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Abstract: 

The evolutionary forces that maintain genetic variation for quantitative traits within populations remain 
poorly understood. One hypothesis suggests that variation is maintained by a balance between new 
mutations and their removal by selection and drift. Theory predicts that this mutation-selection balance will 
result in an excess of low-frequency variants and a negative correlation between minor allele frequency and 
selection coefficients. Here, we test these predictions using the genetic loci associated with total expression 
variation (eQTLs) and allele-specific expression variation (aseQTLs) mapped within a single population of 
the plant ​Capsella grandiflora​. In addition to finding eQTLs and aseQTLs for a large fraction of genes, we 
show that alleles at these loci are rarer than expected and exhibit a negative correlation between phenotypic 
effect size and frequency. Overall, our results show that the distribution of frequencies and effect sizes of 
the loci responsible for local expression variation within a single, outcrossing population are consistent 
with mutation-selection balance. 
 
Significance: 

Biologists have long sought to explain why we see genetic variation for traits in populations despite the 
expectation that selection will remove most variation. We address this question by using gene expression as 
a model trait and identifying the genetic loci that affect gene expression in a single, large population of the 
plant ​Capsella grandiflora​. Alleles at loci that affect expression were rarer than expected by chance and there 
was a negative correlation between phenotypic effect size and frequency of these alleles. These 
observations are consistent with mutation-selection balance, the hypothesis that variation is maintained by 
a balance between new mutations and their removal by selection and drift.  
 

Introduction 

 
Genetic variation for quantitative traits persists within populations despite the expectation that prevalent 
stabilizing selection will reduce genetic variance. One hypothesis suggests that variation is maintained by a 
balance between new mutations and their removal by selection and drift, resulting in an excess of 
low-frequency variants and a negative correlation between minor allele frequency and selection coefficients 
(1)​. While studies of allele frequency spectra show that purifying selection is often prevalent in genomic 
sequence ​(2–4)​, little is known about how the genetic variants under selection relate to phenotype, and 
ultimately, how phenotypic variation is maintained within populations. Association mapping can identify 
specific loci influencing phenotype providing candidates for further analysis of selection ​(5)​. In particular, 
mapping the local regulatory variants that affect gene expression can identify a large number of genetic loci 
that affect phenotype. Additionally, mapping the genetic basis of gene expression will answer questions 
about the basic biology of gene regulation, for example, by testing predictions that conserved non-coding 
sequences (‘CNSs’) are constrained because they have regulatory function ​(6)​. 
 
Early eQTL studies mapped expression divergence between two lines, finding that many genes have local 
expression QTL ​(7, 8)​. These studies have provided insight into selection on eQTLs; for example,  a 
correlation between recombination rate and eQTL density implies that background selection is a dominant 
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force acting on expression variation in ​Caenorhabditis elegans ​(9)​ ​and a skew towards rare allele frequencies in 
promoters of genes with eQTLs suggests that purifying selection may act on expression variation ​(10)​. 
However, eQTL studies of population-level genetic variation have thus far been limited to a few study 
systems ​(11–15)​ and only one study, in humans, has identified a negative correlation between phenotypic 
effect size and frequency​(14)​. In addition, human eQTL studies have shown that loci expected to be 
involved in selective sweeps are more likely to be eQTLs than other loci​(16)​, allele frequencies of eQTLs 
that increase expression of a potentially deleterious coding SNP are under stronger purifying selection than 
those that do not ​(17)​, and eQTL allele frequencies within populations are linked to local adaptation​(18, 
19)​. To date, eQTL studies in plants have used genetic crosses ​(20–22)​ or species-wide samples ​(23–25)​, 
making it difficult to distinguish evolutionary forces acting within and between populations. In sum, we 
currently lack comprehensive tests of selection on within-population eQTLs in any system, especially in 
plants. 
 
