  melpomene

populations as monophyletic,  currently 40% of 100 kb windows group  H. m. rosina

with  H.  cydno,  to  the  exclusion  of  the  French  Guianan  H.  m.  melpomene [4].

Nevertheless,  these  sympatric  populations retain  the  phenotypic,  behavioural  and

ecological traits specific to their respective species, implying that species integrity is

surprisingly  resilient  to  gene  exchange.  It  is  certain  that  gene  flow is  inhibited  by

selection  in  some genomic  regions,  most  obviously the wing pattern  loci.  However,

natural  selection  has  also  favoured  the  occasional  exchange  of  wing  pattern  alleles

between certain populations of these clades, producing the paired mimetic races of H.

melpomene and H. timareta found on the eastern slopes of the Andes [38,57]. It seems

likely that much of the genome is neutral with respect to gene flow, and that most of the

signal seen here is due to neutral exchange of alleles in sympatry, although we have not

attempted to test  for evidence  of adaptive introgression.  It  is  therefore possible  that
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ongoing hybridisation, even at a low rate, might eventually lead to a situation where the

majority  of  the  genome  clusters  populations  by  geography  rather  than  by  species,

making one or both species paraphyletic. It seems inevitable that genomic studies will

reveal such species pairs in the near future, posing a challenge to species definitions

based on aggregate genetic ancestry.

Materials and Methods

Samples and genotyping

We used published whole-genome resequence data for twelve wild-caught butterflies

(S1 Table, data from Martin et al.  [4], www.datadryad.com doi:10.5061/dryad.dk712).

Details of the sequencing, mapping and genotyping procedures are described by Martin

et al.  [4]. Briefly, 100bp paired-end Illumina reads were mapped to the H. melpomene

reference  genome   [38],  version  1.1,  using  Stampy  [58].  Local  realignment  around

indels  and  genotyping  were  both  performed  using  The  Genome  Analysis  Toolkit

(GATK)  [59].  For  the  purpose  of  this  study,  we  considered  only  intergenic  SNPs,

identified based on the  H. melpomene  genome annotation,  version 1.1.  CpG islands

were identified using the program CpGcluster [60], and these sites were excluded. Only

high quality genotype calls were considered. High quality genotypes met the following

conditions: quality (QUAL) ≥ 30, 10 ≤ read depth per individual  ≤ 200, and GQ ≥ 30

for  SNPs.  Processed  genotype  calls  data  are  available  from  www.datadryad.com

doi:XXX.

Summary statistic

The summary statistic used for model fitting was a composite of the proportion of

sites representing each of the possible combinations of bi-allelic genotypes among three

diploid  individuals,  with one individual  representing  each population  (Fig.  1B).  For

example, a SNP would be assigned the pattern 0-1-2, if the  H. cydno individual was

homozygous, carrying zero copies of the minor allele, the H. m. rosina individual was

heterozygous, carrying one copy, and the H. m. melpomene individual was homozygous
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with two copies of the minor allele. The counts of all patterns were then folded, such

that major and minor alleles were not taken into account. For example the pattern 0-1-2

was taken as equivalent to 2-1-0. This gave 13 unique SNP patterns (Fig. 1B). Because

four individuals were sampled from each population, the counts of each pattern were

averaged over all 64 possible triplets with one individual from each population. Custom

scripts  used  to  calculate  and  plot  summary  statistics  are  avauialable  from

www.datadryad.com doi:XXX. Since having too many summary statistics is a known

problem with ABC, we used Partial Least Squares [implemented in the findPLS.r script

in the ABC Toolbox [61]] to find the eight most informative linear combinations of the

original summary statistics.

Model

A three-population  model  of  isolation  with  migration  was  used  (Fig.  1C).  An

ancestral population divides at time t1 into two populations (corresponding to H. cydno

and H melpomene, respectively). At time t2, the melpomene population further divides

into the  H. m. rosina and H. m. melpomene races, which remain connected by limited

gene flow at a constant rate  Mm.  The two  H. melpomene populations,  the  H. cydno

population, and the ancestral population, all have unique population sizes, but the size

of  the  ancestral  melpomene population  is  assumed  to  be  the  average  of  the  two

melpomene populations. Migration is allowed between  H. cydno and the ancestral  H.

melpomene population,  and  between  H.  cydno and  H.  m.  rosina after  the  two  H.

melpomene populations  diverge.  Two distinct  periods  of  hybridisation  are  modelled,

with rates Mcm1 and Mcm2. These two periods occupy the entire speciation time from t1 to

the present, and are divided at time td. Hence, Period 1 runs from t1 to td and Period 2

from td to the present. The division between the periods, td, may fall anywhere between

t1 and the present. A constant mutation rate of 1.9×10-9 per site per generation was used.

