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Abstract 

The molecular reaction networks that coordinate the response of an organism to changing environmental 

conditions are central for survival and reproduction. Escherchia coli employs an accurate and flexible 

signalling system that is capable of processing ambient nitrogen availability rapidly and with high accuracy. 

Carefully orchestrated post-translational modifications of PII and the glutamine synthetase allow E. coli to 

trace nitrogen availability in a continuous, decidedly non-digital fashion. We measure the dynamic 

proteomic and metabolomic responses to trace the analog computations, and use an information theoretical 

framework to characterize the information capacity of E. coli’s nitrogen sensing network: we find that this 

system can transmit up to 9bits of information about the nitrogen state. This allows cells to respond rapidly 

and accurately even to small differences in metabolite concentrations.  

Supplementary Information is available at http://sysbiosig.org/download/ansecoli/. 

 

INTRODUCTION 

Post-translational modifications (PTMs) play a pivotal role in cell signalling, allowing rapid responses 

through reversible modifications of proteins. Reversible covalent modifications at specific protein residues 

allow for rapid (and low-metabolic burden) signalling and regulation (Khoury et al, 2011). One of the best-

studied bacterial PTM systems is the bicyclic nucleotidylation cascade of PII and glutamine synthetase (GS) 

that regulates responses to environmental nitrogen concentrations in Escherichia coli. Nitrogen-status-

dependent uridylylation of PII controls GS adenylylation and activity (Fig. 1A) (van Heeswijk et al, 2013).  

Glutamine (GLN) signals nitrogen sufficiency through binding to the bifunctional uridylyl–

transferase/removase (UT/UR), stimulating the de-uridylylation of PII-UMP. PII acts on the bifunctional 

adenylyl–transferase/removase (AT/AR) of GS, where PII stimulates the transfer and PII-UMP the 

removase functions of AT/AR. αKetoglutarate (αKG) binds to PII, changing its regulatory capacity so that 

the GS adenylylation state depends on both GLN and αKG, which together define the nitrogen status. In 

response to changes in the nitrogen status PII also regulates the two-component nitrogen regulators 

NtrB/NtrC (Bueno et al, 1985; Wedel et al, 1990), thereby directly controlling transcription of 45 genes in 

response to nitrogen starvation, including the gene coding for GS, glnA (Zimmer et al, 2000). While the 

whole system can be qualitatively understood on the basis of the regulatory connections (Fig. 1A), 

mathematical approaches are needed to allow us to quantitatively understand and model how the system 

responds to different nitrogen levels (Bruggeman et al, 2005; Yuan et al, 2009; Ma et al, 2009; Okano et al, 

2010; Hart et al, 2011; Lodeiro & Melgarejo, 2008). Such models provide a mechanistic and testable 

description of the dynamics at the level of populations of cells.  
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Studies that quantify information capacity of bacterial signalling circuits beyond chemotaxis (Kollmann 

et al, 2005; Endres & Wingreen, 2009) and quorum sensing (Mehta et al, 2009) are not available. 

Particularly, none of the PTM systems have been analysed in this context. 

Experiments on mammalian single cells (Cheong et al, 2011; Uda et al, 2013) reveal that their 

signalling machinery is capable of transmitting the information needed to take binary decisions.  

Quantitative measurements of modification states of signal transduction proteins are only rarely 

available. In particular, we lack experimental techniques to obtain measurements of metabolite changes 

and/or molecular noise at the level of single bacterial cells. Therefore, if we wish to investigate how 

molecular responses to environmental changes are orchestrated we either have to rely on partial single cell 

measurements of a few selected molecular protein species but without access to PTMs or metabolite 

abundances; or we use comprehensive population-level experimental measurements and analyse the 

resulting mechanistic model of the stress response. Here we opt for the latter and integrate population 

measurements with available knowledge regarding noise in similar systems to show that the bacterial PTM 

system has the potential to precisely and rapidly process information and to distinguish quantitatively 

different signals in order to infer the ambient nutrient availability 

We use a combination of experimental methods to provide quantitative data to parameterize the models, 

including targeted proteomics and NMR analysis of metabolites. We directly measure the absolute amounts 

of PII, PII-UMP, GS, GS-AMP, GLN, and KG in responses to perturbations in nitrogen availability in 

vivo, and use the data to probe the dynamics within this biological control system.  

This molecular machinery allows the cell to process information in a way that can be cast in the 

language of Bayesian inference.  We demonstrate that a direct relation between signalling and Bayesian 

statistical methodology provides a general conceptual, quantitative and computational framework for the 

analysis of information processing in biochemical circuits, and derive widely applicable insights into how 

biological organisms can achieve (near-)optimal signal transduction using solely molecular interactions and 

reactions. 

 

RESULTS 

Experimental Setup  

The nitrogen status of Escherichia coli is predominantly given by the abundances of assimilated 

nitrogen in the form of glutamine (GLN), and of the Krebs cycle metabolite α-ketoglutarate (αKG). In order 

to capture the PTM changes of PII and GS in response to changes in nitrogen status, we grew wild-type E. 

coli (NCM3722) in batch culture in defined minimal media with an initial 3 mM NH4Cl concentration (Fig. 