Here, we map local regulatory loci affecting expression in 99 members of a single large population of 
Capsella​ ​grandiflora ​(Brassicaceae​)​, an obligate outcrosser. As might be expected from its large N​e​ and relative 
lack of population structure, purifying and positive selection are strong in ​C. grandiflora​(3, 26)​, making it an 
ideal system for investigating the maintenance of genetic variation in the face of selection  
 
Results and Discussion 

 
We sequenced 22,895,738,517 100bp paired-end reads of DNA from 188 individuals, with a median of 
119,321,591 reads per individual. Of these reads, a median of 93% mapped per individual (range: 
51%-93%, the two individuals with <80% were not sampled for RNAseq). We called 9,526,786 SNPs with 
a mean depth of 45 reads per individual. Linkage disequilibrium between SNPs decays rapidly: mean R​2 
between SNPs less than 10bp apart is 0.25, and this decays to 0.12 within 100bp (Fig. S1). An analysis of 
population structure ​(27)​ found that the maximum likelihood number of populations was K=1, suggesting 
no widespread structure. We measured genome-wide gene expression in 99 of these individuals using 
RNAseq from young leaf tissue, generating 4,988,540,400 100bp paired-end RNAseq reads with a median 
of 49,549,336 reads per individual (range: 42,627,096-106,283,910). Of these, a median of 94% (range: 
89-95%) mapped to genes (Table S1).  
 
We mapped eQTLs by performing Mann-Whitney U tests comparing expression between individuals 
homozygous for the most common allele at a given SNP and those heterozygous at that SNP, for all SNPs 
within 5kb of the transcription start and end sites (Fig. 1). We omitted rare homozygotes from the analysis 
because most local regulation acts additively in ​cis ​(12)​ and low sample sizes for rare variants reduce power. 
Out of 5,507,316 SNPs tested against the expression of 18,692 genes, 39,628 SNPS are significantly 
associated with expression of 6,624 nearby genes (FDR = 0.1, p < 8.2 x 10​-4​, Fig. S2 A). These SNPs often 
clustered locally (Fig. S3 A,B), as would be expected if non-causal SNPs are in linkage disequilibrium with 
causal SNPs. Patterns of functional enrichment in human eQTLS suggest that SNPs most strongly 
associated with expression are more likely causal than those showing weaker associations​(13)​, so to prevent 
variation in linkage disequilibrium from affecting subsequent analyses while increasing the likelihood of 
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retaining causal SNPs, we chose the most significantly associated SNP for each gene for further analysis (N 
= 6,624). While there are likely multiple causal eQTLs for many genes, choosing one significant SNP per 
gene allows us to generate a large independent sample of eQTLs for further analysis. 
 
If eQTLs act in ​cis​, heterozygous eQTLs will cause allele-specific expression (ASE), providing an additional 
signature of regulatory variation. We measured ASE within individuals by calculating the mean expression 
difference between alleles, standardized for sequencing depth. We then mapped QTLs for ASE 
(‘aseQTLs’) by performing Mann-Whitney U tests comparing ASE in individuals that were homozygous at 
a local SNP and those that were heterozygous at that SNP (Fig. 1). We excluded coding SNPs from this 
analysis because their genotype might confound ASE measurement. Out of 3,966,423 SNPS tested, 26,957 
SNPs were significantly associated with ASE of 5,882 nearby genes (FDR = 0.1, p < 5.4 x 10​-4​, Fig S1 B). 
Our analysis did not require a directional effect of SNP genotype on ASE, but 22,436 (83%) of the 
noncoding SNPs associated with ASE have higher ASE in heterozygotes, as would be expected if these 
SNPs control expression in ​cis​. We selected the most strongly associated noncoding SNP per gene for 
further analysis and we also required that ASE had to be higher in heterozygotes at that SNP than 
homozygotes, leaving 4,580 aseQTLs (Fig S2 B).  
 
