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Abstract

Background: The detailed analysis of transcriptional regulation is crucially
important for understanding biological processes. The gap gene network in
Drosophila attracts large interest among researches studying mechanisms of
transcriptional regulation. It implements the most upstream regulatory layer of
the segmentation gene network. The knowledge of molecular mechanisms
involved in gap gene regulation is far less complete than that of genetics of the
system. Mathematical modeling goes beyond insights gained by genetics and
molecular approaches. It allows us to reconstruct wild-type gene expression
patterns in silico, infer underlying regulatory mechanism and prove its sufficiency.

Results: We developed a new model that provides a dynamical description of gap
gene regulatory systems, using detailed DNA-based information, as well as spatial
transcription factor concentration data at varying time points. We showed that
this model correctly reproduces gap gene expression patterns in wild type
embryos and is able to predict gap expression patterns in Kr mutants and four
reporter constructs. We used four-fold cross validation test and fitting to random
dataset to validate the model and proof its sufficiency in data description. The
identifiability analysis showed that most model parameters are well identifiable.
We reconstructed the gap gene network topology and studied the impact of
individual transcription factor binding sites on the model output. We measured
this impact by calculating the site regulatory weight as a normalized difference
between the residual sum of squares error for the set of all annotated sites and
the set, from which the site of interest was left out.

Conclusions: The reconstructed topology of the gap gene network is in
agreement with previous modeling results and data from literature. We showed
that 1) the regulatory weights of transcription factor binding sites show very
weak correlation with their PWM score; 2) sites with low regulatory weight are
important for the model output; 3) functional important sites are not exclusively
located in cis-regulatory elements, but are rather dispersed through regulatory
region. It is of importance that some of the sites with high functional impact in
hb, Kr and kni regulatory regions coincide with strong sites annotated and
verified in Dnase I footprint assays.
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Background
The detailed analysis of transcriptional regulation is crucial for understanding bi-

ological processes, and interest in this problem grows due to new large-scale data

acquisition techniques. However despite our expanding knowledge of the biochem-

istry of gene regulation, we lack a quantitative understanding of this process at a

molecular level. We do not understand the mechanism of transcription factor (TF)
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interactions with adaptor proteins, basal transcriptional machinery and chromatin.

We do not know why some cis-regulatory elements (CREs) are modular, while other

are scattered over many kilobases of DNA. We cannot effectively predict the aspects

of spatiotemporal expression mediated by a particular DNA region and which set

of transcription factor binding sites (TFBS) forms a functional CRE.

The segment determination network in Drosophila attracts large interest among

researches studying mechanisms of transcriptional regulation. The body of fruit

fly consists of repeated morphological units called segments. The borders of seg-

ments are demarcated (determined) simultaneously during the blastoderm stage,

just before the onset of gastrulation. The segment determination is under control of

hierarchical cascade of segmentation genes, most of which are transcriptional regu-

lators. These genes fall into 4 classes. At the bottom of the cascade are the maternal

co-ordinate genes bicoid (bcd, one letter code – B) and caudal (cad, one letter code

– C). The other groups of genes are gap genes (Kruppel (Kr, one letter code – K),

giant (gt, one letter code – G), hunchback (hb, one letter code – H), knirps (kni,

one letter code – N), tailess (tll, one letter code – T) and huckebain (hkb, one letter

code – J), pair-rule and segment-polarity genes.

There is a large amount of experimental data available about the segment deter-

mination system. The gap gene system implements the most upstream regulatory

layer of the segmentation gene network. It receives inputs from long-range protein

gradients encoded by maternal coordinate genes and establishes discrete territories

of gene expression. In this process the gap gene cross-regulation plays important

role. The formation of gap gene expression domains is a dynamic process: the do-

mains do not form in one place, but instead in the posterior half of the embryo they

shift anteriorly during cleavage cycle 14.

At the molecular level we know the genomic location of many functionally veri-

fied CREs, as well as identity and binding affinity of sites for relevant regulating

TFs. A wealth of genome scale functional studies provide data on Chip-Seq, RNA-

Seq and DNaseI accessibility measurements. The analysis of these datasets demon-

strated that maternal co-ordinate and gap TFs bind to thousands of sites across the

Drosophila genome and that the dominant force in cells that modifies the intrinsic

DNA specificity of TFs is the inhibition of DNA binding by chromatin [1]. High

resolution imaging and image processing techniques provide spatiotemporal data

on segmentation gene expression at cellular resolution [2].

In spite of these efforts we still do not understand the molecular mechanisms

involved in gap gene regulation. It is known that the the gap regulatory regions

usually contain several CREs driving expression in a precise spatiotemporal pat-

tern and often containing large number of apparent redundant sites for the same

TF. Certainly this molecular complexity is important, however the mechanisms

underlying it remain elusive.

Mathematical modeling extends the boundaries of genetics and molecular ap-

proaches. In general the sufficiency of inferred regulatory mechanism cannot be

proven without reconstructing the system ab initio. Currently there is no assay,

which accurately reproduces eukaryotic transcription in vitro from well-defined

reagents. Mathematical modeling allows us to reconstruct wild type gene expression

patterns in silico, to infer underlying regulatory mechanism and prove its sufficiency.
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Three major classes of mathematical models have been applied to model regula-

tion in gap gene network: Boolean, differential equation-based and thermodynamic

(also termed fractional occupancy) models [3].

Boolean models represent regulatory relations as logic gates and in the gap gene

system they were applied to identify feedback loops which account for topology of

gene network at steady-state.

The differential equation based models represent a regulatory network by differ-

ential equations, in which a set of molecules such as mRNAs and proteins interact

by explicit rules defined in terms of kinetic equations. When applied to the gap

gene system these models were able to infer regulatory interactions responsible for

formation of the expression domain boundaries, as well as to explain mechanisms

for the dynamic anterior shifts of gap domains. It should be noted that the decipher-

ing of the mechanisms of domain motion would be impossible with classic genetic

approaches in default of mutants defective for any specific domain shift.

Thermodynamic models rely on simple biophysical descriptions of DNA-protein

interactions and statistical physics. They attempt to infer information about gene

regulation from the sequences of CREs and the binding affinities of TFs to these

elements. This formalism was used to model expression levels in constructs driving

reporter gene expression from different gap gene regulatory elements.