2A) (Schumacher et al, 2013). This concentration gives a nitrogen replete-condition at the beginning of 

growth, but as cells multiply the NH4
+ is increasingly consumed, resulting in nitrogen limitation and then 

starvation (run out). Following 40 minutes of starvation, fresh NH4Cl (3 mM) is added (spike). We sampled 

at nine time points across this process (with the timing of the spike defining the t=0 time point) in order to 

capture the complete transition from NH4Cl-replete to NH4Cl starvation, and back to nitrogen-replete status 

(Fig. 2A), and then measured these samples for key metabolite and protein concentrations. 

Simultaneous measurements of metabolites and post-translational states of signalling proteins reveals 

sensitivity of the pathway 

LC-MRM-MS can be used to directly measure targeted post-translational modifications, including 

phosphorylation, acetylation, methylation and ubiquitination (Picotti & Aebersold, 2012). The precise 

quantification of post-translational modifications in complex biological samples remains challenging for a 

combination of reasons, including the instability of modified peptides, incomplete protein extraction, 

incomplete proteolysis and artifactual protein modifications (Aebersold et al, 2013). Here we use a recently 

reported robust sample preparation protocol for LC-MRM-MS using labelled whole proteins as internal 

standards rather than individual peptides or polypeptides (protein standard absolute quantification, PSAQ), 

which to a large degree avoids these problems (Schumacher et al, 2013).  We can directly and reproducibly 

measure the abundance of both the modified and un-modified PII and GS peptides (see Supplementary 

Information) and thus calculate the number of PII and GS molecules per cell (Fig. 2B). We also calculate 
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the numbers of GLN and αKG molecules per cell based on NMR measurements. As expected (Ninfa et al, 

2000; Yuan et al, 2009), PII uridylylation levels are inversely correlated with both intracellular GLN 

concentrations and the levels of GS adenylylation. To probe the model depicted in Figs. 1. and 3, and to 

capture the coupling of PII uridylylation with GS adenylylation in vivo, we generated a NCM3722glnD  

knock-out mutant (glnD codes for UT/UR), which shows that when PII uridylylation is lost, GS 

adenylylation is no longer dependent on GLN levels (Fig. 2C). The rapid changes in protein PTMs, clearly 

related to metabolite changes, not only indicate the wide range of PII and GS PTM states that can be 

measured under our experimental conditions, but also demonstrate that our sampling and analysis pipeline 

provides high-quality data without substantial losses of PTMs. 

To determine the responsiveness of PII and GS PTMs to changes in GLN and αKG levels, we calculate 

the levels of PII and GS PTMs, taking into account the total PII and GS concentrations. As expected, for the 

constitutively transcribed glnB (glnB codes for PII), PII levels remain constant over the time course. GS 

levels increase by approximately 2.3 fold over the course of the experiments, as NH4 starvation induces glnA 

expression. The relative PII-UMP and GS-AMP levels are a function of the intracellular GLN concentration 

and the GLN/αKG ratio, since the fraction of PII-UMP should exclusively depend on GLN, whereas the 

relative GS-AMP levels depend on the GLN/αKG ratio. We observe an inverted sigmoidal relationship 

between GLN and PII-UMP levels (Fig. 2D), with a responsive range between 0.2 mM and 0.85 mM GLN 

(1.2×105 – 5.1×105 molecules per cell). GS-AMP is responsive at higher GLN concentrations (0.4 mM), 

with a clear sigmoidal dependency both with regards to GLN levels and the GLN/αKG ratio, providing 

evidence of an underlying cooperative mechanism of GS. In the NCM3722glnD mutant, GLN sensing is 

uncoupled and these dependencies are lost; nevertheless we still find higher GS-AMP levels in samples with 

low αKG levels, indicating that in NCM3722glnD, un-uridylylated PII bound to αKG can modulate the 

AT/AR activity (Fig. 2C).  

The limited dynamic range of the PTMs as a function of GLN (or GLN/αKG ratio) is noteworthy: the 

relative PII-UMP and GS-AMP levels are confined to the 100%-30% and 0-35% ranges, respectively (Fig. 

2D). Naively we might expect that precise sensing would exploit the whole range (Tkacik et al, 2009). Here, 

however, the same enzyme, UT/UR, carries out both uridylylation and deuridylylation of PII; equally, 

AT/AR adenylylates and deadenylylates GS. The steady states at high GLN concentrations are thus obtained 

dynamically by balancing the relative functionalities of the two enzymes. This dynamic tension allows rapid 

response to decreasing GLN availability (Kim et al, 2012): if GLN decreases deuridylylation and 

adenylation cease, and the fractions of uridylylated PII and de-adenylated GS increase rapidly because 

uridylylation and deadenylylation are already ongoing.  

 

The analog nature of nitrogen availability sensing 

Direct comparison of the growth curve (Fig. 2A) with the modification states of the signalling proteins 

(Fig. 2B) indicates that the bicyclic system senses scarcity well before NH4
+

 depletion. Growth stops 

abruptly after the run-out of NH4
+

 and the onset of nitrogen starvation (-40 minutes in Fig. 2C), and we 

observe a relatively constant ratio of GLN/KG; during this phase PII is mostly uridylylated and GS 

essentially de-adenylylated. At time 0, NH4Cl is introduced again into the medium, which results in the 

rapid depletion of αKG as nitrogen is assimilated, and a reversal in the abundances of PII–UMP and GS–

AMP (Fig. 2B). Interestingly, within 30 seconds after the NH4
+

 spike, GLN levels consistently peak at their 

maximum (KG levels drop by similar absolute amounts), probably due to the very high levels of fully 

active GS that is assimilating GLN (Okano et al, 2010) before GS becomes deactivated through 

adenylylation within roughly 1 minute following NH4
+ addition. Several minutes post spike a dynamic 

steady state equilibrium is regained, and all molecules of the bicyclic system return towards the initial state 

(Hart et al, 2011). 

