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ABSTRACT

In cancer genomics, frequent recurrence of mutations in independent tumor samples is a strong
indication of functional impact. However, rare functional mutations can escape detection by re-
currence analysis for lack of statistical power. We address this problem by extending the notion
of recurrence of mutations from single genes to gene families that share homologous protein
domains. In addition to lowering the threshold of detection, this sharpens the functional inter-
pretation of the impact of mutations, as protein domains more succinctly embody function than
entire genes. Mapping mutations in 22 different tumor types to equivalent positions in multiple
sequence alignments of protein domains, we confirm well-known functional mutation hotspots
and make two types of discoveries: 1) identification and functional interpretation of uncharac-
terized rare variants in one gene that are equivalent to well-characterized mutations in canonical
cancer genes, such as uncharacterized ERBB4 (S303F) mutations that are analogous to canonical
ERRB2 (S310F) mutations in the furin-like domain, and 2) detection of previously unknown mu-
tation hotspots with novel functional implications. With the rapid expansion of cancer genomics
projects, protein domain hotspot analysis is likely to provide many more leads linking mutations
in proteins to the cancer phenotype.
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INTRODUCTION

The landscape of somatic mutations in cancer is extraordinarily complex, making it difficult
to distinguish oncogenic alterations from passenger mutations. Many approaches use the re-
currence of alterations in a single gene across tumor samples to identify potential driver genes.
However, the molecular functions of genes are often pleiotropic, and in many cases it may not be
a gene as an entity itself, but rather the specific function of a gene or a set of genes that is under
selective pressure in cancer. For example, in T-cell acute lymphoblastic leukemia, the transmem-
brane signaling receptor NOTCH1 is activated by mutations in the heterodimerization and the
PEST domains (Weng et al., 2004), while in squamous cell carcinomas, notch-signaling has a
tumor suppressive role and notch receptors (NOTCH1-4) are inactivated by mutations in the lig-
and binding EGF-like domains (Wang et al., 2011). Thus, an alternative approach to assessing the
relevance of somatic alterations is to determine the recurrence of mutations in genes involved
in similar molecular functions. One powerful method for systematically assessing common bi-
ological function of genes is through the analysis of protein domains, which are evolutionarily
conserved, structurally related functional units encoded in the protein sequence of genes (Holm
& Sander, 1996; Chothia et al., 2003). By coupling the observation of mutations across genes in a
domain family together, it may be possible to identify putative functional alterations that confer
a selective, functional advantage to cancer cells.

Large cross-institutional projects, such as The Cancer Genome Atlas (TCGA), have recently pro-
filed the major human cancer types genomically, including glioblastoma (McLendon et al., 2008),
lung (Hammerman et al., 2012; Ding et al., 2008), ovarian (Bell et al., 2011), breast (Koboldt et al.,
2012), endometrial (Getz et al., 2013), kidney (Creighton et al., 2013) and colorectal cancer (Can-
cer Genome Atlas Network, 2012). Through whole-exome sequencing (WES) of tumor-normal
pairs, these and other studies have provided catalogues of somatically mutated genes that are
frequently altered and therefore likely associated with disease development. However, despite
a collection of mutation data from nearly 5,000 samples encompassing 21 tumor types, the re-
sults from a recent pan-cancer study illustrate that by using recurrence of mutations in genes,
thousands of samples per tumor type are needed to confidently identify genes that are mutated
at low but clinically relevant frequencies (2-5%) (Lawrence et al., 2014a).

Several analytical approaches have been developed to detect genes associated with oncogenesis
(Gonzalez-Perez & Lopez-Bigas, 2012; Dees et al., 2012; Lawrence et al., 2014b). One of these
widely applied algorithms, MutSigCV, compares the gene-specific mutation burden to a back-
ground model using silent mutations in the gene and gene neighborhood to estimate the prob-
ability that the gene is significantly mutated (Lawrence et al., 2014b). Importantly, the method
also incorporates contextual information, such as genomic parameters that correlate strongly
with the mutation background rate (DNA replication timing and the general level of transcrip-
tional activity) (Lawrence et al., 2014b) as well as the tendencies of mutations to cluster to specific
sites and to occur at positions that are evolutionarily conserved (Lohr et al., 2012; Lawrence et al.,
2014a). Additional approaches have been developed to predict the functional impact of specific
amino acid changes. These approaches generally rely on analyzing physico-chemical proper-
ties of amino acid substitutions (e.g., changes in size and polarity), structural information (e.g.,
hydrophobic propensity and surface accessibility), and the evolutionary conservation of the mu-
tated residues across a set of related genes (Reva et al., 2011; Yue et al., 2006; Bromberg et al., 2008;
Ng, 2003; Adzhubei et al., 2010). Other approaches analyze mutations across sets of functionally
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related genes (e.g., genes in the same signaling pathway) to test for a possible enrichment of
mutation events (Cerami et al., 2010; Ciriello et al., 2012; Hofree et al., 2013; Torkamani & Schork,
2009).

Protein domains represent particular sequence variants that have been formed over evolution by
duplication and/or recombination (Holm & Sander, 1996; Chothia et al., 2003). Domains often
encode structural units associated with specific cellular tasks, and large proteins with multiple
domains can have several molecular functions each exerted by a specific domain. The structure-
function relationship encoded in domains has been used as a tool for understanding the effect of
mutations across functionally related genes. For example, some of the most frequent oncogenic
mutations in human cancer affect analogous residues of the activation segment of the kinase
domain and cause constitutive activation of several oncogenes, including FLT3 D835 mutations
in acute myeloid leukemia, KIT D816 mutations in gastrointestinal stromal tumors, and BRAF
V600 mutations in melanoma (Dibb et al., 2004; Greenman et al., 2007). In the SMAD tumor sup-
pressor genes, mutations in conserved residues of the MAD homology 2 (MH2) domain have
analogous effects in SMAD2 and SMAD4, disrupting homo- and hetero-oligomeric interactions
critical for SMAD signaling (Shi et al., 1997). Proteome-wide bioinformatics analysis of muta-
tions in domains have been performed to identify domains enriched for alterations (Nehrt et al.,
2012; Peterson et al., 2012) as well as to detect significantly mutated domain hotspots through
multiple sequence analysis (Peterson et al., 2010; Yue et al., 2010). However, due in part to the
scarcity of data available at the time of analysis, these studies did not perform a systematic pan-
cancer analysis of mutations in domains and provided limited biological insights.