SNPs located near the transcription start site (TSS) and in 5’ UTRs were more likely to be eQTLs and 
aseQTLs than SNPs further away from the gene (Fig 2A), consistent with data from humans and ​Drosophila 
(11, 12, 14)​.​ In addition, CNSs near the TSS were enriched for eQTLs and aseQTLs relative to 
non-conserved sites (Fig. 2A), suggesting that genetic variation within CNSs represents a major source of 
standing variation in gene expression, although bootstrapped confidence limits for these overlap slightly in 
aseQTLs. In contrast, CNSs in 5’UTRs were not enriched for eQTLs or aseQTLs, consistent with 
observations that selection strength is relatively similar in conserved and non-conserved sites in these 
regions​(3)​.​ However, the detection of a large number of eQTLs outside of conserved regions suggests that 
regulatory element turnover is common in Brassicaceae (Table S2). There were 2,236 genes that had both 
eQTLs and aseQTLs, significantly more than expected by chance (X​2 ​= 471, p < 2.2x10​-16​). Of these 2,236 
genes, 411 had the same SNP most significantly associated both with expression and ASE. 
 
Next, we tested eQTLs and aseQTLs for signatures of selection. Purifying selection will reduce the 
frequency of causal alleles at QTLs, but allele frequency also controls sample size in association studies, 
affecting QTL detection. Rare alleles have an increased likelihood of false negatives, because of lower 
power, and false positives, since expression is not normally distributed and an outlier in a small sample is 
more likely to lead to a positive association than an outlier in a large sample. The increased likelihood of 
false positives in rare alleles makes evolutionary inferences especially challenging because it mimics the 
signal of purifying selection. 
 
To generate an appropriate null distribution for QTL allele frequency, we permuted assignments between 
expression level and genotype for every gene 1000 times and ran eQTL analyses using permuted data. On 
average, 3,258 SNPs were associated with total expression in our permutations, consistent with an FDR of 
0.1, since 39,628 SNPs were associated with the observed data. However, observed eQTLs from 
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un-permuted data were significantly rarer than those found in permuted data (mean N=2,047), consistent 
with the action of purifying selection (Fig. 3A). This observation is conservative, because we have not 
accounted for reduced power to detect associations on rare alleles. We also investigated permuted 
aseQTLs, and found on average 3,194 SNPs associated with ASE in each permutation, which is slightly 
more than expected given our FDR of 10% (26,597 SNPs were associated with ASE in un-permuted data). 
As with eQTLs, aseQTLs were significantly rarer than those found in permuted data (Fig. 3B). These 
results hold when we designate a random significantly-associated SNP per gene as the eQTL or aseQTL 
(Fig S4 A,B). In addition, eQTLs and aseQTLs are significantly rarer than permuted eQTLs and aseQTLs 
when only SNPs 1-5 kb upstream or downstream of genes are considered (Figure S5, A,B), and when sites 
are separated into high and low recombination sets or by substitution type (Figure S5 C,D). Thus, the 
frequency distribution of both eQTLs and aseQTLs is consistent with the predominance of 
mutation-selection balance. 
 
We incorporated effect sizes to test for an additional signature of selection. Theory predicts that 
mutation-selection balance will maintain mutations at frequencies inversely proportional to the strength of 
selection acting against them ​(1)​, suggesting that QTLs under purifying selection should show a negative 
correlation between minor allele frequency and phenotypic effect size, assuming that phenotypic effect size 
correlates with the strength of selection. However, this correlation is also expected if QTLs evolve 
neutrally for two reasons. First, we have low power to detect rare small-effect QTLs. Second, effect size 
estimation error is greater for rare alleles, and when effect size is over-estimated, an association is more 
likely due to winner’s curse, leading to a negative correlation between effect size and minor allele frequency 
(28)​.  
 