E. coli growth experiments performed under nitrogen starvation show that the doubling time of the cells 

increases long before all of the available nitrogen as ammonium has been consumed (Fig. 2A). This growth 

characteristic together with the PTM dynamics clearly indicates that the amount of nitrogen available to the 

cell is not sensed in a simple binary or digital (PRESENT/ABSENT) manner but rather as an essentially 

continuous or analog signal. What has been unknown to date is how much information is or can be 

processed by such a system, i.e. how accurately can cells sense their nitrogen status in vivo.  
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Analog information processing can be more nuanced than digital information processing (Daniel et al, 

2013). In particular, it tends to be easier to implement differentiation and integration of signals using analog 

logic building blocks; as a rule it is also less energy consuming (Sarpeshkar, 2014). Both of the above 

observations are also true for physical and engineering systems, even though digital computation has come 

to predominate primarily due to the availability of small, cheap and reliable electronic components. Thus 

analog information processing can be distinctly advantageous for detecting subtle variations in an 

environmental signal(Sarpeshkar, 1998; 2014). 

 

Probabilistic model of nitrogen sensing  

When considering signal transduction processes we can make use of Shannon’s concept of a 

communication channel which links input and output (Fig. 1B) (Cover & Thomas, 2012). This simple 

relationship is difficult to reconcile with the more complex process depicted in Fig. 1A, where we have two 

inputs, GLN and αKG, and two outputs, uridylylated PII and non-adenylylated, active, GS. These outputs 

feed back to the protein complexes and molecules making up the information channels (e.g. uridylylated PII 

activates the adenylyl removase that deactivates adenylylated GS). Information flow in the nitrogen status 

sensing mechanism of E. coli thus more resembles the diagram shown in Fig. 1C, where inputs and outputs 

can affect the information processing (i.e. channels) directly and indirectly and in a variety of ways (Jiang et 

al, 1998; 2007). 

In order to mathematically model the complexity of the information transmission process we consider 

the stimuli that signal availability of nitrogen, 𝑋 = (𝑋1, 𝑋2)𝑇, where 𝑋1 and 𝑋2 denote GLN and αKG 

respectively, and which are jointly distributed according to probability distribution P(𝑋1, 𝑋2). The levels of 

uridylylated PII-U and unmodified GS (as numbers of molecules), which signal nitrogen starvation, are 

denoted by 𝑌1
∗ and  𝑌2

∗, respectively. The forms that signal nitrogen abundance, unmodified PII and GS-A, 

are denoted by 𝑌1 and 𝑌2. The output of the system is therefore given as 𝑌 = (𝑌1, 𝑌1
∗, 𝑌2, 𝑌2

∗)𝑇 . In order to 

capture the essentially probabilistic aspect of information transmission we considered the joint probability 

distribution over the abundances of 𝑌1
∗ and 𝑌2

∗, and thus represent the network performance in terms of the 

conditional probability, P(𝑌|𝑋). 

When considering fidelity of signal transduction processes the state of the art method (Cheong et al, 

2011; Tkacik et al, 2008; Selimkhanov et al, 2014) is to reconstruct P(𝑌|𝑋)   based on single cell 

measurements.  Alternatively a model of P(𝑌|𝑋) can be used and the two approaches are complementary.  

Single cell experiments usually  induce additional variability resulting from fluorescence quantification, 

reporter copy number variation, perturbations introduced by reporter genes or variable antibody staining 

efficiency. Moreover, such experiments usually measure single input – single output relations and neglect 

many of the factors that contribute actively to cell to cell variability, which, for individual cells, may be 

means of adaptation and cannot be interpreted as noise.  These may include differences in cell cycle 

progression, differences in auto- and para-crine signalling due to non-uniform distribution of cells on a 

culture-plate, variability in gap junction formation with the neighbouring cells etc.. As a result such 

experiments are likely to underestimate fidelity of signal transduction systems.   

These potential problems can largely be avoided by modelling the noise appropriately, It comes at the 

cost of analysing an idealized model of signalling pathway, where we have to make assumptions about the 

ways in which noise enters the dynamics. Both the direct experimental route and the model-based 

approaches have their own drawbacks and, given current experimental capabilities at the single cell level,  

both perspectives need to be pursued understand information flow processes in signal transduction 

pathways. 

In order to examine the roles of PTMs in information processing we only have access to population 

measurements and therefore must use a model based approach as noise measurements are currently not 

obtainable at single cell level. In order to construct a model of 𝑃(𝑌|𝑋) we first consider the functional 

relationship between nitrogen-related stimuli and the enzyme activities provided by solutions to equations 

that describe the temporal evolution of 𝑌 = (𝑌1, 𝑌1
∗, 𝑌2, 𝑌2

∗)𝑇 (Fig. 3). Using the quantitative protein and 

metabolite data, we obtain estimates for the kinetic parameters that capture the functional relationships 

between GLN and αKG and their corresponding enzymes GS and PII. We use our Bayesian framework 
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(Liepe et al, 2014; Toni et al, 2009) to estimate the parameters directly from the time-resolved metabolomic 

and proteomic data. Simulations of the deterministic model, shown by sampling parameters from the 

inferred posterior distributions (shown in Fig. Supp. 5), are in excellent agreement with the available data 

(Fig. 2B).  