Here, we performed a systematic and comprehensive analysis of mutations in protein domains
using data from more than 5,000 tumor-normal pairs from 22 cancer types profiled by the TCGA
consortium and domains from the protein family database Pfam-A (Punta et al., 2011). We
confirmed that signaling domains in canonical oncogenes are recurrently altered in cancer and
further identified domains that are enriched for mutations contributed by infrequently altered
genes not previously associated with cancer. Using multiple sequence analysis, we determined
if conserved residues in protein domains were affected by mutations across related genes. This
analysis enabled us to identify putative “domain hotspots”. For example, we discovered novel
hotspots with putative driver mutations in the prolyl isomerase domain and in the DNA-binding
forkhead domain. We further exposed rare mutations that associated with well-characterized
oncogenic mutations, including the furin-like domain where uncharacterized mutations in ERBB4
(S303F) are analogous to known oncogenic mutations in the same domain of ERRB2 (S310F), sug-
gesting similar functional consequences. In several cases, we associated rare mutations in poten-
tial cancer genes with therapeutically actionable hotspots in known oncogenes, underlining the
potential clinical implications of our findings. We have made all results freely available to the
research community through an interactive web resource (http://www.mutationaligner.
org) that will be continuously updated as data become available from cancer genomics projects.
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RESULTS

Mapping somatic mutations to protein domains

To systematically analyze somatic mutations in the context of conserved protein domains, we
collected WES data from 5496 tumor-normal pairs of 22 different tumor types profiled by the
TCGA consortium. To obtain a uniform data set of mutation calls, annotation of somatic mu-
tations were based on the publicly available data (Oct 2014) from the cBioPortal for cancer ge-
nomics data (Cerami et al., 2012; Gao et al., 2013) (Fig. 1). After filtering out ultra-mutated
samples and mutations in genes with low mRNA expression levels (Methods), the data con-
sisted of a total of 727,567 mutations in coding regions with 463,842 missense, 192,518 silent, and
71,207 truncating or small in-frame mutations (Supplementary Fig. 1). Focusing on missense
mutations, we observed that the relative proportion of amino acids affected by mutations varied
considerably between cancer types (Fig. 2). These amino acid mutation biases are due to a com-
bination of variations in the codon usage between different amino acids and the variations in
the base-pair transitions and transversions observed between different cancer types (Lawrence
et al., 2014b; Alexandrov et al., 2013). Because of the high mutation rate of CG dinucleotides
across all cancers, arginine (R) is the most frequently altered amino acid despite being the 9th

most common amino acid as CG dinucleotides are present in four out of six of arginine’s codons
(Supplementary Fig. 2)

We next mapped the mutations to conserved protein domains obtained from the database of
protein domain families, Pfam-A version 26.0 (Punta et al., 2011) (Fig. 1A). Overall, 4401 of 4758
unique Pfam domains in the human genome were mutated at least once across all samples. The
fraction of missense mutations that map to domains (46.7%, 216,676 of 463,842) was consistent
across samples and tumor types and was similar to the proportion of the proteome assigned as
conserved domains (45.4%, Fig. 2).

Identification of domains with enriched mutation burden

Our first aim was to identify domains that display an increased mutation burden. We defined the
domain mutation burden as the total number of missense mutations in a domain, excluding do-
mains only present in only one gene. After tallying mutations across samples, the domain with
the highest mutation burden was the protein kinase domain with 7203 mutations in 353 genes
(not including genes with tyrosine kinase domains), while the P53 domain present in TP53, TP63,
and TP73 had the most mutations when normalizing for the domain length and the size of the
domain family (Supplementary Fig. 3). To systematically investigate if the mutation burden
for a given domain was larger than would be expected by chance, we performed a permutation
test that takes into account the number of mutations within and outside of the domain, the do-
main length, and the length and number of genes in the domain family. To specifically compare
domain versus non-domain areas, other domains present in the domain-containing gene family
were excluded. Assuming that each mutation is an independent event and that all residues of
the protein have an equal chance of being mutated, we randomly reassigned all mutations 106

times across each gene separately and calculated if the observed domain mutation burden was
significantly different from the distribution of burdens observed by chance (Fig. 1B).
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Figure 1: Work flow for analyzing recurrently mutated protein domains in cancer. (A) Missense
mutation data from recent genomic profiling projects of human cancers (TCGA) are collected and
all mutations are tallied across tumor samples and cancer types. Mutations are mapped to protein
domains obtained from the Pfam-A database, which contains a manually curated set of highly
conserved domain families in the human proteome. Two separate analyses are performed on this
data to (B) identify domains enriched for missense mutations and (C) to detect mutation hotspots
in domains through multiple sequence alignment. In the first analysis (B), the observed mutation
burden (n1) of a specific domain (d1) is calculated by counting the total number of mutations
in all domain-containing genes (g1&g2). Mutations in other domains (e.g., d2) are excluded. A
permutation test is applied to determine if the observed mutation burden (n1 = 8) is larger than
expected by chance. Mutations are randomly shuffled 106 times across each gene separately and
the observed mutation count is compared to the distribution of randomly estimated mutation
counts. In the second analysis (C), domains are aligned across related genes by multiple sequence
alignment and mutations are tallied at each residue of the alignment. A binomial test is applied
to determine if the number of mutations at a specific residue is significantly different than the
number of mutations observed at other residues of the alignment.