To avoid variation in power across allele frequency, we repeated the eQTL and aseQTL analysis, 
down-sampling our population to 50 individuals in each test, such that 40 individuals were drawn from the 
more common genotype and 10 individuals were drawn from the less common type for each SNP tested. 
As a consequence, for every SNP we test, sample sizes of major and minor genotype classes are equalized 
regardless of allele frequency in the population. We also measured effect sizes in this subsample to avoid 
any relationship between allele frequency and effect size estimation error. Despite reducing our sample size 
by half, we still detected 594 eQTLs and 670 aseQTLs, when using the most significantly associated SNP 
per gene (above a p-value threshold corresponding to FDR = 0.1; p<2.6x10​-5 ​for eQTLs, p<8.2x10​-5​ for 
aseQTLs). In addition, we decoupled the identification of associations from the estimation of effect size by 
comparing allele frequencies of SNPs identified as eQTLs with these SNP’s effects on ASE, avoiding the 
double-testing issue responsible for winner’s curse. 
 
Consistent with mutation-selection balance, an eQTL’s effect on ASE was negatively correlated with eQTL 
allele frequency (p < 0.05, correlation coefficient = -0.154, n=251) and total expression effect size was 
negatively correlated with aseQTL allele frequency (p<0.01, correlation coefficient = -0.104, n=670). 
eQTL and aseQTL allele frequency were also negatively correlated with the corresponding effect size when 
we designated a random significantly-associated SNP per gene as the focal eQTL or aseQTL (Figure S4 
C,D). One possible explanation for the stronger association between eQTL allele frequency and ASE effect 
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than between aseQTL allele frequency and total expression effect may be that ASE variation results from 
cis​ regulatory variation while total expression variation is determined by both ​cis​ and ​trans​ regulatory 
variation. Since we only map local QTLs that mainly act in ​cis​, extra noise from ​trans ​regulatory variation 
likely contributes to total expression variation, weakening the association between allele frequency and total 
expression effect. 
 
We also investigated the allele frequency spectra of the eQTLs and aseQTLs detected using the 
downsampling approach. In this case it was appropriate to use the frequencies of all SNPs tested as a 
neutral hypothesis because false positive and false negative rates are independent of minor allele frequency. 
The minor allele frequencies of the eQTLs and aseQTLs detected with downsampling were rarer than the 
frequencies of all SNPs tested (Figure 5). The skew towards rare alleles was stronger here than in the QTLs 
detected with the whole data set, perhaps because the reduced sample size of the downsampling approach 
allows us only to detect large effect QTLs, which are likely to be under stronger negative selection.  
 
It is important to note that some of our QTLs may not be causal alleles, but are instead in linkage 
disequilibrium with a causal allele. However, this is unlikely to strongly affect the allele frequencies of the 
QTLs we detect because the extent of linkage disequilibrium is constrained by similarities in allele 
frequency since the coefficient of linkage disequilibrium (​D​) is highest when the frequencies of both loci 
are similar. Consistent with this inference, power analyses have shown that a causal SNP and a tagging 
SNP in incomplete LD must have similar allele frequencies for a GWAS to successfully identify an 
association with the tagging SNP ​(29)​. Therefore, our conclusions about the allele frequencies of QTLs 
should be robust to the inclusion of non-causal linked alleles.  
 
Our mapping of QTLs for expression and allele-specific expression genome-wide in a single population of 
C. grandiflora​ demonstrates that the frequencies and phenotypic effect sizes of these QTLs are consistent 
with mutation-selection balance. In addition, the enrichment of eQTLs in CNSs directly upstream of genes 
further supports CNS’s potential role as regulatory elements; however, the large number of QTLs 
discovered outside of conserved regions suggests significant turnover in regulatory elements between 
species. Alternatively, QTLs may create new deleterious regulatory interactions, instead of disrupting 
conserved functional sites. Taken together, our results, indicate that much of local expression variation 
observed at the population level is deleterious and support the role of mutation-selection balance in 
maintaining genetic variation within populations. 
 

Materials and Methods 

 
Study system and plant material 
 
Capsella grandiflora​ is an obligately outcrossing member of the Brassicaceae family with a large effective 
population size (​Ne​~600,000), relatively low population structure and a range that spans northern Greece 
and southern Albania​(26, 30)​. In June 2010, we collected seeds from approximately 400 plants growing in a 
roadside population of​ C. grandiflora ​near Monodendri, Greece (Population Cg-9​(30)​). We germinated and 
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grew one individual from each parent in the University of Toronto greenhouses and performed crosses 
between independent random pairs of plants to generate the seeds used in this study. By growing the 
parents in a common environment and then assaying their progeny in a common environment, we reduced 
the influence of maternal effects and unknown micro-environmental effects on gene expression. 
 