 Given these parameter estimates we can calculate the probabilistic distribution of outputs given inputs, 

𝑃(𝑌|𝑋), as modelled by the chemical master equation. However, given the high number of PII and GS 

molecules involved (approximately 2300, and 20000-40000, respectively), we can also use the linear noise 

approximation (Van Kampen, 2011; Komorowski et al, 2009) to describe 𝑃(𝑌|𝑋) without any significant 

loss of accuracy (Wallace et al, 2012).  The probability distribution, 𝑃(𝑌|𝑋), constructed in this way 

provides the stochastic version of the model in Fig. 3 (see also Supplementary Information). It allows us to 

describe the action of the information channel (Fig. 1B,C). In order to quantify its information capacity we 

develop a theoretical framework outlined below. We can thus quantify the mutual information (Cover & 

Thomas, 2012) – the canonical measure for the information shared between two variables – characteristic 

for E. coli nitrogen sensing.  

 

An Optimality Criterion for Information Transmission 

In an information-theoretical context – including the situation considered above – the central quantity of 

interest is the amount of information that can flow through an information channel. Typically it is measured 

via Shannon’s mutual information (Cover & Thomas, 2012) between input, X, and output, Y, 

𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌), 

where 𝐻(𝑋) and 𝐻(𝑋|𝑌) are the entropy of the distribution over input X, and the average conditional 

entropy of X given Y, respectively. 𝐼(𝑋, 𝑌) is generally interpreted as the reduction in uncertainty about X 

once the value of Y is known; this is often also seen as a more general measure of correlation between two 

random variables X and Y. Importantly,  𝐼(𝑋, 𝑌)  depends on matching between the 𝑃(𝑌|𝑋) and 𝑃(𝑋). The 

maximum amount of information that can flow through an information channel, P(Y|X),  is known as 

channel capacity (Cover & Thomas, 2012) 

𝐶 = max
𝑃(𝑋)

𝐼(𝑋, 𝑌) 

This measures the efficiency of a communication channel; in this case, the ability of E. coli to sense and 

respond to changes in ambient nitrogen availability. In order to calculate the maximal achievable  𝐼(𝑋, 𝑌), 

i.e. the channel capacity, we need to determine which input 𝑃(𝑋) the system 𝑃(𝑌|𝑋) is best adapted to.  

We consider the conditional probability P(X|Y) as the inference that the cell draws about the 

environment (here as the ambient nitrogen abundances encoded by GLN and αKG). If this estimate of the 

input X is unbiased then its variance, σX
2 , must obey σX

2 ≥ 1/FI(X), where 𝐹𝐼(𝑋) is the Fisher information( 

Brunel & Nadal, 1998; Komorowski et al, 2011) for given X,  

FI(X) =  ∫ (
∂log (P(Y|X))

∂X
)

2 

Ω

P(Y|X)dY, 

where Ω is the space of possible signals. In the asymptotic setting the variance of the estimate is given 

precisely by the inverse of the Fisher information, σX
2 = 1/FI(X). 

Under very general conditions 

𝑃∗(X) ∝ √|FI(X)| 

is the distribution that maximizes the mutual information, 𝐼(𝑋, 𝑌), between inputs, 𝑋,  and outputs, 𝑌 

and allows us to calculate the channel capacity Brunel & Nadal, 1998). In Bayesian inference this 

distribution is also known as the reference prior. This relationship nontrivially connects the mutual 

information and the Fisher information. Given the asymptotic interpretation σX
2 = 1/FI(X), this criterion 

states that frequent inputs should be recognized/processed with high confidence (see below), whereas more 

rarely occurring signals (states of the random variable X) need not be inferred with similarly high accuracy. 

By balancing the frequency of inputs with the constraints of the system we find that the input distribution, 
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𝑃(𝑋), that maximises the mutual information is given by FI(X), the Fisher Information associated with the 

inputs, X. In summary, the optimal distribution of inputs, 𝑃∗(X), is defined in terms of uncertainty of 

inferences, P(X|Y),  that the cell draws about the environment state, X.  In the optimal scenario signals occur 

at a frequency that is proportional to the  inverse of the uncertainty (which is measured as the standard 

deviation of the distribution P(X|Y)). In other words, common events and signals are sensed and processed 

with high precision, see Fig. 4. Signal transduction systems may thus evolve to ensure that the information 

transmission is maximized given the ambient inputs (Frank, 2009). This link between the mutual 

information and the Fisher information constitutes a general computational approach to analyse optimal 

information processing in biochemical signalling systems (Libby et al, 2007).  

 

Quantifying the information processing capacity of the nitrogen-sensing system of E. coli  

In order to illustrate our information-theoretic perspective on signalling of nitrogen status we first 

consider the case of GLN sensed through PII (Yuan et al, 2009; van Heeswijk et al, 2013), the left-hand part 

of the system depicted in Fig. 1A; this conforms to the classical simple communication channel in Fig. 1B. 

In Fig. 5A we show the derived input-output relationships for GLN and PII-U, and we can derive the Fisher 

Information from the stochastic model (Komorowski et al, 2011; 2012), which provides us with the optimal 

input distribution (Fig. 5B). By sampling from the parameter posteriors obtained from the data, we then 

obtain a posterior over the channel capacity, which is centred around a capacity of C≈4.15 bits (Fig. 5C). 