Using this permutation approach, we identified 14 domains that were significantly enriched for
missense mutations within the domain boundaries compared to other areas of the same genes
(p < 0.05, Bonferroni corrected, Fig. 3 and Table 1). As both the number of gene members per
domain (domain family) and the number of mutations per gene varies greatly, we wanted to
distinguish between two cases: 1) only a single or a few genes in the domain family contributed
to the domain mutation burden, and 2) genes contributed more evenly to the mutations in the
domain. We were particularly interested in the latter as mutations in domains contributed by
many infrequently mutated genes may represent new functional alterations that would not have
been discovered using traditional gene-by-gene approaches. To investigate this, we calculated a
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Figure 2: Mutations frequencies across cancer types and the relative proportion of mutated
amino acid types. Within each cancer type the individual samples are ordered by the number
of missense mutations in the proteome, and the median number of mutations is indicated (grey
line). The color code represents the fraction of mutations that map to protein domains, and the
arrow indicates the proportion of the proteome assigned as domains (0.454). The lower panel
shows the relative proportion of amino acids altered by missense mutations in coding regions in
each same (mutated from). The average proportions are displayed on the right where the first bar
is the background frequency of amino acids in the proteome, the second bar is the average of all
samples (mutated from), and the third bar is the resulting amino acid change (mutated to). The
amino acids are color coded by their biochemical properties as indicated. The number of samples
in each cancer type is shown at the top. Samples with more than 2000 missense mutations were
excluded from the analysis. Note that some amino acid types are disproportionally altered due to
mutation biases in specific cancers (Lawrence et al., 2014b; Alexandrov et al., 2013), such as C→G
transversions in bladder cancer (BLCA) that disproportionally alter the acidic amino acids aspartic
acid (D) and glutamic acid (E), while C→T transitions in melanoma (SKCM) preferentially affect
proline (P).

entropy score (S̄) that was normalized to the size of the domain family, so a low score indicates
that the mutation burden is unevenly distributed between domain-containing genes and a high
score indicates that the mutation burden is distributed evenly among the genes in the domain
family (see Methods).

As expected, we found that the Von Hippel-Lindau (VHL) and the P53 domains were signifi-
cantly enriched for mutations and had low entropy scores as they were dominated by mutations
in the canonical tumor suppressor genes VHL and TP53, respectively (Fig. 3 and Table 1, row
6 and 9). On the other end of the spectrum, the KAT11 domain encoding the lysine acetyl-
transferase (KAT) activity of CREBBP and EP300 was significantly mutated and had a high nor-
malized entropy score with around 30 mutations in each gene (Table 1, row 1). CREBBP and
EP300 are transcriptional co-activators that regulate gene expression through acetylation of ly-
sine residues of histones and other transcription factors (Liu et al., 2008). In our analysis, head
and neck squamous cell carcinoma (HNSC) was the tumor type with most mutations in KAT11
and nearly half fell in the domain (14 of 29) that spans only about 4% of the length of both
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Figure 3: Identification of protein domains enriched for missense mutations. The estimated
significance level of the domain mutation burden test is plotted against the domain entropy score
(S̄). The domain mutation burden test captures the enrichment of mutations within the domain
boundaries compared to non-domain areas of the same genes. The entropy score captures the
degree to which individual or multiple genes contribute to the mutations in the domain, where
low and high scores indicate that the mutation burden is unevenly or evenly distributed between
domain-containing genes, respectively. S̄ is normalized to the highest possible score so that when
S̄ = 1 all genes are evenly mutated and when S̄ = 0 then only one gene is mutated. Domains with
a significant mutation burden are indicated above the dashed line (p < 0.05, Bonferroni corrected).
The sizes of the dots reflect the number of mutations in each domain. Domains are color coded by
the number of genes in the domain family.

CREBBP and EP300 (Supplementary Fig. 4). Supporting the enrichment of mutations in this
domain, inactivating mutations in KAT11 have been associated with oncogenesis in tumor types
not part of this analysis, including B-cell lymphoma (Pasqualucci et al., 2012; Cerchietti et al.,
2010; Morin et al., 2012) and small-cell lung cancer (Peifer et al., 2012). In small-cell lung can-
cer, CREBBP and EP300 were reported to be deleted in a mutually exclusive fashion (Peifer et al.,
2012), which often indicates that genes are functionally linked (Ciriello et al., 2012). In HNSC, we
also found that mutations in CREBBP and EP300 tend to occur in a mutually exclusive pattern
(Supplementary Fig. 4), indicating a potential function role for both genes in this disease al-
though only one of the two (EP300) has previously been linked to HNSC (Lawrence et al., 2014a).

Confirming canonical mutation events in cancer, we found mutations clustering in domains of
genes involved in receptor tyrosine kinases (RTKs) signaling, including the tyrosine kinase do-
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Row Domain Genes p-val S̄ Mutations ed Top Genes Top Cancers
(#) (-log10) (#) (Gene symbol and # of mutations) (Cancer and # of mutations)