Approximately 10 seeds from each cross were sterilized in 10% bleach followed by 70% ethanol, placed on 
sterile plates filled with 0.8% agar with Mursashige-Skoog salts (2.15 g/L), stratified in the dark at 4​o​C for 
one week, and then allowed to germinate in a growth chamber at 22​o​C and 16 hour photoperiod. After one 
week, we transplanted two of the seedlings from each cross into 4 inch pots filled with ProMix BX soil and 
returned the pots to the growth chamber. After another week, pots were thinned down to one seed per 
cross. Throughout the experiment, pots were randomized once every week to minimize location effects. 
 
Leaf tissue from young leaves was collected for RNA extraction four weeks after transplanting and 
immediately flash frozen in liquid nitrogen. RNA was extracted using plant RNA extraction kits (Sigma) 
from 2 or 3 samples from each plant. The extracted RNA was quantified with a Qubit spectrophotometer 
and the samples from each plant were pooled such that each pool contained the same amount of RNA 
from each sample. RNA was sequenced at the Genome Quebec Innovation Centre on two flow cells with 
8 samples per lane. Reads were 100bp long and paired end. We extracted DNA from leaf tissue using a 
CTAB based protocol. Whole genome sequence from each individual was obtained through 100 cycles of 
paired-end sequencing in a Hiseq 2000 with Truseq libraries (Illumina), with three individuals sequenced 
per lane. 
 
Genomic data 
 
We mapped DNA sequence data to the ​C. rubella​ reference genome​(31)​ with Stampy v1.0.19. After 
bioinformatic processing with Picard tools, we realigned reads around putative indels with GATK 
RealignerTargetCreator and IndelRealigner and compressed the resulting bams with GATK ReduceReads. 
Raw SNP calls were generated by joint calling of all samples in GATK v2.81 UnifiedGenotyper. We 
subsequently followed GATK Best Practices for Variant Quality Recalibration using a high confidence 
subset of the  raw calls generated by filtering snps for concordance with common variants (minor allele 
frequency > 0.11) in a species-wide sample of ​C. grandiflora ​(3)​ as well as suspect realignments (transposable 
elements, centromeres, 600bp intervals containing extreme Hardy-Weinberg deviations, 1kb intervals with 
evidence of 3 or more snps in reference-to-reference mapping). A relatedness analysis revealed that six 
individuals were more related to eachother than expected in an outcrossing population, perhaps because of 
introgression from ​C. rubella​, so we removed these individuals from the analysis. We measured population 
structure using fastStructure on a set of 56,011 biallelic snps distributed genome wide that had been pruned 
for LD following the recommended analysis stream ​(27)​. 
 
To map RNA reads, we constructed our own codon-only reference sequence by stitching together the 
exons and UTRs of each gene into a scaffold using reference gene annotations ​(31)​. We mapped to this 
codon-only reference using Stampy 1.0.21 with default settings. We chose to use Stampy over other 
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RNA-specific aligners, like Tophat, because visual examination of alignments showed that Stampy was 
better at mapping reads containing multiple polymorphisms, reducing the potential for false associations 
between expression level and the genotypic variants that affect mapping (Fig. S6). RNAseq readmapping 
for two individuals was very poor quality (<10% reads mapped and paired correctly), so these individuals 
were removed. Our final sample size was 99 individuals. 
 
Expression level was measured with the HTSeq.scripts.count feature of HTSeq, which counts the number 
of read pairs that map to each gene. We normalized the read counts of each sample for library size by 
dividing read counts by the median read count of the entire sample. Previous studies on human gene 
expression have found interactions between GC content, lane, and expression level ​(12)​, but we did not 
detect this (Fig. S7). Genes with a median expression level below five reads per individual before 
normalization were removed from the analysis, leaving a total of 18,692 genes. 
 