It should be noted that all these models have advantages and limitations from

the perspective of input data quantity, degree of complexity, and the time inter-

val in which they can model gene expression. Boolean models are suitable to work

with large amounts of data produced by genome-wide experiments, but they do

not in general consider DNA sequence information. Thermodynamic-based models

specifically take into account the features of CREs. However these models provide

output for a particular time moment and do not capture the system dynamics. On

the contrary differential equation models allow scientists to consider transcriptional

regulation over continuous time intervals. The primary limitation of these mod-

els is the size of gene network, as the number of parameters rapidly grows with

increase of gene number and the problem becomes computationally infeasible. Be-

sides, the differential equation based models usually describe gene interactions in

terms of activation/repression and the fine details of transcriptional regulation that

thermodynamic-based models offer, are not included.

Evidently, to decipher the molecular mechanisms involved in gap gene regulation

we need to understand how genetic information encoded in regulatory elements

of these genes is translated into dynamical aspects of gap gene expression. This

can be achieved by combining strength of both thermodynamic and differential

equation based formalisms. Here we present a new model that provides a dynamical

description of gap gene regulatory systems, using detailed DNA-based information,

as well as spatial TF concentration data at varying time points. We showed that

this model correctly reproduced gap gene expression patterns in wild type embryos

and is able to predict gap expression patterns in mutants and reporter constructs.

Results and discussion
Sequence based model of gap gene network

We developed a new model of the gap gene regulatory network which takes as input

the affinities of predicted TFBS together with spatial TF concentration data. The
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output of the model are spatial and temporal patterns of four gap genes hb, Kr,

gt, and kni in the form of protein concentration profiles over about one hour of

development.

The binding sites for TFs Bcd, Cad, Hb, Gt, Kr, Kni, Tll and Hkb were predicted

using positional weight matrices (PWMs, see Additional file 1 and Methods). The

predicted TFBS affinities were calculated based on the PWM score of the corre-

sponding strongest site as in [4]. The spatial TF concentration data were taken from

FlyEx database, which contains data on segmentation gene expression at cycles 13

and 14A of the early embryo development [5].

Our model consists of two layers. The first layer is a thermodynamic based calcu-

lation of the gene activation level. We adopt and modify a method of this calculation

presented in [4]. The probability of transcriptional gene activation is assumed to be

dependent on the rate of basal transcriptional machinery (BTM) recruitment, which

is determined by different probabilities of all possible occupancy states of the regu-

latory region. Each occupancy state represents a different TF binding configuration

on the DNA sequence. As many CREs require mechanisms such as synergy, coop-

erativity, quenching, and direct repression for proper function [6, 7, 8, 9, 10] the

model incorporates additional mechanistic features such as short range repression

and homotypic cooperativity in transcription factor-DNA binding [11].

The short range repression, also known as quenching, is a mechanism by which

repressors influence activators only if they are bound within a “short range” of

the activator binding site [12, 13]. According to this mechanism, a bound repressor

cannot interact with the basal complex, but instead leads to a new configuration of

the enhancer where its neighborhood in the DNA sequence becomes forbidden to

binding by any other TF [4].

One feature of the model which can be incompatible with the gap gene network is

the fact that the type of regulatory action (activation or repression) and its strength

for a given TF is the same for all target genes. Previous modeling and experimental

results showed that this is not true for gap genes, which may simultaneously exhibit

self-activation and repression for other gap genes [14]. Taking this into account, we

modified the model to allow different regulatory actions for TFs depending on a

target gene, as described in more details in the next section.

Following [4] we consider that transcriptional output is proportional to the prob-

ability of the BTM binding. To model the spatio-temporal dynamics of mRNA and

protein synthesis in the early embryo we write two sets of the reaction-diffusion

differential equations [15, 16, 17]. We added the delay parameter to account for the

average time between events of transcription initiation and corresponding protein

synthesis.

We modeled, in one dimension, a region of the blastoderm corresponding to the

central midline of the embryo. We consider a time period of cleavage cycles 13 and

14A. Cleavage cycle 14A is about one hour long and is divided into 8 temporal

classes (T1-T8) of 6.5 minutes each. The number of nuclei along the A-P axis is

doubled when going from c13 to c14. The model was fitted to data on gap pro-

tein concentrations from the FlyEx database [5]. Optimization was carried out by

differential evolution (DEEP) method [18, 19] to minimize the combined objective

function. This function is a sum of the residual sum of squared differences between
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the model output and data, weighted pattern generating potential and a penalty

term, which limits a growth of regulatory weights. The weighted pattern generating

potential was proposed in [20] to account not only for the magnitude of difference

between model and data, but also for the direction of change.

The model outputs with the score of combined optimization function below 350000

were inspected visually and the solutions, which fit the data without visual defects

were selected. We obtained eleven similar solutions which produced calculated ex-

pression patterns that closely match the gap gene expression profiles in the wild

type embryo (Figure 1).

To validate our fitting procedure we performed a four-fold cross-validation test.

The entire dataset was partitioned randomly into four subsets. Then, the model

was fitted using the data contained in three subsets (a training set). The obtained

parameter values were used to make predictions for the subset left out (a test set)

and the quality of prediction was estimated by calculation of the root mean square

(rms) (see Methods section). This is repeated four times so that each subset is left

out exactly once. This procedure resulted in the mean rms score 28.42 and stan-

dard deviation 1.29 that is comparable with the scores for original parameter sets

rmsmean = 27.15 and rmssd = 2.14. We applied Student’s t-test with Welch modi-

fication [21] to confirm that the difference between these rms scores is statistically

insignificant, P > 0.10. Figure 2 shows the boxplot of the rms values for original

and “cross-validation” networks.

In order to further validate that the model is sufficient in data description we

constructed a random dataset (“negative control”) in which the expression patterns

of kni and hb, as well as expression patterns of Kr and gt were shuffled with respect

to gene regulatory regions. Consequently, the data the model is fitted to may be

considered “nonsense”. In this test we hoped that no parameter set could be found

making the model output to coincide with “nonsense” data. We noted that a portion

of resulting parameter sets has very small affinity constants (K < 10−4) for all

TFBS of several TFs, and, hence, these TFs are almost switched off. Evidently,

such a situation is not feasible and therefore we removed these parameter sets from

further analysis. The mean rms score for the obtained set of parameter vectors

was 41.07. The boxplot of the rms scores for biological and negative control data

is presented in Figure 2. According to Student’s t-test with Welch modification

t = 11.26, P − value = 5.101 × 10−15, consequently, the difference in rms mean

values is statistically significant.