1 KAT11 2 2.48 1 65 1.94 CREBBP 33; EP300 32; HNSC 14; BLCA 10;
2 Pkinase Tyr 120 2.48 0.861 2059 1.17 BRAF 427; EGFR 50; ERBB2 43; SKCM 428; THCA 246;
3 Ras 124 2.48 0.811 1369 1.08 KRAS 269; NRAS 177; HRAS 46; SKCM 206; COADREAD 166;
4 Furin-like 7 2.48 0.753 147 1.77 EGFR 67; ERBB3 30; ERBB2 23; GBM 42; LGG 14;
5 Cadherin 614 2.48 0.674 3358 1.06 FAT4 214; FAT3 184; FAT1 116; SKCM 607; LUAD 474;
6 P53 3 2.48 0.116 1333 1.63 TP53 1301; TP63 23; TP73 9; OV 182; BRCA 171;
7 Prox1 3 2.48 0 56 1.05 PROX1 56; PROX2 0; HNSC 13; SKCM 11;
8 Fork head 42 2.18 0.866 165 1.4 FOXA1 25; FOXA2 10; FOXK2 10; BRCA 22; SKCM 18;
9 VHL 2 2.18 0 103 1.24 VHL 103; VHLL 0; KIRC 95; SKCM 2;
10 Pentaxin 9 2 0.918 99 1.42 NPTX2 22; SVEP1 17; NPTXR 16; SKCM 23; HNSC 13;
11 Homeobox 190 1.87 0.842 375 1.23 ZFHX4 28; NKX3-1 11; ONECUT2 11; SKCM 48; UCEC 44;
12 PI3Ka 8 1.63 0.359 356 1.21 PIK3CA 296; PIK3CG 20; PIK3CB 13; BRCA 126; UCEC 44;
13 Frizzled 11 1.48 0.979 164 1.21 FZD10 24; FZD9 20; FZD3 19; BRCA 18; LUAD 18;
14 Sina 3 1.33 0.851 31 1.43 SIAH2 16; SIAH1 12; SIAH3 3; UCEC 5; COADREAD 4;

Table 1: Protein domains significantly enriched for mutations. Domains are listed by their Pfam
domain identifiers, the number of genes in the domain family, the Bonferroni-corrected p-value,
the entropy score (S̄), the number of mutations in the domain, the mutation enrichment score (ed)
expressed as the ratio of the observed number of domain mutations to the expected number of
domain mutations, the genes with the most domain mutations, and the two cancers with most
domain mutations. The genes are color coded based on being reported as significantly mutated
(green) or not (magenta) in any cancer type in a recent pan-cancer study (Lawrence et al., 2014a).
The list is sorted by p-value followed by entropy score.

main itself (Pkinase Tyr), the furin-like domain involved in RTK aggregation, and downstream
signaling through genes with the ras GTPase domain and the phosphatidylinositol 3-kinase
(PI3Ka) domain (Table 1, row 2, 3, 4 and 12). These domains have also been reported in other
systematic studies of mutations in domains (Yue et al., 2010; Nehrt et al., 2012), consistent with
the fact that the RTK signaling pathways are often high-jacked in cancer (Hanahan & Weinberg,
2011). In a similar manner, we identified multiple domains in genes that have previously been
associated with cancer, including the DNA-binding forkhead domain in Fox family transcription
factors and the frizzled domain in G protein-coupled receptors of the Wnt signaling pathway.
Interestingly, these domains have high entropy scores with a substantial amount of mutations
contributed by genes not reported as altered in a recent pan-cancer study (Lawrence et al., 2014a)
(see color code in Table 1, row 8 and 13). Thus, from the perspective of the structure-function
relationship encoded in domains, these are candidate cancer driver genes due to the enrichment
of mutations in these functional regions.

We also identified several domain families in which most of the genes had no apparent link to
cancer. Such domains include the homeobox domain involved in DNA-binding and the cad-
herin domain involved in cell adhesion (Table 1, row 5 and 11). As cell-cell adhesion and DNA-
binding are critical cellular processes, it is plausible that domain-contained genes involved in
these processes are under positive selective pressure in the cancer environment, although it re-
mains to be tested if mutations in these domains are functionally disruptive and may play a
critical role in cancer. Several additional domains were found to be enriched for mutations and
may potentially be of interest in a cancer context (Table 1).
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Protein domain alignment reveals mutation hotspots across related genes

We next aligned each domain using multiple sequence alignment and tallied mutations across
analogous residues of domain-containing genes (Fig. 1C). The goals of this analysis were to
identify new domain hotspots with recurrent mutations across functionally related genes and
to associate hotspots in well-established cancer genes with rare events in genes not previously
linked to cancer. We used a binomial test to determine if a mutation peak at a specific residue was
significantly different from other residues in the domain alignment, and we applied the same
entropy analysis to investigate the degree to which individual or multiple genes contributed
mutations to each hotspot. In total we identified 82 significant hotspots in 42 different domains
(Supplementary Table 1).

We recapitulated several well-known hotspots in domains where only one gene was mutated
such as the P53 and PI3Ka domains with mutations in TP53 and PIKC3A, respectively (entropy'0,
Fig. 4 and Table 2, row 13, 14, and 17). We also confirmed several known domain-specific
hotspots such as the isocitrate/isopropylmalate dehydrogenase domain (Iso dh) with homolo-
gous mutations in IDH1 (position R132) and IDH2 (R172) as well as the ras domain with mu-
tations in KRAS, NRAS, and HRAS at positions G12, G13, and Q61 in the GTP binding region
(Table 2, row 3, 7, 8, and 10). Furthermore, we found that well-characterized hotspots in KIT
D816 in acute myeloid leukemia (AML), FLT3 D835 in AML, and BRAF V600 in thyroid car-
cinoma and melanoma aligned perfectly in the conserved activation segment of the tyrosine
kinase domain (Table 2, row 11). These mutations are known to cause constitutive kinase activ-
ity, which promotes cell proliferation independent of normal growth factor control (Hanahan &
Weinberg, 2011; Dibb et al., 2004). We further superimposed the crystal structures of the three
proteins and found that the residues overlap in structure space (Supplementary Fig. 5), offer-
ing support that the alignment approach captures structurally relevant information. Notably,
in the same domain hotspot many singleton mutations in lung adenocarcinoma and lung squa-
mous cell carcinoma mapped to the equivalent position in other RTKs, including EPHA2 V763M,
FGFR1 D647N, PDGFRA D842H, and three mutations in EGFR L861Q. Although these are rare
events in lung cancer, this analysis reveals that they likely affect the same activation loop residue
and may be therapeutically actionable in a similar manner as the hotspot mutations in KIT, FLT3,
and BRAF. Encouragingly, non-small cell lung cancer patients with EGFR L861 mutations have
recently shown positive clinical response when treated with EGFR-targeted therapy (Wu et al.,
2011).