Mapping local eQTL 
 
We selected SNPs for our eQTL analysis by finding all SNPs within the window spanning 5 kb upstream 
of the gene’s transcription start site and 5kb downstream from the gene’s transcription end site. We chose 
the 5kb range because a previous study in ​Arabidopsis thaliana​ mapping associations between expression and 
SNPs within 30kb of the gene found that 87% of local eQTLs were located within 5kb of the gene ​(23)​. 
SNPs were categorized as occurring in 0-fold degenerate sites, 4-fold degenerate sites, 2 or 3-fold 
degenerate sites, 5'UTRs, 3'UTRs, introns, stop codons, or intergenic regions based reference 
annotations​(31)​. In addition, we identified SNPs located in non-coding sequence conserved across the 
Brassicaceae family​(3)​. We only included SNPs with at least 10 heterozygous individuals and 10 individuals 
that were homozygous for the common allele in our sample. 
 
We wrote set of Python scripts to test for associations between expression level and genotype at a nearby 
SNP. These scripts are available at ​https://github.com/emjosephs/eQTL​. We mapped eQTLs by 
conducting a Mann-Whitney U test on the null hypothesis that gene expression does not differ between 
individuals that were homozygous for the common allele and individuals that were heterozygous. We used 
non-parametric statistics because expression data is not normally distributed. We used the Mann-Whitney 
U test function in SciPy (“scipy.stats.mannwhitneyu”), which uses a continuity correction and corrects for 
ties. 8,302 of our genes had ties in expression level between individuals and these ties on average involved 
4.5 individuals ​(32)​. In addition,we compared common homozygotes to heterozygotes because we expect 
most local eQTLs to act in ​cis​ and thus be additive ​(12)​, and because not being limited by the sample size 
of rare homozygotes allowed us to map eQTL at rarer alleles.  
 
To avoid a relationship between allele frequency and sample size, we conducted a second eQTL analysis 
where we subsampled 50 individuals for each SNP tested so that 40 individuals had the most common 
genotypic category (usually the homozygote) and 10 had the less common genotypic category (usually 
heterozygote) ​(14)​. We chose these thresholds because they retained most individuals while allowing us to 
still test 3,972,771 of the 4,098,832 SNPs originally tested for eQTLs (96.9%). 
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For both eQTL analyses, we controlled for multiple testing by using a false discovery rate approach ​(33) 
and only considered eQTLs to be associated with expression if that association had a p value 
corresponding to a false discovery rate of <0.1. To avoid being biased by detecting multiple SNPs linked to 
only one causal site, we only selected one eQTL per gene, picking the SNP with the lowest p value for 
association. However, to investigate whether choosing the most associated SNP biased our results, we also 
performed all analyses with eQTLs that were randomly chosen from the pool of SNPs significantly 
associated with expression (FDR = 0.1). We calculated the expression effect size of eQTLs by taking the 
absolute value of the difference between mean expression in the common homozygote and mean 
expression in the heterozygote.  
 
Mapping aseQTL 
 
If local eQTLs act in ​cis​, they should have allele-specific effects and individuals heterozygous for an eQTL 
will show a larger difference in expression between alleles than individuals homozygous for an eQTL. To 
take advantage of this second signature of expression variation, we developed a method to test for 
allele-specific expression QTL, or ‘aseQTL’ (similar approaches have been used in humans ​(14)​). We 
quantified allele-specific expression at all heterozygous sites inferred from the genomic data. We used the 
count of reads mapped to each allele, taken from the ‘AD’ values in a VCF file constructed from the 
RNAseq data using GATK Unified Genotyper to calculate an allele-specific-expression measure (‘ASE) for 
each gene in each individual. Specifically, we calculated the mean of the the differences in allelic expression 
values at all heterozygous sites across a gene and divided this mean by median expression level of all genes 
in the individual to control for sequencing depth. While we expected that our measure of gene-wide ASE 
would be more accurate when we required multiple heterozygous sites per gene, doing so did not strongly 
alter the number of aseQTLs we found or their allele frequency distribution, so we only required one 
heterozygous site per gene to measure ASE (Fig. S8). We designated aseQTLs as the most associated SNP 
per gene that had higher ASE in heterozygotes for that SNP than in homozygotes for that SNP. However, 
we also performed all analyses designating aseQTLS as a SNP that was randomly sampled from the set of 
SNPs that were significantly associated with expression (FDR = 0.1) and had greater ASE in homozygotes 
for that SNP than heterozygotes. 
 