Gene network topology

In segmentation network a TF can function as both activator and repressor. To

account for the possibility of dual regulation we introduced the genetic inter-

connectivity matrix T ab, which characterizes the action of TF b on gene a. The pos-

itive elements of the matrix are statistical weights αA of interaction between bound

TF and the BTM, while negative elements correspond to the repressor strength βR.

We assume that a bound repressor R acts via the short-range repression mechanism.

We describe the topology of regulatory network by assigning the elements of T

matrix into two categories: ‘activation’ (positive parameter values) and ‘repression’

(negative parameter values). The predicted topology corresponds to categories con-

taining most of the parameter values (Table 1). The main features of the gap gene
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network topology are in agreement with previous modeling results and data from

literature [14]. Bcd and Cad activate zygotic gap gene expression in a majority

of circuits. Genes hb, Kr, kni, and gt exhibit autoactivation. Third, the reciprocal

interactions between the trunk gap genes Kr, hb, kni and gt are repressive. An

exception is activation of hb by Gt and Kr. Tll represses Kr and gt, and acts as

activator of hb and repressor of gt in a majority of networks. For a majority of

parameter sets Hkb represses hb, Kr and gt, but acts as kni activator in a half of

networks.

Parameter identifiability

For further studies we selected one of the parameter sets based on its best visual

coincidence with experimental data and low rms value equal to 25.18. In this net-

work (Table 2) Kr is activated by Bcd and slightly repressed by Hb. Cad activates

hb, Kr, gt, but slightly represses kni. Tll activates hb and represses all other trunk

gap genes. Hkb acts as a repressor. TFs Hb, Kr, Gt and Tll have high cooperativity

constants ω close or equal to 5. On the other hand, Bcd and Cad received low co-

operativity values close to 1 together with Kni and Hkb. Affinity binding constants

K for a TF strongest site vary by three orders of magnitude between 0.0001347 for

Hkb and 0.049862 for Kni.

To understand how reliable our model is we performed the identifiability analysis

of the model parameters estimated by fitting to experimental data.

We decide about the sensitivity of the model solution to parameter changes by cal-

culating the confidence intervals for the estimated parameter values (see Methods).

This calculation is performed under the assumption that error in data is normally

distributed. The error in the gene expression data almost linearly increases with

the mean concentration, as it happens for the Poisson distribution. We apply the

variance-stabilizing transform y =
√
x to both data and model solution in order

to make the error independent of the mean. The parameter estimates found for

original objective turned out to be also the minimizers for the transformed one.

The predicted topology of regulatory network is based on the sign of the T matrix

elements. We constructed confidence intervals for the parameter set from Table 2

in the vicinity of the model solution. Some values of regulatory parameters are

small, and it is necessary to inspect the significance of the values or their signs.

We classify parameters as non-identifiable if their confidence interval includes both

positive and negative values and hence contains zero. It can be seen in Figure 3

that the non-identifiable regulatory parameters are autoregulation of Kr and the

regulation of Hb by Tll, which means that we cannot make significant conclusions

about these interactions. The regulatory parameters which involve Hkb as a repres-

sor have large confidence interval. The same is true for the regulatory parameter

which characterizes the action of Gt on tll. The analysis shows good identifiability

of all other regulatory parameters. Therefore, the identifiability analysis sustains

the gene network topology deduced from classification of parameter values only.

The confidence intervals for thermodynamic parameters are given in Table 3. For

most of these parameters the confidence intervals are small. The exceptions are

cooperativity constants ω for Kr, Tll and Hkb, which have very large confidence

intervals.
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The confidence intervals provide the full information about the parameter esti-

mates only in case of parameter independency, otherwise the intervals are overes-

timated. Moreover, strong correlation between parameters may lead to their non-

identifiability, because a change in one parameter value can be compensated by the

appropriate changes of another parameters and, hence, does not significantly influ-

ence the solution. It was reported that parameters in the thermodynamic models,

for example, affinity constants and cooperativity constants, may be correlated [22].

Because of that we investigated the dependencies between parameters using the

collinearity analysis of the sensitivity matrix. This method allows to reveal corre-

lated and hence non-identifiable subsets of parameters.

The sensitivity matrix was analyzed in the vicinity of the point in the parameter

space that define the optimal model solution as described in the Methods section.

The collinearity index γk (3) was computed for all the subsets of dimension k of

the parameter set with the threshold value fixed at 4. For k = 3, this threshold

value corresponded to approximately 90% pairwise Pearson correlation between

columns of the sensitivity matrix. We identified poorly identifiable by finding 2-

and 3-dimensional subsets with the collinearity index exceeding the threshold value

(Table 4). It turned out that almost all parameter combinations in these subsets

involve parameters defined as non-identifiable by exploration of the confidence inter-

vals, namely regulatory parameter TKK for Kr autoactivation, regulatory parame-

ter TKJ , which involves Hkb as a repressor and Kr as a traget gene, or cooperativity

constant ωHkb. The correlation between parameters in this approach is related to

large confidence intervals of parameter estimates. For example, very large confidence

interval for both parameters THT and ωHkb can be explained by 52% correlation

between these parameters. In the same way 93% correlation between TKK and TKJ

explains large confidence intervals for these parameters.

It should be noted that the gene network topology revealed in this work is to a

large extent in agreement with experimental evidences [14], however several dispar-

ities exist. In our model Bcd activates Kr in some networks and represses in the

others. It was shown that in bcd mutant mothers Kr expression is not reduced but

expands anteriorly [23]. This fact leads to proposal that high concentrations of Bcd

repress Kr [23, 24], however this effect was later explained by the absence of the

anterior gt and hb domains [25]. The activating effect of Bcd on Kr is supported by

the fact that Kr expression in reporter constructs is activated by Bcd [26, 27]. The

finding that Kr is still expressed in embryos from bcd mutant mothers has been

explained by general transcription factor activation [28] or low levels of Hb [24, 29].