The capacity, C, depends on kinetic rates that define P(Y|X). Averaging over posterior distributions takes 

into account uncertainty regarding these rates. 

The above description captures only the information transmitted via the PII part of the nitrogen 

signalling system. In Fig. 5D-F we repeat the same analysis but consider both inputs simultaneously with 

their two corresponding outputs (Yuan et al, 2009; van Heeswijk et al, 2013), which is an example of the 

more complicated information processing network shown in Fig. 1C. The input-output relationship and 

optimal distribution are shown in Fig. 5D and Fig. 5E, respectively. By sampling from the parameter 

posterior, we find that the maximum amount of information that can be transmitted is approximately 9 bits. 

In light of recent estimates of the channel capacity in mammalian signal transduction (Cheong et al, 2011; 

Uda et al, 2013) this might seem surprisingly high. Our approach, however, incorporates from the outset a 

probabilistic model to describe the biochemical reactions, which allows us to directly describe the 

information content between inputs and outputs. Here, of course, we consider the system isolated from 

sources of noise that typically affect single cell data. Moreover, the high capacity is a result of the high 

abundances of GS and PII, as well as the dynamics of the joint signalling system, which is characterized by 

fast PTM processes, that are capable of tracing the nitrogen state with high accuracy.  

Together with the optimality criterion discussed before, Figs. 5B and 5E reveal that the PTM system 

underlying nitrogen sensing in E. coli senses GLN and αKG with high fidelity at low abundances, and with 

reduced fidelity at high abundances. We would expect high levels of selection pressure for systems for 

sensing the availability and uptake of a key nutrient such as nitrogen. Intuitively, it makes sense that the 

information signalling system has been selected to give the highest precision for low levels of nutrient 

abundance, and that lower precision would suffice when ample levels of nutrients are available. In light of 

this we can revisit the results shown in Fig. 2: under low GLN conditions, sensing and response are high-

precision as PII uridylylation and GS adenylylation change sensitively in this range. These results also 

suggest that one major physiological role of GS adenylylation is to finely tune nitrogen assimilation fluxes 

and not necessarily just to prevent a glutamate depletion upon a rapid ammonium upshift as previously 

proposed (Kustu at al, 1984). 

Our study suggests that the nitrogen sensing PTM system (consisting of GS and PII and their associated 

(de)activating enzymes), as well as other PTM systems, may serve to perform reliable analogue information 

processing in vivo. The model, together with the optimality criterion derived here, explains how careful 

tuning and matching of signal levels to the sensing machinery allows molecular mechanisms to achieve high 

fidelity of signalling and information processing. The experimental and theoretical methodology presented 

here is general and can be readily transferred to study other signalling systems. In contrast to other studies of 

biological information processing, we used population data to reconstruct dynamics and noise characteristics 
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of signalling, because technology to measure input-output relationships in a metabolite sensing systems at 

the level of single bacterial cells does not currently exist. 

Our model assumes (i) that within our experimental conditions the PII homologue GlnK does not 

influence the adenylylation state of GS; and that (ii) PII uridylylation depends exclusively on UT/UR in 

response to glutamine levels (Schumacher et al, 2013; Jiang et al, 2007; van Heeswijk et al, 2013). We 

validated both assumptions by conducting similar time course experiments as above and showing that in a 

glnK knock-out strain GS adenylylation was not significantly changed and that in a UT/UR (glnD) knock-

out PII was 100% non-uridylylated (Fig. Supp. 3). 

 

DISCUSSION 

An organism’s survival depends on its ability to sense and interact appropriately with its environment. 

At the cellular level such processing of information is marshalled by molecular interaction networks. These 

take up cues from the environment and the cell’s physiological state, and transduce this information to the 

relevant cellular response machinery, which includes regulators of protein activity and transcriptional 

activators, as well as their down-stream targets. The precise way in which biological information is being 

processed is still largely unknown for most important signalling networks: while the connections for many 

signal transduction and stress-response pathways are known, or at least partly known (Huvet et al, 2011), 

the details and the dynamics of information flow are only beginning to be understood (Mc Mahon et al, 

2014) (Cheong et al, 2011; Uda et al, 2013). In particular, the ability of signal transduction networks to 

distinguish between quantitatively different signals, such as for instance ambient levels of different 

nutrients, is typically not well understood. Even for the better understood signal transduction networks 

(Clausznitzer et al, 2010; Kollmann et al, 2005) we have only sketchy knowledge of the way information is 

processed, or how information is mapped by the molecular machineries in order to allow the organism to 

deal with changing environmental conditions.  

The channel capacities that we found for the nitrogen sensing system are high, especially when 

compared to other systems that have recently been analyzed in a similar framework (Tkacik et al, 2008; 

2009; Cheong et al, 2011; Kollmann et al, 2005). (These studies were performed on single cells, with a 

number of advantages, but also possible disadvantages, e.g. fluorescent reporters may introduce additional 

sources of biochemical variability and substantial measurement noise) As techniques for single cell 

measurements of PTMs or metabolite abundances are not (yet) available, we took the approach of making 

population measurements, and then reconstructing noise levels based on biophysical predictions of 

stochasticity in biochemical signalling.)  However, they are consistent with recent theoretical predictions 

e.g. (Ziv et al, 2007; Sarpeshkar, 2014), and provide an important indication that currently available lower 

bounds on information capacity of biochemical signalling pathways may be substantially underestimated. 