ASE measures were not normally distributed, so we used a Mann-Whitney U test to test the null 
hypothesis that ASE did not differ between individuals that were heterozygous at a given SNP and 
individuals that were homozygous for either allele at that SNP. As before, we used the mannwhitneyu 
function in the SciPy package. 8,334 genes had at least one tie between individuals for ASE value and an 
average of 4 individuals were involved in ties within these genes. We only tested SNPs where we had 10 
individuals that were both heterozygous at the SNP and had a heterozygous marker site in the gene and 10 
individuals that were homozygous at the SNP and had a heterozygous marker site in the gene, allowing us 
to test for associations at 17,880 genes.  
 
As in the eQTL analysis, we conducted a second aseQTL analysis where we subsampled 50 individuals for 
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each SNP tested such that 40 had the most common genotypic category (usually the homozygote) and 10 
had the less common genotypic category (usually heterozygote). This sample size allowed us to test 
3,841,452 of the 3,966,364 SNPs originally tested for aseQTL (96.8%). For both sets of analyses, we 
conducted a false discovery rate analysis as described in the eQTL section and, selected all SNPS with a p 
value below the FDR threshold of 0.1, we chose the most significantly associated SNP per gene for further 
analysis, with the additional requirement that heterozygous individuals have higher ASE than homozygous 
individuals. We calculated ASE effect size for aseQTLs and eQTLs by taking the difference between mean 
ASE in homozygotes and mean ASE in heterozygotes. We only report ASE effects for eQTLs located 
outside the coding sequence of these genes they regulate. 
 
Preferential mapping of reference alleles compared to alternative alleles could lead to spurious ASE. To 
evaluate the importance of this effect, we simulated all of the possible reads spanning each heterozygous 
site, containing either the reference allele or an alternate allele using scripts from Degner et al​(34)​. There 
were up to 200 reads possible for each site, although reads near the start and end of genes had fewer reads 
covering them since we discarded all reads that were less than 100bp long. We mapped these reads with the 
same program and settings we used for the real data, with the exception that these reads were single-ended. 
Out of 2,365,590 SNPs in coding regions, 19,017 SNPs (<1%) had unequal numbers of reads mapping 
from each allele. 11,339 (60%) of these sites had more reads that mapped with the reference allele than 
with the alternative allele, suggesting that there is some reference bias. The 19,017 SNPs with evidence of 
mapping bias occurred in 3,059 genes. Removing these genes from the analysis did not qualitatively affect 
the minor allele frequency of aseQTLs (Fig. S9) 
  
Permutation analysis 
 
Conducting millions of tests for genotype-expression associations with a relatively small (n=99) sample size 
exposes us to two potential sources of bias that correlate with the allele frequency of the SNPs we are 
testing. First, smaller sample sizes at low frequencies reduce power to detect associations. Second, smaller 
sample sizes at low frequencies increase our risk of false positives because expression data is non-normally 
distributed and outliers in a small sample will have a disproportionate effect on the mean​(13)​. We found 
this second possibility especially concerning because it is not conservative with respect to our hypothesis 
that purifying selection will maintain eQTLs and aseQTLs at lower allele frequencies.  
 