Similar to the previous analysis of entropy in recurrently mutated domains, we were interested
in domain hotspots with high entropy scores. Again, the lysine acetylase domain, KAT11, was
identified with high entropy for a significant hotspot at position 94 of the domain alignment with
mutations in EP300 at D1399 and CREBBP at D1435 (Table 2, row 1). These sites are located in
the substrate binding loop of KAT11 and mutations in these residues affect the structural confor-
mation of the substrate binding loop (Liu et al., 2008). Recently, both genes have been implicated
in other cancers not analyzed here such as small-cell lung cancer (Peifer et al., 2012) and B-cell
lymphoma (Pasqualucci et al., 2012; Cerchietti et al., 2010; Morin et al., 2012). Confirming the
functional relevance of the identified hotspot, both EP300 D1399 and CREBBP D1435 mutations
have been found to reduce lysine acetylase activity in vitro (Peifer et al., 2012; Pasqualucci et al.,
2012; Liu et al., 2008). We additionally identified a potential hotspot in KAT11 at position 105
with mutations in CREBBP (R1446) although this hotspot was not significant when correcting
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Figure 4: Domain alignment detects mutation hotspots across related genes. The estimated sig-
nificance level of each mutation hotspot in the domain alignment is plotted against the domain en-
tropy score (S̄), which is described elsewhere. Significant hotspots are indicated above the dashed
line (p < 0.05, Bonferroni corrected). The maximal significance was set to 10 [-log10(p-value)].
Hotspots are named by the Pfam identifiers followed by the position in the domain alignment
and the number of mutations in the top two mutated genes. The size of the dots reflects the num-
ber of mutations at each residue and the dots are color coded by the number of domain-containing
genes in the genome.

for multiple hypothesis testing (p = 2.6e−6, corrected p = 0.59, Fig. 5A). CREBBP R1446 is also
located within the substrate binding loop (Liu et al., 2008) and R1446 mutations have been found
in B-cell neoplasms (Pasqualucci et al., 2012).
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Row Domain Genes Position pValue S̄ Mut Top Gene 1 Top Gene 2 Top Cancer
(#) (-log10) (#) (# mut, gene, site) (# mut, gene, site) (# mut, cancer)

1 KAT11 2 94 10 0.88 10 7 EP300 D1399 3 CREBBP D1435 3 BLCA
2 Orn DAP Arg deC 3 86 10 0.28 11 10 AZIN1 S367 1 ODC1 R369 10 LIHC
3 Ras 124 17 10 0.27 56 31 KRAS G13 11 NRAS G13 12 COADREAD
4 MH2 8 46 10 0.25 14 11 SMAD4 R361 3 SMAD3 R268 8 COADREAD
5 Furin-like 7 119 10 0.20 30 27 EGFR A289 2 ERBB3 G284 23 GBM
6 PI3K C2 7 130 10 0.19 17 15 PIK3CA E453 2 PIK3CB E470 7 BRCA
7 Ras 124 88 10 0.18 189 142 NRAS Q61 22 HRAS Q61 78 SKCM
8 Iso dh 5 128 10 0.14 292 274 IDH1 R132 18 IDH2 R172 232 LGG
9 WD40 170 16 10 0.13 37 31 FBXW7 R465 2 FBXW7 Y545 12 COADREAD

10 Ras 124 16 10 0.12 224 192 KRAS G12 17 NRAS G12 74 COADREAD
11 Pkinase Tyr 120 291 10 0.09 415 382 BRAF V600 14 FLT3 D835 235 THCA
12 Recep L domain 14 52 10 0.08 17 16 ERBB3 V104 1 ERBB2 I101 5 COADREAD
13 P53 3 181 10 0.07 141 139 TP53 R273 2 TP63 R343 44 LGG
14 PI3Ka 8 27 10 0.02 164 163 PIK3CA E545 1 PIK3CB E552 66 BRCA
15 Furin-like 7 136 7.24 0.22 13 11 ERBB2 S310 2 ERBB4 S303 4 STAD
16 zf-H2C2 2 940 7 7.21 0.62 79 2 ZNF208 R613 2 ZNF286A R430 27 UCEC
17 P53 3 157 5.25 0.14 29 28 TP53 R249 1 TP63 R319 8 LIHC
18 RasGAP 12 23 4.03 0.53 8 3 RASAL1 R342 2 NF1 R1276 2 HNSC
19 BicD 2 570 3.3 0.97 5 3 BICD2 R635 2 BICD1 R633 2 SKCM
20 Pro isomerase 19 31 3.13 0.48 9 4 PPIAL4G R37 2 PPIG R41 7 SKCM
21 DUF3497 11 3 2.91 0.40 7 4 BAI3 R588 2 ELTD1 K132 4 SKCM
22 MT 15 36 2.79 0.14 8 7 DNAH5 D3236 1 DNAH11 H3139 8 SKCM
23 Choline transpo 5 186 2.56 0.42 5 3 SLC44A1 R437 2 SLC44A4 R496 1 BRCA
24 bZIP 2 9 21 2.4 0.61 6 2 HLF R243 2 NFIL3 R91 2 UCEC
25 Fork head 42 88 2.4 0.46 11 3 FOXP1 R514 2 FOXJ1 R170 4 COADREAD

Table 2: Identified mutation hotspots in protein domains. The detected domain hotspots are
listed by their Pfam domain identifiers, the number of genes in the domain family, the position of
the hotspot in the domain alignment, the Bonferroni-corrected p-values, the entropy score (S̄), the
number of mutations in the hotspot, the two genes with the most mutations in the hotspot, and
the cancer type with most mutations in the hotspot. The genes are color coded based on being
reported as significantly mutated (green) or not (magenta) in a recent pan-cancer study (Lawrence
et al., 2014a). The list is sorted by p-value followed by entropy score. Hotspots in domains where
only one gene was mutated (S = 0) were excluded. All significant domain hotspots (82) are
provided in (Supplementary Table 1).