Our analysis does not allow us to make the unambiguous interpretation of the mech-

anisms of Hkb, Tll and Cad action as these TFs repress and activate target genes

in much the same number of networks. It is believed that high concentrations of

Cad at the posterior of the embryo activate gap genes. However at about 10 – 15

minutes before gastrulation Cad expression domain refines into a narrow posterior

stripe [2]. The posterior hb domain is completely absent in tll mutants [30, 31],

that suggests activation of posterior hb by Tll. Some data indicates that Hkb does

repress hb, Kr and gt. For example, in hkb mutant embryos the posterior hb domain

is unable to retract from the posterior pole [32]. Besides, in embryos mutant for

the maternal gene vasa (vas), tll and hkb the Kr domain expands further posterior
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than in those mutant for vas and tll alone [33]. Finally, in embryos mutant for tll

the posterior domain of gt expands less to the posterior pole that in tll hkb double

mutants [34]. An explanation for the model failure to provide unambiguous predic-

tion of the mechanism of Cad, Tll and Hkb action can be found in our analysis of

parameter identifiability. This analysis showed that many parameters defining gap

gene regulation by Hkb, Cad and Tll are non-identifiable (see Table 3, Table 4 and

Figure 3) and therefore we cannot draw any conclusion about these interactions.

Prediction of gap expression in Kr mutants and reporter constructs

We use parameters estimated on wild-type expression data to predict in silico gap

gene expression patterns in Kr mutants and reporter constructs.

To simulate Kr null mutants we set the maximum synthesis rates RK
u and RK

v

for Kr to zero and fed the concentration profiles of TFs from mutant embryos to

the model. Null mutation in Kr leads to significant decrease in gap gene expression

levels in cycle 14A. Also, the posterior Gt domain exhibits a large shift, and positions

of posterior Gt and Kni domains overlap [17]. Our model reproduces these features

correctly: posterior Gt domain shifts anteriorly and coincides with abdominal Kni

domain and the expression levels of gap genes hb, gt, and kni are reduced (Figure 4).

To model gap gene expression driven by reporter constructs we take as input

only those TFBS that overlap with CRE contained in a reporter. The CRE coor-

dinates were taken from RedFly database [35]. The following reporter constructs

were used: gt (-3), Kr CD1,Kr 730, kni 223+64 and kni kd . The gt (-3) construct

contains CRE that drives the reporter gene expression in the gt posterior domain,

kni kd contains CRE that reproduces kni posterior expression and both Kr CD1

and Kr 730 are expressed in the central Kr domain [26, 36, 35]. The kni 223+64

construct contains CRE that conducts the posterior kni expression [37]. As is ev-

ident from Figure 5 the model is able to correctly predict the spatial features of

expression in all constructs: the positions of predicted expression patterns coincide

well with the positions of expression domains in constructs, as well as with the

positions of corresponding gap gene endogenous domains. It should be also noted

that enzymatic qualitative method used for staining precludes the comparison of

expression levels predicted in silico and driven by constructs.

These results convincingly demonstrate that our model is able to correctly predict

expression patterns in null mutants and reporter constructs from fits to wild-type

data only. This provides an independent proof of model correctness and opens a

way for its application for deciphering the mechanisms of transcriptional regulation

and gene expression, as will be discussed below.

Contribution of individual TFBS to gap gene expression

Functional genomics studies of animal regulatory regions lead to the hypothesis that

transcription factors bind to a majority of genes over a quantitative series of DNA

occupancy levels and that the weak regulatory interactions may be of biological

significance [38]. Here we use our model to corroborate this idea. Specifically we

tried to find the answer on three questions. Are TFBS of small functional impact

still important for the model output? Does the correlation between the functional

significance of TFBS and its binding affinity exist? Are functional important sites

dispersed through regulatory region or predominately located within CREs?
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To estimate the functional impact of an individual TFBS, i.e. its influence on the

overall quality of model output, we define the regulatory weight (RW) of TFBS wr

as

wr = (RSSref −RSSmut) /RSSref ,

where RSSref is the residual sum of squares error between the wild type expression

data and the model solution for the full set of annotated sites, and RSSmut is the

same quantity calculated with the site of interest excluded.

We have calculated the RW for each annotated site and for each gap gene reg-

ulatory region. In bioinformatics PWM models are generally used to calculate the

BS affinity. We found that the RWs of TFBS show very weak correlation with their

PWM score (Spearman’s rank correlation coefficient ρ = 0.15, P = 3.5 × 10−6;

Pearson correlation coefficient r = 0.17, P = 2.7 × 10−7). This suggests that the

influence of a TFBS on the phenotype is to a great extent explained not by the

binding strength per se but by the way the binding sites are involved in the gene

regulatory network.

In Figure 6 we plot the RW of TFBS relative to their position in a regulatory

region. Some sites overlap with the reporter construct CREs, while the other do

not. A number of sites from both these categories have high impact on the model

solution, however the majority of sites have relatively low individual impact.

Consequently, we arranged the sites in the order of increasing RWs and investi-

gated how the removal of a different number of sites with the lowest RW influences

the quality of model solution, which we evaluated by calculating the relative RSS

score. As it is evident from Figure 7 the removal of as little as 10 TFBS with small-

est RW results in 10% corruption of the model output. As a number of removed

sites increases the model quality rapidly deteriorates. This in silico experiment

demonstrates that sites with low RW are also important for the model output.

To study the spatial arrangement of the functionally important sites we con-

structed a new set of sites by filtering out the sites outside CREs (Table 5). We

use this set and parameters obtained by fitting to the full set of TFBS to simu-

late gap gene expression patterns. As it is evident from Figure 8 the exclusion of

sites located outside CREs worsens the quality of model output (rms = 34.28 as

opposed to rms = 28.42 with full set of sites), but does not lead to the full pattern

corruption.

By visual examination of the plot (Figure 6) we selected the threshold value wr

equal to 0.005 and further analyzed the sites with wr exceeding this threshold.