To ensure that our conclusions about allele frequencies were not due to false positives being more 
common at low allele frequencies, we compared the eQTLs and aseQTLs we found with those discovered 
using permuted data. We constructed permutations by randomly shuffling the assignments between 
genotype and expression values or allele-specific expression values for each gene. This strategy allows us to 
retain the allele frequencies and spatial distributions of the SNPs we are testing along with the distribution 
of expression and allele-specific expression values of each gene. Each permuted set was analyzed using the 
same methods as the real data, with one exception: instead of calculating a FDR for each permuted data 
set, we used the p-value cut offs from the real data to identify ‘false-positive’ eQTLs and aseQTLs in the 
permuted data. The frequency distributions of these ‘false-positive’ QTLs were used as a null distribution 
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for the expected frequency of QTLs. 
 
The permutation analyses do not directly control for site type, recombination rate, or other factors that 
could both bias a SNP towards being an eQTL/aseQTL and reduce allele frequency. To ensure that these 
effects did not drive our observations, we divided our eQTLs and aseQTLs from the real data and from 
permuted data into subsets. First, for site type, we selected the most strongly associated eQTL and aseQTL 
per gene that came from a the site-type of interest. Our site types were 5’UTRs, 3’UTRs, introns, intronic 
CNSs, exons (divided into 5 regions based on distance from start and end of the gene), and upstream and 
downstream CNS and nonconserved regions. For upstream and downstream regions, we divided sites into 
those within 1 kb of the TSS/TES and those that were 1 to 5 kb from the TSS/TES.  
 
 To control for recombination rate, we divided SNPs into those coming from high recombination regions 
(> 3.45 cM/mB) and low recombination regions (< 3.45 cM/mB) using recombination rate data calculated 
by using a genetic map made from a cross between ​C. rubella​ and ​C. grandiflora ​(35)​. To test for confounding 
effects due to gene conversion, we divided SNPs into those whose mutations could be due to gene 
conversion (A or T and C or G) and others (A and T or G and C). 
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Figure 1: Detecting eQTLs and aseQTLs.​ (a) A gene model for an individual that is heterozygous at a 
regulatory locus (G/T) and at an informative coding site (A/T). The G allele increases expression relative 
to the C allele, (b) causing increased allelic expression of the reads carrying the A allele at the informative 
heterozygous site. We refer to this difference in allelic expression as “ASE”. (c) eQTLs are detected when 
there is a significant difference in total gene expression between individuals (represented by black circles) 
that are homozygous for the common allele of a SNP and individuals that are heterozygous at that SNP. 
(d) aseQTLs are detected when there is a significant difference in ASE between individuals that are 
heterozygous at a SNP and homozygous for either allele at that SNP. 
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Figure 2: eQTL and aseQTL enrichments by site type.​ The proportion of SNPs tested in each 
category that were found to be eQTLs is plotted on the y axis for (a) eQTLs and (b) aseQTLs. The exonic 
classes were determined by splitting the coding sequence of each gene into 5 equally sized pieces. Note that 
there were no exonic SNPs included in the aseQTL analysis. Error bars show the 95% confidence intervals 
from bootstrapping. 
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Figure 3: The site frequency spectra of eQTLs and aseQTLs.​ Minor allele frequencies of (a) eQTLs 
and (b) aseQTLs for observed data (red circles) and permuted data (gray circles, black lines are 95% 
confidence intervals). 
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Figure 4: The relationship between minor allele frequency and effect size.​ (a) eQTL minor allele 
frequency is plotted against the effect of that SNP on ASE, calculated as the mean difference in ASE 
between individuals heterozygous at the eQTL and individuals homozygous at the eQTL. Negative values 
occur when the the homozygote for the eQTL has greater ASE than the heterozygote. The trend line is 
calculated by linear regression (b) aseQTL minor allele frequency plotted against the effect of the aseQTL 
on total gene expression, calculated by taking the log of the absolute value of the mean difference in 
expression between individuals heterozygous at the aseQTL and individuals homozygous for the common 
allele at the aseQTL. The trend line was calculated by regression between minor allele frequency and the 
log of the expression effect. 
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Figure 5: The site frequency spectra of QTLs detected in the frequency-controlled subsample.  
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