Associating rare mutations with known oncogenic hotspots

The MAD homology 2 (MH2) domain is found in SMAD genes and mediates interaction be-
tween SMAD proteins and their interaction partners through recognition of phosphorylated ser-
ine residues (Wu et al., 2001). We found the known R361H/C hotspot mutation in SMAD4 (Shi
et al., 1997; Ohtaki et al., 2001) aligned with three R268H/C mutations in SMAD3 (Table 2, row
4). In both proteins these residues are located in the conserved loop/helix region that is directly
involved in binding TGFBR1 (Shi et al., 1997). R361C mutations inactivate the tumor suppressor
SMAD4 (Shi et al., 1997), and recently, R268C mutations in SMAD3 were also found to repress
SMAD3-mediated signaling (Fleming et al., 2013), supporting our association of rare arginine
mutations in SMAD3 with known inactivating mutations in SMAD4. The majority of the mu-
tations in the hotspot were from colorectal adenocarcinoma samples (COADREAD) and it is
known that SMAD genes are recurrently mutated in this disease (Fleming et al., 2013). Inter-
estingly, we found a tendency towards better survival for patients with hotspot mutations in
colorectal cancer although more data is needed to confirm this, to our knowledge, unreported
observation (Supplementary Fig. 6).

We associated several known hotspots in well-characterized cancer genes with rare but poten-
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Figure 5: Multiple sequence alignment of domains identifies mutation hotspots and associates
rare mutations with known oncogenic hotspots. (A) The amino acid sequence alignment of the
KAT11 histone acetylate domain in CREBBP (position 1342–1648) and EP300 (position 1306–1612)
is represented as a block of two by 308 rectangles. Using the resulting alignment coordinates,
missense mutations are tallied across the domains of the two genes. Both amino acids of the
alignment (block) and the resulting amino acids due to mutations (histogram) are color coded
by their biochemical properties. Alignment gaps are indicated by gray rectangles. Significant
hotspots are indicated with position in alignment (pos), p-value (pval), Bonferoni corrected p-
value (p-cor), and number of mutations in top mutated genes and cancer types. Similar plots are
shown for the MAD homology 2 (MH2) domain involved in SMAD protein-protein interactions
(B) and the furin-like domain involved in RTK aggregation and signal activation (C).

tially functional mutations in genes not frequently mutated in cancer. For example, we found
rare mutations in PIK3CB at E470 and at E552 in the PI3K C2 domain and PI3Ka domain, re-
spectively, that associated with known recurrent hotspots in PIK3CA (Table 2, row 6 and 14).
Furthermore, in the cysteine-rich Furin-like domain, which is involved in receptor aggregation
and signaling activation of ERBB-family RTKs, we identified several significant hotspots includ-
ing rare mutations in ERBB3 (G284R) and ERBB2 (A293V) that aligned with the known activat-

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2015. ; https://doi.org/10.1101/015719doi: bioRxiv preprint 

https://doi.org/10.1101/015719
http://creativecommons.org/licenses/by/4.0/


Somatic Mutations in Protein Domains

ing driver mutations in EGFR (A289V/T) in glioblastoma (Lee et al., 2006) (Fig. 5C). Recently,
one of these mutations, ERBB3 G284R, was found to promote tumorigenesis in mice (Jaiswal
et al., 2013), suggesting that the singleton ERBB2 A293V mutation found in a melanoma sample
could represent an infrequent oncogenic event. We also identified a hotspot at position 137 of
the alignment with rare S303F mutations in ERBB4 aligning with S310F/Y mutations in ERBB2.
Interestingly, in a functional analysis of ERBB2 mutations in lung cancer cell lines, S310F/Y mu-
tations were found to increase ERBB2 signaling activity, promote tumorigenesis, and enhance
sensitivity to ERBB2 inhibitors in vitro (Greulich et al., 2012). Future work will show if analogous
mutations in ERBB4 (S303F) may have similar effects.

Identification of new hotspots in protein domains

We also identified several additional hotspots in domains with mutations in genes not previously
associated with cancer. We detected a hotspot in the prolyl isomerase domain (Pro isomerase)
with nine mutations distributed between PPIAL4G (R37C), PPIG (R41C), PPIA (R37C), PPIE
(R173C) and PPIL2 (I308F) (Fig. 6A). The Pro isomerase domain-containing genes catalyze cis-
trans isomerization of proline imidic peptide bonds and have been implicated in folding, trans-
port, and assembly of proteins (Göthel & Marahiel, 1999). Seven of the nine mutations found in
this hotspot were from melanoma samples, and interestingly we found that in melanoma these
mutations correlate with significant upregulation of about a dozen genes including the cancer-
testis antigens CTAG2, CTAG1B, CSAG2, and CSAG3 (Supplementary Fig. 7).

The forkhead domain mediates DNA binding of forkhead box (Fox) transcription factors and
encodes a conserved “winged helix” structure comprising three α-helices and three β-sheets
flanked by one or two “wing”-like loops (Carlsson & Mahlapuu, 2002). In the forkhead do-
main, we identified a hotspot with 11 mutations distributed between FOXP1 (R514C/H), FOXK2
(R307C/H), FOXK1 (R354W), FOXJ1 (R170G/L), and FOXP4 (R516C) in several different cancer
types (Fig. 6B). The identified hotspot was located in the third α-helix (H3), which exhibits a
high degree of sequence homology across Fox proteins and binds to the major groove of DNA
targets. Specifically, the arginine residue that we found mutated forms direct hydrogen bonding
with DNA in both in FOXP and FOXK family transcription factors (Wu et al., 2006; Stroud et al.,
2006; Chu et al., 2011) (Tsai et al., 2006) (Fig. 6C, D). Furthermore, experimental R307A substitu-
tion in FOXK2 abolishes DNA binding (Tsai et al., 2006), suggesting that the identified arginine
mutations may play an important role in cancer by inhibiting DNA-binding of FOXP, FOXK,
and related Fox transcription factors.