The hb regulatory region contains 11 such sites for Hb and Bcd (see Table S1

in Additional File 1). Two CREs are identified in this region. The hb anterior

activator that is both necessary and sufficient for anterior hb expression is located

about 200 bp upstream of the P2 promoter [39, 40] and contains several weak and

strong binding sites for Bcd [39, 41] and Hb [42]. Late zygotic expression in the

posterior cap and stripe, as well as PS4 is driven from both P1 and P2 promoters

under control of the hb upstream enhancer located about 3 kb upstream of the

P1 promoter [43, 44]. This element is regulated by Hb and has several predicted

Tll and Kr TFBS [44, 43]. We found that 2 and 4 of 11 sites fall within anterior
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activator and upstream enhancer correspondingly (see Table S1 in Additional file

1). Interestingly both of the anterior activator sites overlap with strong Bcd sites

annotated and verified by DNase I footprinting (Table 6).

The Kr regulatory region contains 10 sites for Gt, Kni, Tll and Cad with RW

exceeding the theshold. All this sites fall within different CREs contained in the

region (see Table S2 of Additional File 1). Both Gt and Tll sites within the Kr 730

CRE overlap with annotated DNase I footprint sites (Table 6). Both Kr 730 and

Kr CD1 elements produce Kr expression in the central domain [26, 27, 45, 46].

We identified 28 sites with RW exceeding the threshold for Bcd, Hb, Kr, Kni

and Gt in the gt regulatory region. The (gt (-1)) CRE drives gt expression in both

anterior and posterior domains, while three other CREs reproduce reporter gene

expression in the posterior (gt (-3)) and different anterior domains (gt (-6), gt (-

10)) [47, 36, 48]. Only 5 of identifed sites are located outside of CREs (see Table

S3 of Additional file 1).

The kni regulatory region contains several CREs: kni (-5) produces anterioven-

tral expresssion, kni 223+64 drives expression in the abdominal region and con-

sists of two discrete sub-elements, kni (+1) produces expression in both regions. In

kni 223+64 the 223-bp sub-element contains one Hb and six Cad TFBS and drives

Cad-dependent reporter expression, while the 64-bp sub-element has six binding

sites for Bcd and mediates Bcd-dependent expression in the anterior part of the

embryo. Interestingly, the anterior expression of the 64-bp element becomes re-

pressed when Hb binds to the 223-bp element [37]. We found 19 sites with RW

exceeding threshold for Bcd, Hb, Cad, Kr, Kni and Tll in kni regulatory region

(see Table S4 of Additional file 1). Only 6 of these sites are located outside the kni

CREs. It is important to note that two sites within kni (223) sub-element overlap

with Cad annotated sites confirmed by DNase I footprint assays (Table 6).

Conclusions
To model the regulatory mechanisms underlying the formation of gap gene expres-

sion domains we followed the formalism proposed in [49] and developed a two-layer

model, in which firstly the activation level of each target gene in each embryo nu-

cleus and at each time moment was calculated and at the next step mRNA and

protein concentrations for this gene were computed. For calculation of the acti-

vation level we adapted and modified the thermodynamic approach in the form

proposed in [4]. To calculate mRNA and protein concentrations we used differential

equations. This innovative approach allowed us to connect the DNA-level informa-

tion to the system dynamics and thus to overcome a serious limitation of the pure

thermodynamic-based models which are static by their nature.

We further modified the method proposed in [49] by replacing the regulatory

parameters αA and βR by the genetic inter-connectivity matrix T ab and introduced

the delay parameter τ in our differential equations to account for the average time

between events of transcription initiation and corresponding protein synthesis. This

makes it possible to translate the elementary regulatory events at the DNA level

to the level of gene interactions.

Our modeling approach has clear limitations. The promoter state is calculated by

using methods of statistical thermodynamics, while the actual expression products
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result from this promotor state following the dynamics prescribed by the differen-

tial equations. This combination of intrinsically static and dynamical methods in

one model is only consistent when there is an evident separation of the timescales

of corresponding processes, the equilibration process of TF-DNA binding in the

nucleus and the production process of transcribed mRNA and translated protein

molecules. Taking into account the complex nature of transcription in eukaryotes,

we believe that this assumption is a reasonable approximation for Drosophila genes.

One indication for the length of transcription time specific for gap genes is in the

fact that the gap gene expression products appear only in late cleavage cycles dur-

ing the early Drosophila development partially because early cycles are too short

for appropriate mRNA maturation [2]. On the other hand, the assumption about

equilibrium states of the enhancer binding configurations is also only an approxi-

mation. There are clear data showing that such processes as nonspecific binding of

TF to DNA and the facilitated diffusion of nonspecifically bound TF to a specific

site play their role [50]. Despite the thermodynamic approach proved its efficiency

in multiple applications, its proper extension for modeling more dynamic binding

configurations seems promising.

The model takes as input the affinities of predicted TFBS together with spatial

TF concentration data. The output of the model are spatial and temporal patterns

of four gap genes hb, Kr, gt, and kni in the form of protein concentration profiles

over about one and a half hour of development.

We used four-fold cross validation test and fitting to random dataset to validate

the model and proved its sufficiency in data description. The identifiability analysis

showed that most model parameters except of some parameters describing regula-

tion by Tll, Hkb and Cad are well identifiable.

We demonstrated that our model is able to correctly predict expression patterns

in Kr null mutants and five different reporter constructs from fits to wild-type data

only. This provides an independent proof of model correctness and opens a way

for its application for deciphering the mechanisms of transcriptional regulation and

gene expression.

We used our model in two ways. Firstly, at the level of gene interactions we recon-

structed the gap gene network topology and demonstrated that the basic features

of this topology are in agreement with previous modeling results and data from

literature [14].

Secondly, at the DNA level we studied the impact of individual TFBS on the

model output. We measured this impact by calculating the site regulatory weight

as a normalized difference between the residual sum of squares error for the set

of all annotated sites and the set, from which the site of interest was left out.

We found that the regulatory weights of TFBS show very weak correlation with

their PWM score. This suggests that the influence of a TFBS on the phenotype is

to a great extent explained not by the binding strength per se but by the way the

binding sites are involved in the gene regulatory network. We also demonstrated that

sites with low regulatory weight are important for the model output. This result

corroborates the hypothesis about the biological significance of weak regulatory

interactions [38]. Our in silico experiments also showed that functional important

site are not exclusively located in CREs but are rather dispersed through regulatory
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region. It is of importance that some of the sites with high functional impact in hb,

Kr and kni regulatory regions coincide with strong sites annotated and verified in

Dnase I footprint assays.