Most previous studies have investigated signalling capacities that act at the level of protein expression or 

nuclear translocation, while the PII-GS PTM signalling system considered here directly acts on the 

metabolic level by regulating GS enzyme activity.  The high cellular abundances of PII and GS are partly 

responsible for the high information processing capacity that we found; and there are good biological 

reasons for why this system should perform with such a high fidelity (Endres & Wingreen, 2008; Kentner & 

Sourjik, 2009): E. coli processes the environmental nitrogen state with high accuracy so that metabolic 

fluxes can be finely tuned to cellular needs and nutrient availability. For microbes (as opposed to previous 

studies on isolated mammalian cells), there is a very direct link between sensing levels of environmental 

nutrients and evolutionary fitness (Klumpp & Hwa, 2014), especially given the large numbers of genomes 

and rapid generation times of bacteria, and so even subtle improvements in the fidelity of signal transduction 

will afford a fitness advantage (Lynch, 2012).  

Nitrogen assimilation through GS is a high-throughput metabolic pathway, with approximately one million 

glutamate + NH4
+ conversions into glutamine per cell per second during exponential growth (Schumacher et 

al, 2013). Here we have focussed on the two key components of the nitrogen sensing machinery. We find 

that the response tracks the availability of ambient nitrogen faithfully, continuously and with high fidelity – 

the machinery is not simply switched ON or OFF in response to changes in nitrogen availability, but is 

instead poised in a state of optimal sensitivity: at nitrogen concentrations that are encountered frequently, 

the concentrations of the nitrogen currencies GLN and αKG are reflected accurately by the activity levels of 
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GS and PII. This is, of course, entirely reasonable as a less accurate regulation of such a major metabolic 

pathway would carry a fitness penalty. 

The accuracy of nitrogen sensing appears to be reduced as the abundances of GLN and αKG enter regimes 

that should be rarely if ever encountered. This also makes perfect sense from both an information-theoretical 

as well as an evolutionary perspective. GS, PII and their associated (de-) adenylylating  and (de-

)uridylylating enzymes form the information channels along which input (GLN and αKG states) is 

transmitted, processed and returned as output (GS-A and PII-U). Shannon’s noisy channel coding theorem 

(Cover & Thomas, 2012) tells us that the channel capacity is the maximum information that can flow 

through a channel. This will be precisely the case if the most frequent signals are transmitted with high 

fidelity (Fig. 4), and the Fisher information strikes the necessary balance between input frequency and 

information processing fidelity. This outcome is intimately linked to the evolutionary relevance: life-history 

theory tells us that competition between individuals will be fiercest under commonly encountered 

conditions. Adaptation to rarely encountered environments is rarely beneficial (Stumpf et al, 2002) as the 

required trade-offs typically entail poor adaptation under other, more frequently encountered conditions; in 

this sense the Fisher information can indeed be the subject of selection (Frank, 2009). Signalling systems 

such as the GS-PII system can also form the basis for rationally designed (Barnes et al, 2011) biological 

sensing and computing devices, which naturally implement efficient inference procedures. 

Our theoretical methodology establishes a general and computationally efficient framework to analyze 

information processing in biochemical circuits. It enables us to quantify the information capacity and, more 

importantly, to understand how reliable molecular signalling processes can be. Information processing is 

thus of fundamental importance for bacterial survival. Being able to rationally manipulate or adapt such 

sensing machines will also have implications for biotechnology and agriculture as nitrogen metabolism is 

crucial to e.g. plant growth. 

 

Figures 

 

Figure 1: Glutamine and α-ketoglutarate sensing pathway as information processing channel. (A) PII and 

GS  states are regulated by the bifunctional enzymes uridylyltransferase/uridylyl-removing enzyme 

(UT/UR) and adenylyltransferase/ adenylyl-removing enzyme (AT/AR), respectively. Inputs of the 

pathway, GLN and αKG, allosterically regulate AT/AR and UT/UR. The activity of AT/AR is 

also  regulated by the signalling protein PII. Outputs of the pathway as uridylated PII and de-adenlylated GS 

indicate nitrogen scarcity. (B) Conventional view of the information channel, which connects one input with 

one output. (C) The pathway exhibits a complex connection pattern, where elements of the information 

processing layer interact with each other and with the outputs.  
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Figure 2: (A) The growth curves over 5 

experiments show very little variation is the 

behaviour of the population dynamics. Error 

bars correspond to the standard error of the 

mean, and the red bars indicate time-points at 

which samples were taken for quantitative 

metabolomics and proteomics analysis (see 

Supplementary Information for more details). 

(B) Total abundances of the inputs (GLN, 

αKG) and outputs (PII, PII-UMP, GS, GS-

AMP). (C) Total abundances of outputs in the 

UT/UR (glnD) knock-out. (D) PTM level of 

PII and GS as a function of the number if 

GLN molecules per cell (left) and of 

GLN/αKG ratio. Errors bars correspond to 

standard errors over three biological 

replicates, lines are the results from the 

simulations using parameters drawn from the 

inferred posterior distributions of the 

mathematical model of the pathway in Fig. 

1A. 
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Figure 3: Mathematical description of reactions involved in the model depicted in the Fig. 1A together with 

ordinary differential equations describing model dynamics (see also reference (Yuan et al, 2009), main text 

and Supplementary Information.)  