We identified several other domain hotspots of potential interest such as a hotspot in the ras-
GAP GTPase activating domain with mutations in the tumor suppressors NF1, RASA1, and
RASAL1 (Supplementary Fig. 8) and a hotspot in the kelch motif (Kelch 1 domain) with mu-
tations in KEAP1 and KLHL4 (Supplementary Fig. 9). The potential biological consequence of
these mutations remains to be elucidated. Many additional domain hotspots were identified and
we make all analysis of hotspots in protein domains available via an interactive web-service at
http://www.mutationaligner.org.
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Figure 6: Identification of new hotspots affecting conserved residues of protein domains. Mis-
sense mutations are tallied across multiple sequence alignments of genes containing the prolyl
isomerase (Pro isomerase) domain (A) and the forkhead domain (B). (C) Secondary structure of
the forkhead domain consisting of four α-helices (H1-4), three β-sheets (S1-3), and one wing-like
loop (W1). Sequences are shown for selected Fox transcription factors that had mutations in the
identified hotspot in H3. Of note, the selected genes have a fourth α-helix rather than the canoni-
cal second wing-like loop found in other Fox genes. (D) Ribbon drawing of the crystal structure of
two FOXK2 forkhead domains binding to a 16-bp DNA duplex containing a promoter sequence
(pdb ID: 2C6Y) (Tsai et al., 2006). The R307 residue that we identified as mutated in the hotspot is
shown with spheres.
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DISCUSSION

In this work we used protein domains, rather than individual genes, as the basis for the dis-
covery of cancer-relevant alterations. By coupling the observation of mutations across common
members of a domain family together, we identified domains enriched for mutations as well as
mutation hotspots within these domains. Many of these domain mutations were contributed
by groups of relatively rare mutations which that otherwise have been considered as spurious
passengers. We further associated putative function with infrequent mutations as we identified
hotspots where rare and well-characterized mutations affected analogous residues in the do-
main alignments. Based on the structure-function relationship encoded in domains, these rare
mutation events may potentially be therapeutically actionable in cases where drugs have been
developed to target related genes sharing the mutated domain. Finally, we identified entirely
new hotspots in domains with mutations in genes not previously associated with cancer, hereby
nominating new potential cancer-related genes for further investigation.

The fundamental assumptions underlying this work are that mutations at analogous sites of a
domain family have a common effect and that recurrent mutations in domains are likely asso-
ciated with cancer. As many protein domains have been functionally characterized, one of the
strengths of our approach is that such knowledge can provide mechanistic insight into the po-
tential effect of alterations. For example, we confirmed that canonical signaling domains present
in large gene families are enriched for mutations (e.g., tyrosine kinase and ras domains), reflect-
ing the fact that a range of genes involved in mitogenic signaling are often high-jacked in cancer
(Hanahan & Weinberg, 2011). We also identified less characterized domains that were signifi-
cantly altered, such as the homeobox domain of DNA-binding genes and the cadherin domain of
cell adhesion genes. While the individual domain-containing genes are not recurrently altered,
these new findings suggest that mutations in the DNA-binding and cell adhesion machinery as
general phenomena may confer a selective advantage in cancer. Similarly, in the prolyl isomerase
domain, we identified a new hotspot in melanoma with arginine to cysteine mutations in PPIA,
PPIG, and PPIAL4G. We also identified a new hotspot in the forkhead domain, where the crucial
DNA-contacting arginine residue in the third helix of the forkhead-encoded winged-helix struc-
ture was mutated in several FOXP and FOXK family transcription factors. We speculate that this
is a novel inactivating oncogenic event, although more research is needed to elucidate this.

Relatively few genes are recurrently mutated in cancer and the majority of somatic mutations
are observed in infrequently mutated genes (Stephens et al., 2013; Garraway & Lander, 2013). As
above, we can use the biological knowledge associated with protein domains to help interpret
the consequences of rare mutations in well-characterized domain families. For example, in the
furin-like domain, we associated known oncogenic ERRB2 S310F/Y mutations with uncharac-
terized ERBB4 S303F mutations. In both genes, a small amino acid with an alcohol side chain (S)
is mutated to a large hydrophobic amino acid (F or Y) in a conserved region involved in recep-
tor interaction and signal activation. S310F/Y mutations in ERBB2 are tumorigenic in vitro and
it has been speculated that S310F/Y mutations promote hydrophobic interactions and receptor
dimerization resulting in receptor activation (Greulich et al., 2012). The same report also found
that S310F mutations sensitize cell lines to the RTK inhibitors neratinib, afatinib, and lapatinib.
We identified ERBB4 S303F mutations in breast and endometrial cancers and predict that ERBB4
S303F mutations are gain-of-function mutations that increases sensitivity to small-molecule inhi-
bition and therefore represents a rare but druggable oncogenic event. Additionally, in the MH2
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domain we associated known loss-of-function mutations SMAD4 (R361H/C) in colorectal and
lung cancers with rare but potentially functional mutations in SMAD3 (R268H/C) in the same
cancers. These examples illustrate how the association of mutations in infrequently altered genes
with known mutations can provide high-confidence predictions and hypotheses for further ex-
perimental testing.