Methods
Transcription factor and gene expression data

We used protein concentrations of transcription factors (referred to as TF in

the text) Bcd, Cad, Hb, Gt, Kr, Kni, Tll and Hkb from FlyEx database

(http://urchin.spbcas.ru, [5]) as inputs to the model. This database contains data

on segmentation gene expression at the protein level and at discrete time points of

cycle 13 and eight time classes (T1-T8) of cycle 14A. To estimate unknown param-

eters we used the expression patterns of gap genes hb, Kr, kni and gt from the same

database. Model predictions were tested using gap gene expression patterns from

Kr− embryos obtained from Kr1 loss-of-function allele [17], as well as reporter con-

structs driving reporter gene expression from the Kr CD1, Kr 730, gt (-3), kni kd

and kni 223+64 CREs (see REDFly database [35]).

Sequence data

For each of four gap genes hb, Kr, kni and gt we predicted binding sites for Bcd, Cad,

Hb, Gt, Kr, Kni, Tll and Hkb in the region spanning 12 Kbp upstream and 6Kbp

downstream of the transcription start site. Transcription factor binding sites were

predicted with position weight matrices (PWMs) [51], which were used to calculate

the log-odds score of a site [52]. The PWMs were described in [53] and can be found

at http://www.autosome.ru/iDMMPMM/ (see also the Additional file 1). The PWM

thresholds were selected as in [54].

We took in the model the TFBS overlaping with the DNase I accessibility regions,

which correspond to open chromatin. It was recently shown that in open chromatin

regions predictions of transcription factor binding sites based on DNA sequence and

in vitro protein-DNA affinities alone achieve good correlation with experimental

measurements of in vivo binding [55]. The result of TFBS prediction, as well as

positions of the DNase I accessibility regions and known CREs from the REDFly

database are presented for Kr gene in Figure 9 and for all other genes in Additional

File 1. The total number of TFBS for each TF and each gap gene considered in the

model is shown in Table 5.

The model

To model the regulatory mechanisms underlying the formation of gap gene expres-

sion domains we adapted the formalism proposed in [49] and developed a two-layer

model, in which firstly the promoter occupancy (activation level) of each target

gene in each embryo nucleus and at each time moment was calculated. The second

layer of the model is based on differential equations and considers both mRNA and

protein synthesis.

For calculation of promoter occupancy we adapted the thermodynamic approach

in the form proposed in [4]:

Ea
i (t) =

∑

σ W
a
i (σ, t)Q

a(σ)
∑

σ W
a
i (σ, t)Q

a(σ) +
∑

σ W
a
i (σ, t)

,
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where σ is a molecular configuration of the regulatory region for gene a, Qa(σ) is the

statistical weight of the interaction between TFs and bound basal transcriptional

machinery (BTM), and W a
i (σ, t) is the statistical weight of configuration σ for

nucleus-time coordinate (i, t), that depends on the concentration vbi (t) of all TFs

regulating gene a in nucleus i at time moment t (see [4] for details).

When cooperative binding is absent, we can write the statistical weight of a config-

uration σ as W (σ) =
∏

i

q(Si)
σi , where σi takes values 0 or 1 depending on whether

site Si is occupied by its TF in the configuration or not. q(Si) is the strength of site

i computed as

q(S) = K(Smax)v
TF exp[LLR(S)− LLR(Smax)]

where vTF is TF concentration, LLR(·) is the log-odd score of a site, computed

based on the known PWM of the TF and the background nucleotide distribution,

Smax is the strongest TFBS and K(Smax) is its binding affinity constant.

In presence of cooperative binding, the statistical weight of a configuration is

multiplied by a factor ω.

W (σ) =
∏

i

q(Si)
σi

∏

(i,j)|i<j

ωij(dij)
σiσj

where ωij(dij) denotes the contribution to statistical weight due to interaction be-

tween the TFs bound to sites Si and Sj, ωij is cooperativity constant, d represents

the distance between the TF binding sites.

The statistical weight of the interaction between TF and bound BTM Q(S) is the

product of the terms corresponding to each bound TF in the configuration. He and

coathors [4] assumed that each TF is either an activator or repressor and proposed

and “short-range” mechanism for repression based on the existing experimental

work on a few well-characterized or synthetic CREs. A bound activator A interacts

with the bound BTM with statistical weight αA > 1.

We assume that a bound repressor R does not directly interact with the BTM, but

acts via short-range repression mechanism presumably making DNA in its “neigh-

borhood” (defined by a range parameter dR) inaccessible to binding by any other

TF. This configuration with statistical weight scaled by a factor of βR competes

with those with the chromatin accessible to activators, thus effectively reducing the

occupancy of activators. The parameter βR represents the strength of the repressor

and may be interpreted as the equilibrium constant of the reaction that changes the

chromatin state from accessible to inaccessible. There is no repression effect when

βR is close to 0 while all activator sites are shut down in the neighborhood in the

case of βR close to ∞.

In our model we consider that a TF can be activator for one target gene and

repressor for another. Therefore we replaced the regulatory parameters αA and βR

by the genetic inter-connectivity matrix T ab, which characterizes the action of TF

b on gene a. The size of the matrix is Ng × (Ng + Ne), where Ng is the number

of gap genes in the model (Ng = 4) and Ne is the number of external regulatory

inputs (bcd, cad, tll and hkb genes, which are not regulated by gap genes, Ne = 4).
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Consequently, βR is translated into negative components of the T ab matrix and

positive ones become αA in order to calculate the activation level. This is done for

each target gene in each nucleus and for each integration time step.

In the simplest approximation, the target gene expression level vai (t) is propor-

tional to its activation level Ea
i (t). We introduced the delay parameter τ to account

for the average time between events of transcription initiation and corresponding

protein synthesis, as the model is fitted to gene expression data at the protein level.

The second layer of the model is based on differential equations and considers

both mRNA and protein synthesis. The equation for mRNA concentration ua
i (t) of

target gene a in nucleus i includes production, diffusion and decay terms, and the

equation for protein concentration vai (t) describes protein synthesis, diffusion and

degradation:

dua
i /dt = Ra

uE
a
i (t) +Da

u(n)[(u
a
i−1 − ua

i ) + (ua
i+1 − ua

i )]− λa
uu

a
i , (1)

dvai /dt = Ra
vu

a
i (t− τav ) +Da

v(n)[(v
a
i−1 − vai ) + (vai+1 − vai )]− λa

vv
a
i , (2)

where n is the cleavage cycle number, Ra
v and Ra

u are maximum synthesis rates,

Da
v , D

a
u are the diffusion coefficients, and λa

v and λa
u are decay rates for protein and

mRNA of gene a. The decay rates are related to the mRNA and protein half-lives

τa1/2 by λa = ln 2/τa1/2. The diffusion term was added to the equation for mRNA

to smooth the resulting model output as it was too “spiky” without this term. The

parameter τav is the delay parameter.