 

 

 

 

 

 

Figure 4: The optimal input distribution for a channel 𝑃∗(𝑋) is defined in terms of the uncertainties 

associated with the inferences of P(X|Y). For each intensity of the signal X, the optimal probability 𝑃∗(𝑋) is 

inversely proportional to the associated standard deviation of the distribution P(X|Y). 
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Figure 5: Optimal information processing via GLN – PII-U and (GLN, αKG) –  (PII-U, GS) channels.  

(A,D) Input – output relations, calculated using the model in Fig. 2C, presented as linear plot (A) for  GLN 

– PII-U and as heatmap (B) for (GLN, αKG)  –  (PII-U, GS). In the latter case unmodified GS is plotted. 

(B,E) Optimal input distributions calculated using the optimality criterium (Fig. 4). In addition to the 

heatmap, pannel (E) contains the same experimental measurements of GLN and αKG as in the Fig. 2B 

plotted as arrow connected black dots. (C,F) Posterior distributions of the information capacities C obtained 

from model parameter posterior (see also Fig. Supp. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 27, 2015. ; https://doi.org/10.1101/015792doi: bioRxiv preprint 

https://doi.org/10.1101/015792


 

12 

 

References 

Aebersold R, Burlingame AL & Bradshaw RA (2013) Western blots versus selected reaction 

monitoring assays: time to turn the tables? Mol. Cell Proteomics 12: 2381–2382 

Barnes CP, Silk D, Sheng X & Stumpf MPH (2011) Bayesian design of synthetic biological 

systems. Proc. Natl. Acad. Sci. U.S.A. 108: 15190–15195 

Bruggeman FJ, Boogerd FC & Westerhoff HV (2005) The multifarious short-term regulation of 

ammonium assimilation of Escherichia coli: dissection using an in silico replica. 272: 1965–

1985 

Brunel N & Nadal JP (1998) Mutual information, Fisher information, and population coding. 10: 

1731–1757 

Bueno R, Pahel G & Magasanik B (1985) Role of glnB and glnD gene products in regulation of the 

glnALG operon of Escherichia coli. J. Bacteriol. 164: 816–822 

Cheong R, Rhee A, Wang CJ, Nemenman I & Levchenko A (2011) Information Transduction 

Capacity of Noisy Biochemical Signaling Networks. Science 334: 354–358 

Clausznitzer D, Oleksiuk O, Løvdok L, Sourjik V & Endres RG (2010) Chemotactic response and 

adaptation dynamics in Escherichia coli. 6: e1000784 

Kustu S, Hirschman J, Burton D, Jelesko J, & Meeks  JC (1984) Covalent modification of bacterial 

glutamine synthetase: physiological significance. 197: 309–317 

Cover TM & Thomas JA (2012) Elements of Information Theory John Wiley & Sons 

Daniel R, Rubens JR, Sarpeshkar R & Lu TK (2013) Synthetic analog computation in living cells. 

497: 619–623 

Endres RG & Wingreen NS (2008) Accuracy of direct gradient sensing by single cells. PNAS 105: 

15749–15754 

Endres RG & Wingreen NS (2009) Maximum likelihood and the single receptor. 103: 158101 

Frank SA (2009) Natural selection maximizes Fisher information. 22: 231–244 

Hart Y, Madar D, Yuan J, Bren A, Mayo AE, Rabinowitz JD & Alon U (2011) Robust control of 

nitrogen assimilation by a bifunctional enzyme in E. coli. 41: 117–127 

Huvet M, Stumpf MPH, Toni T, Sheng X, Thorne TW, Jovanovic G, Engl C, Buck M, Pinney JW 

& Stumpf MP (2011) The evolution of the phage shock protein response system: interplay 

between protein function, genomic organization, and system function. Mol Biol Evol 28: 1141–

1155 

Jiang P, Mayo AE & Ninfa AJ (2007) Escherichia coli glutamine synthetase adenylyltransferase 

(ATase, EC 2.7.7.49): kinetic characterization of regulation by PII, PII-UMP, glutamine, and 

alpha-ketoglutarate. 46: 4133–4146 

Jiang P, Peliska JA & Ninfa AJ (1998) Enzymological characterization of the signal-transducing 

uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its 

interaction with the PII protein. 37: 12782–12794 

Kentner D & Sourjik V (2009) Dynamic map of protein interactions in the Escherichia coli 

chemotaxis pathway. Molecular Systems Biology 5: 

Khoury GA, Baliban RC & Floudas CA (2011) Proteome-wide post-translational modification 

statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1: 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 27, 2015. ; https://doi.org/10.1101/015792doi: bioRxiv preprint 

https://doi.org/10.1101/015792


 

13 

Kim M, Zhang Z, Okano H, Yan D, Groisman A & Hwa T (2012) Need-based activation of 

ammonium uptake in Escherichia coli. Molecular Systems Biology 8: 616 

Klumpp S & Hwa T (2014) Bacterial growth: global effects on gene expression, growth feedback 

and proteome partition. Curr. Opin. Biotechnol. 28C: 96–102 

Kollmann M, Løvdok L, Bartholomé K, Timmer J & Sourjik V (2005) Design principles of a 

bacterial signalling network. 438: 504–507 

Komorowski M, Costa MJ, Rand DA & Stumpf MPH (2011) Sensitivity, robustness, and 

identifiability in stochastic chemical kinetics models. Proc. Natl. Acad. Sci. U.S.A. 108: 8645–