This corresponds to the estimated per-generation mutation rate for H. melpomene [62],

corrected  for  weak  purifying  selection  on  intergenic  regions  by  multiplying  by  the

relative level of interspecific divergence at intergenic and putatively neutral four-fold
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degenerate sites (data not shown). A generation time of 0.25 years was assumed [63].

Priors for split times

To reduce the dimensionality of the model, we used fairly narrow priors for the two

split  times  t1 and  t2  (S2 Table).  These were inferred using analysis  of mitochondrial

sequence  data,  which  should  be  resistant  to  gene  flow  between  these  taxa.  This

assumption was first tested with a Maximum Likelihood analysis of all 847 publicly

available  sequences  (449 unique  haplotypes)  in  RAxML v.8  [64].  This  identified  a

single,  previously  known  [42] case  of  mitochondrial  introgression  between  these

species,  which does not  involve  the populations  considered here.  Sequence data  for

1606 bp of CoI/II for 125 samples from several populations of H. melpomene, H. cydno

and the outgroup silvaniform clade were obtained from Genbank and the data of from

Martin et al.  [4], and aligned with MUSCLE [65]. Strict and relaxed molecular clock

models  and  codon-partitioning  schemes  were  fitted  to  the  data  in  BEAST v.  1.8.

[66] and compared with a posterior analog of AIC (AICM) and Bayes Factors calculated

by the Stepping Stone Analysis [67] (S2 and S3 Table). For root-calibrated analyses, the

split time between the  H. melpomene and Silvaniform caldes inferred by Kozak et al.

[68] was used. For fixed rate analyses a mutation rate of 0.0024 per million years was

used,  as  inferred  under  a  relaxed-clock  model  applied  to  the  complete  Heliconiini

alignment  of  Kozak  et  al.  [68].  While  the  exact  split  dates  varied,  all  approaches

converged on the same topology and a similar ratio of split times t1/t2 (S3 Table). Bayes

Factors  and AICM  [67] favoured  a  strict  clock  model  (model  E, S2  Table)  with  a

separate partition for third codon positions. We present results obtained using the split

times from model E, although we also tested the split times from model F (S3 Table).

The resulting joint posterior distributions for the two split times formed the priors for

the ABC simulations, with pairs of times for  t1 and  t2 being drawn together from this

joint distribution.
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Model fitting using ABC

Approximate Bayesian Computation (ABC) was used to estimate parameters of the

model.  Briefly,  ABC fits  a  model  by evaluating  the distance  between observed and

simulated  summary  statistics,  allowing  the  estimation  of  posterior  probability

distributions without calculating likelihood functions. 

Uniform priors were used for all parameters except for the split times t1 and t2 (see

above). Two million parameter combinations were generated over the parameter space

by  sampling  from  the  prior  distributions  randomly  and  independently  (except  for

parameters t1 and t2, which had a joint prior distribution). A custom program (written in

C/C++) was then used to simulate 100,000 unlinked SNPs from our model under the

standard  coalescent  framework  [69] for  each  sampled  parameter  set,  and  then  to

calculate the summary statistic. SNPs were simulated independently (i.e. unlinked) as

the composite summary statistic used here, which is based on the genome-wide joint

frequency  spectrum,  should  not  be  strongly  influenced  by  linkage  disequilibrium,

especially given the fairly rapid decline in LD in Heliconius melpomene [4]. Using the

standard ABC method, we used the Euclidian distance between simulated and observed

values to identify parameter combinations that fit the data well. We used a cut-off of

0.01  for  accepting  parameter  combinations,  yielding  27377  good  parameter

combinations  for  ABC. To account  for  variation  in goodness of  fit  obtained among

retained  parameters,  the  distribution  of  retained  parameters  was  adjusted  using  the

General Linear Model method of  [70], as implemented by ABCestimator of the ABC

Toolbox [61].
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nuclear genomes); pink: H. cydno; grey: Silvaniform outgroups. Time scale in millions of
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Parameters labels match Fig. 1 in the main text, with the three time parameters given in
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sizes in the right-hand column (G-J). Grey shading indicates the 90% highest posterior

density (HPD) interval, and posterior means are indicated by vertical dashed lines.

S3 Figure. Summary statistics from retained parameter combinations compared to
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0-1-2, 0-2-0, 0-2-1, 2-0-0, 1-0-0, 1-0-1, 1-0-2, 1-1-0 and 1-1-1. Box plots indicate the

distribution of simulated values from the 27377 retained parameter combinations. Red

points  indicate  outliers  (outside  of  the  10th  and  90th  percentiles).  Yellow diamonds

indicate observed frequencies,  as in Fig.  1B. Here the y-axis indicates the the scaled

frequency of  each  pattern,  in  units  of  million  generations.  This  can  be  obtained  by

dividing the observed absolute frequency of each pattern (as in Fig. 1B) by the mutation

rate per site per million years.
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