We model the dynamics of gap gene expression in cleavage cycles 13 and 14A and

in one dimension along the central midline of the embryo. The cycle 14A is divided

into eight temporal classes of 6.5 min each. The number of nuclei along the A-P

axis is doubled when going from cycle 13 to 14A.

Model fitting

The model was fitted to the protein concentration data for gap genes hb, Kr, gt, and

kni from the FlyEx database. Parameter values were optimized by the differential

evolution (DEEP) method, described in [18, 19].

The total number of optimized parameters in model (1)–(2) is 68. This includes

32 regulatory parameters T ab, 4 basal machinery constants, 8 binding affinity con-

stants, 8 cooperativity constants, 4 range parameters for short range repression,

4 delay parameters and 8 decay rates. The diffusion constants and synthesis rates

were fixed during the optimization.

We used the residual sum of squared differences between the model output and

data (RSS) as the main objective function.

RSS =
∑

∀g,n,t:∃datag
n(t)

(vgn(t)− datagn(t))
2 rms =

√

RSS

D

where g, n and t are gene, nucleus and time point respectively and D is the number

of available experimental observations.
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As was explained in [20], RSS can lead to counter-intuitive evaluations of the

quality of fit and, therefore, we used the weighted Pattern Generation Potential

proposed in this work as the second objective function:

wPGP = 0.5 + 0.5 ∗ (penalty − reward)

where

reward =

∑

i

ri ∗min(ri, pi)

∑

i

ri ∗ ri

and

penalty =

∑

i

(rmax − ri) ∗ |pi − ri|
∑

i

(rmax − ri) ∗
∑

i

(rmax − ri)

were pi and ri are respectively predicted and experimentally observed expression in

nucleus i, rmax is the maximum level of experimentally observed expression.

The third objective function penalizes the squared values of the regulatory pa-

rameters T ab:

Penalty =
∑

∀a,b

(T ab)2

This function limits the growth of regulatory parameters, which have very wide

ranges.

Consequently, the combined objective function is defined by:

Error = RSS + 5 ∗ 104 ∗ wPGP + 0.001 ∗ Penalty,

where the weights were obtained experimentally.

Parameter identifiability

The parameter identifiability analysis was performed as described in [17]. The anal-

ysis finds non-identifiable parameters by calculating asymptotic confidence inter-

vals [56, 57, 58]. The (1− α)-confidence intervals for the parameter estimates θ are

calculated in the vicinity of model solution as follows:

(

θ − θ̂
)T

J(θ)T J(θ)
(

θ − θ̂
)

≤ m

N −m
S(θ̂)Fα,m,N−m

where the Jacobian J(θ) = ∂RSS(θ)/∂θ is the so called sensitivity matrix of size

N ×m, Fα,m,N−m is an α-quantile of F -distribution with m and N −m degrees of

freedom.

The confidence intervals of smaller size correspond to more reliable parameter

estimates. In the case when the sign of the parameter estimate provides the most
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important feature, the estimate is assumed identifiable if the confidence interval is

bounded away from zero.

The confidence intervals are overestimated for strongly correlated parameters.

Correlation of parameters leads to computational errors since the sensitivity matrix

is ill-conditioned.

Another method to study interrelations between parameters is the collinearity

analysis [59]. The method is applied to reveal the so-called near collinear columns

of the sensitivity matrix, namely the matrix of partial derivatives of the model

solution with respect to the parameter vector. Identifiability of a parameter subset

is estimated by collinearity index defined as

γk =
1√
λk

, (3)

here λk is the minimal eigenvalue of the submatrix of the Fisher information matrix.

High values of collinearity index means that the subset of parameters is poorly

identifiable because at least two parameters in the subset are interrelated. More

details on the methods can be found in [17].
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hunchback promoters. Nature 341, 335–337 (1989)

43. Margolis, J.S., Borowsky, M.L., Steingrimsson, E., Shim, C.W., Lengyel, J.A., Posakony, J.W.: Posterior stripe

expression of hunchback is driven from two promoters by a common enhancer element. Development 121,

3067–3077 (1995)
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Figure 1 Model output for a representative network as compared to protein concentration
profiles from the FlyEx database. Results are shown for 3 time moments – early (T1), middle
(T3) and late (T7) cleavage cycle 14A. Though there are some defects in predicted patterns at
T1, the model correctly reproduces the dynamic of the system.
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Figure 2 Box-and whisker plot of rms values obtained by fitting to biological data, in
cross-validation test and by fitting to random dataset.
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Figure 3 95% confidence intervals for estimates of the T matrix elements of a representative
network. The parameter estimates are labeled by single-letter notations of genes: hb(H), Kr(K),
gt(G), kni(N), bcd(B), cad(C), tll(T), J(HKb). The first letter corresponds to the target gene
(e.g., HT stands for THT ). HT has the largest interval and the interval for KK crosses the zero
axis.
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Figure 4 In silico predictions of gap gene expression patterns in Kr
− mutants. Parameters

were fitted using wild type data only. The model correctly reproduces the characteristic features of
gap gene expression in mutants, namely the decrease of gap gene expression levels and the
anterior shift of gt domain.
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Figure 5 In silico prediction of gap gene expression patterns in reporter constructs. The
construct gt (-3) contains CRE that drives the reporter gene expression in the gt posterior
domain, kni kd contains CRE that reproduces kni posterior expression, both Kr 730 and Kr CD1
are expressed in the Kr central domain. Both kni 223+64 and kni kd constructs contain CRE
that conducts the posterior kni expression [37].
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Figure 6 Plot of the regulatory weights of TFBS relative to their position in a regulatory
region. The binding sites for different TF are shown in different color. The transcription start site
is at zero position. Results for hb regulatory region are presented relative to TSS of the longest
transcript. Sites within CRE are shown as triangles, sites outside CRE are drawn with circles.
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Figure 7 Impact of site removal on the quality of model output. The sites were removed in
increasing order of their regulatory weights.
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Figure 8 Model solution for sites within CREs as compared to gene expression data from the
FlyEx database. The parameters were obtained by fitting to the full set of TFBS.
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Figure 9 Prediction of binding sites in Kr’s regulatory region. The panels present predicted
binding sites for eight TFs. The light-gray boxes denote the DNase accessibility regions, and the
dark-gray bars mark positions of the RedFly CREs that drive gene expression in the blastoderm.
The transcribed region of the locus is marked in red. Only the sites overlapping with the DNase
accessibility regions were included in the model.
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Tables

Table 1 Prediction of network topology based on classification of T matrix elements. Numbers in cell
define in how many networks a given interaction was classified as activation or repression. Columns
correspond to TFs, rows to target genes.