8650 

Komorowski M, Finkenstädt B, Harper CV & Rand DA (2009) Bayesian inference of biochemical 

kinetic parameters using the linear noise approximation. BMC Bioinformatics 10: 

Komorowski M, Zurauskiene J & Stumpf MPH (2012) StochSens--Matlab package for sensitivity 

analysis of stochastic chemical systems. Bioinformatics 28: 731–733 

Libby E, Perkins TJ & Swain PS (2007) Noisy information processing through transcriptional 

regulation. Proc. Natl. Acad. Sci. U.S.A. 104: 7151–7156 

Liepe J, Barnes CP, Kirk P, Filippi S, Toni T & Stumpf MPH (2014) A framework for parameter 

estimation and model selection from experimental data in systems biology using approximate 

Bayesian computation. Nat Protoc 9: 439–456 

Lodeiro A & Melgarejo A (2008) Robustness in Escherichia coli glutamate and glutamine synthesis 

studied by a kinetic model. J Biol Phys 34: 91–106 

Lynch M (2012) Evolutionary layering and the limits to cellular perfection. PNAS 109: 18851–

18856 

Ma H, Boogerd FC & Goryanin I (2009) Modelling nitrogen assimilation of Escherichia coli at low 

ammonium concentration. J. Biotechnol. 144: 175–183 

Mc Mahon SS, Sim A, Filippi S, Johnson R, Liepe J, Smith D, Stumpf MP & Stumpf MPH (2014) 

Information theory and signal transduction systems: from molecular information processing to 

network inference. Seminars in Cell & Developmental Biology 35: 98–108 

Mehta P, Goyal S, Long T, Bassler BL & Wingreen NS (2009) Information processing and signal 

integration in bacterial quorum sensing. Molecular Systems Biology 5: 

Ninfa AJ, Jiang P, Atkinson MR & Peliska JA (2000) Integration of antagonistic signals in the 

regulation of nitrogen assimilation in Escherichia coli. Curr. Top. Cell. Regul. 36: 31–75 

Okano H, Hwa T, Lenz P & Yan D (2010) Reversible adenylylation of glutamine synthetase is 

dynamically counterbalanced during steady-state growth of Escherichia coli. J. Mol. Biol. 404: 

522–536 

Picotti P & Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, 

potential, pitfalls and future directions. 9: 555–566 

Sarpeshkar R (1998) Analog versus digital: extrapolating from electronics to neurobiology. 10: 

1601–1638 

Sarpeshkar R (2014) Analog synthetic biology. Philos Trans A Math Phys Eng Sci 372: 20130110–

20130110 

Schumacher J, Behrends V, Pan Z, Brown DR, Heydenreich F, Lewis MR, Bennett MH, Razzaghi 

B, Komorowski M, Barahona M, Stumpf MPH, Wigneshweraraj S, Bundy JG & Buck M 

(2013) Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 27, 2015. ; https://doi.org/10.1101/015792doi: bioRxiv preprint 

https://doi.org/10.1101/015792


 

14 

regulator NtrC in vivo. MBio 4: e00881–13 

Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J, Hoffmann A, Tsimring L & Wollman R (2014) 

Accurate information transmission through dynamic biochemical signaling networks. Science 

346: 1370–1373 

Stumpf MPH, Laidlaw Z & Jansen VAA (2002) Herpes viruses hedge their bets. 99: 15234–15237 

Tkacik G, Callan CG & Bialek W (2008) Information flow and optimization in transcriptional 

regulation. PNAS 105: 12265–12270 

Tkacik G, Walczak AM & Bialek W (2009) Optimizing information flow in small genetic 

networks. Phys. Rev. E (3) 80: 031920 

Toni T, Welch D, Strelkowa N, Ipsen A & Stumpf MPH (2009) Approximate Bayesian 

computation scheme for parameter inference and model selection in dynamical systems. J. R. 

Soc. Interface 6: 187–202 

Uda S, Saito TH, Kudo T, Kokaji T, Tsuchiya T, Kubota H, Komori Y, Ozaki Y-I & Kuroda S 

(2013) Robustness and Compensation of Information Transmission of Signaling Pathways. 

Science 341: 558–561 

van Heeswijk WC, Westerhoff HV & Boogerd FC (2013) Nitrogen assimilation in Escherichia coli: 

putting molecular data into a systems perspective. Microbiol. Mol. Biol. Rev. 77: 628–695 

Van Kampen NG (2011) Stochastic Processes in Physics and Chemistry Elsevier 

Wallace EWJ, Gillespie DT, Sanft KR & Petzold LR (2012) Linear noise approximation is valid 

over limited times for any chemical system that is sufficiently large. IET Syst Biol 6: 102–115 

Wedel A, Weiss DS, Popham D, Dröge P & Kustu S (1990) A bacterial enhancer functions to tether 

a transcriptional activator near a promoter. Science 248: 486–490 

Yuan J, Doucette CD, Fowler WU, Feng X-J, Piazza M, Rabitz HA, Wingreen NS & Rabinowitz 

JD (2009) Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. 5: 302 

Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA & Kustu S 

(2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a 

defense against nitrogen limitation. 97: 14674–14679 

Ziv E, Nemenman I & Wiggins CH (2007) Optimal signal processing in small stochastic 

biochemical networks. PLoS ONE 2: e1077 

 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 27, 2015. ; https://doi.org/10.1101/015792doi: bioRxiv preprint 

https://doi.org/10.1101/015792