Name hb Kr gt kni bcd cad tll hkb
hb (11,0) (1,10) (3,8) (0,11) (11,0) (8,3) (7,4) (3,8)
Kr (9,2) (10,1) (0,11) (1,10) (4,7) (8,3) (0,11) (1,10)
gt (1,10) (0,11) (11,0) (1,10) (9,2) (6,5) (1,10) (4,7)
kni (0,11) (0,11) (0,11) (11,0) (11,0) (8,3) (4,7) (5,6)

Table 2 The parameter estimates for a representative network. Columns correspond to TFs, rows to
target genes. K and ω are affinity and cooperativity constants respectively. Poorly identifiable
interactions are marked with ∗

.
Name hb Kr gt kni bcd cad tll hkb
hb 2571.86 -10.96 472.97 -703.89 3821.42 1232.89 824.14∗ -5487.58
Kr 136.22 222.92∗ -311.29 -60.24 33.35 9084.28∗ -3388.59 -993.95∗

gt -1528.17 -4250.83 8310.29 -1513.01 918.23 2272.27 -3612.94 -1208.58
kni -3946.83 -2424.43 -3399.80 8973.61 5232.66 -11.30 -5126.47 -9175.97

K 0.005731 0.004891 0.036382 0.049862 0.008036 0.005595∗ 0.000223 0.001347
ω 5.000000 4.958060 5.000000 1.000053 1.000012 1.000001∗ 4.565639 1.132316∗

Table 3 Estimates and 95% confidence intervals for affinity and cooperativity constants K and ω in a
representative network. Left and right interval borders are presented in columns marked ”a” and ”b”
respectively.

Parameter Value a b
KH 0.005731 5.663804e-03 5.798196e-03

KK 0.004891 4.705545e-03 5.076455e-03
KG 0.036382 3.604491e-02 3.671909e-02
KN 0.049862 4.933258e-02 5.039142e-02
KB 0.008036 7.944617e-03 8.127383e-03
KC 0.005595 5.547746e-03 5.642254e-03

KT 0.000223 2.106789e-04 2.353211e-04
KJ 0.001347 1.180521e-03 1.513479e-03
ωH 5.000000 4.829196e+00 5.170804e+00
ωK 4.958060 -4.610752e+00 1.452687e+01

ωG 5.000000 4.499104e+00 5.500896e+00
ωN 1.000053 7.967040e-01 1.203402e+00
ωB 1.000012 9.202935e-01 1.079730e+00
ωC 1.000001 9.090420e-01 1.090960e+00
ωT 4.565639 7.928902e-02 9.051989e+00

ωJ 1.132316 -2.311281e+01 2.537744e+01

Table 4 Two- and three-dimensional subsets of T-matrix elements with collinearity indices higher
than 4. The collinearity index for the parameter combination THT and ωHkb does not exceed
threshold, however these parameters show high correlation (Pearson correlation coefficient 52%) that
explains their large 95% confidence intervals.

Parameter combinations Collinearity index
TKK TKJ 4.08
THT ωJ 1.47

TKC TKJ ωC 7.86
TKK TKC ωC 7.17
TKC TKJ KC 6.61
TKK TKC KC 6.13
TKJ KC ωC 5.81

TKK TKC TKJ 5.58
TKK TKJ KC 4.88
TKK TKJ ωC 4.85

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2015. ; https://doi.org/10.1101/015776doi: bioRxiv preprint 

https://doi.org/10.1101/015776
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kozlov et al. Page 27 of 28

Table 5 Total number of sites used in the model. Columns correspond to target genes, rows to TFs.
The number of sites present in known CREs is given in brackets.

hb Kr gt kni
Hb 88(23) 82(64) 80(53) 62(50)
Kr 18(8) 10(7) 34(26) 11(7)
Gt 22(5) 24(21) 32(23) 14(11)
Kni 22(7) 16(13) 29(21) 13(8)
Bcd 31(12) 14(12) 45(34) 22(19)
Cad 28(13) 22(20) 30(23) 17(13)
Tll 18(5) 20(16) 23(19) 18(14)
Hkb 14(2) 4(4) 20(13) 6(13)

Table 6 Sites with regulatory the weight wr > 0.005 that overlap with annotated DNase I footprint
sites from RedFly database.

Gene Coordinates TF word wr RedFly ID RedFly coord. RedFly sequence
Kr 21110739..49 Tll AGAAGTCAAA 0.008 TF000549 21110733..51 GCAATTAAGAAGTCAAATT
Kr 21110829..41 Gt TTCTTGCGTCAT 0.038 TF000554 21110829..44 ATTCTTGCGTCATAAA
Kr 21112818..30 Gt ATTTTACGTAAC 0.010 TF000555 21112818..33 AATTTTACGTAACATT
kni 20690608..18 Cad AACCATAAAA 0.018 TF000807 20690608..21 TAACCATAAAAATT
kni 20690581..91 Cad AGTCATAAAG 0.015 TF000806 20690584..94 TCATAAAGTCA
hb 4520486..93 Bcd GGATTAG 0.021 TF001047 4520483..96 TTCTGGATTAGAGC
hb 4520381..88 Bcd GGATTAG 0.021 TF001045 4520377..89 TCAAGGGATTAGA
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Additional Files

Additional file 1 — Supporting information

Positional weight matrices used to predict TFBS, positions of predicted binding sites in the regulatory regions of gap

genes and lists of the binding sites with regulatory weight.
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