By analyzing mutations in a set of functionally related genes, we introduce the risk of detect-
ing false positive hotspots where passenger mutations are aggregated across domain-containing
genes. The detection of spurious domain hotspots could be exacerbated by mutation biases that
alter amino acids disproportionally (Fig. 2). For example, arginine is the most frequently altered
amino acid as it has four codons containing CG dinucleotides, which are frequently subject to
C→T transitions due to deamination of methylated cytosine to thymine. In several domains,
such as the tetramerisation (K tetra) domain of potassium channel proteins (Supplementary
Table 1) and the zf-H2C2 2 domain of zinc finger proteins (Table 2, row 16), we identify signif-
icant hotspots where arginine mutations align across a large set of genes in the domain family.
Although the frequency of such hotspots may be driven by the arginine mutation bias, the mu-
tations themselves may nevertheless be functional. Thus, we do not penalize for amino acid
mutation biases in the detection of hotspots. However, we do provide relevant information
about the potential biases by calculating a normalized hotspot z-score that takes into account
the relative amino acid mutation frequency in each cancer type (Supplementary Table 1 and
Methods).

Future work will aim to refine the analysis of mutations in domains and expanding the scope
of our analysis to other functional elements in genes. Our focus here was on somatic missense
mutations, but this requirement may be relaxed to include germ-line mutations or other somatic
alterations (e.g., truncating mutations and small in-frame insertions and deletions). Importantly,
truncating mutations may not necessarily be localized to the domain regions as they affect the
entire gene, which is why we excluded them from our current work. An additional extension
of our work would be to implement a sliding window for peak detection of clusters of muta-
tions in domain alignments. However, our own observations suggest that mutation hotspots
are largely localized to single residues. Structural information can also be used to analyze the
proximity of mutated residues in 3D space. Other types of regulatory protein motifs can be an-
alyzed, including short linear motifs that guide protein phosphorylation by kinases, which has
previously been shown to be enriched for mutations in cancer genes (Reimand & Bader, 2013;
Reimand et al., 2013). Finally, assessment of the functional impact of mutations using structural
information and evolutionary sequence conservation, for example as applied in our mutation
assessor method (Reva et al., 2011), can be incorporated to provide additional insight into the
potential role of mutations in cancer.

As more data become available, integrative approaches combining mutation evidence across
multiple scales such as genes, domains, and signaling pathways will be needed to improve the
computational pipelines for variant function prediction. To make the results of our analysis
useful and relevant to the community at large, we have made all findings available through an
interactive web service (http://www.mutationaligner.org) that will be continuously up-
dated as new tumor samples are genomically profiled.
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EXPERIMENTAL PROCEDURES

Mutation data and data preprocessing

All TCGA mutation data were obtained in MAF file format from the cBioPortal for cancer ge-
nomics data (Cerami et al., 2012; Gao et al., 2013). To filter out mutations in low expressed genes,
which has been shown to be associated with mutation biases (Lawrence et al., 2014b), mRNA
sequencing data in the form of normalized RSEM values were obtained from the same data
portal. Within each tumor type, we determined the mean RSEM value for each gene and mu-
tations in genes with a mean RSEM value of less than 10 were excluded from the analysis. To
filter out ultra-mutated cancers, samples with more than 2,000 non-silent mutations were disre-
garded. The TCGA tumor types analyzed were: Acute myeloid leukemia (LAML), Adrenocor-
tical carcinoma (ACC), Bladder urothelial carcinoma (BLCA), Brain lower grade glioma (LGG),
Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC), Colorectal adenocarcinoma (COADREAD), Glioblastoma multiforme (GBM),
Head and neck squamous cell carcinoma (HNSC), Kidney chromophobe (KICH), Kidney renal
clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellu-
lar carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC),
Ovarian serous cystadenocarcinoma (OV), Prostate adenocarcinoma (PRAD), Skin cutaneous
melanoma (SKCM), Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA), Uterine car-
cinosarcoma (UCS), Uterine corpus endometrial carcinoma (UCEC).

Pfam domains and mapping mutations to protein domains

The Pfam-A data base of domains in the human proteome (version 26) as well as all human
protein sequences were downloaded from the Pfam ftp server (pfam26.9606.tsv, ftp://ftp.
ebi.ac.uk/pub/databases/Pfam). To include only high confidence domain calls, domains
with an expectancy value (e-value) larger than 1e−5 were excluded. Mapping entries between
MAF files and Pfam domains was performed using Uniprot accession numbers using the MAF
ONCOTATOR UNIPROT ACCESSION BEST EFFECT field. In cases where the MAF entries
did not have Uniprot accession numbers, the biomart webservice (http://www.ensembl.
org/biomart/) was used to map between HGNC gene symbols and Uniprot accession num-
bers. The protein domain coordinates from the Pfam-A database were then matched to the MAF
entries to determine if the mutations fell within or outside the boundaries of the protein domains
using the MAF ONCOTATOR PROTEIN CHANGE BEST EFFECT field. MAF entries for which
the mutated protein position and amino acid identity did not match with the corresponding
amino acid identity in the protein sequences were excluded from the analysis. Furthermore, we
excluded MAF entries where the mutated protein position was larger than length of the protein
sequence.

Identification of domains with enriched mutation burden

For each domain we tallied the number of missense mutations falling (1) within the domain
boundary, and compared it to (2) outside of the boundaries of all other domains in the gene,
effectively excluding other domains than the domain in question. To assess if the mutation bur-
den of the domain was larger than would be expected by chance, we implemented a permutation
test. The permutation test compared the observed mutation burden of the domain to the distri-
bution of burdens generated by randomly distributing mutations across genes containing the
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domain. To generate this distribution, we repeated the following process for each permutation
i:

1. For each gene g in the domain family, count the total number of observed mutations in the
gene (both within and outside of the domain). Define this quantity to be ng.

2. For each gene g, randomly redistribute ng mutations across the gene, allowing for multiple
mutations to fall at the same amino acid residue.

3. Count the total number of mutations which fall within the domain boundaries across all
genes. Define this quantity to be mi, the mutation burden of the domain in permutation i.

To calculate a p-value for the observed mutation burden of the domain, we compared the true
mutation burden md derived from the data to the distribution of mi. The p-value was defined to
be the proportion of permutations with mutation burden greater than or equal to the observed
mutation burden.

Note that by treating each gene separately and summing over the outcome of randomly dis-
tributed mutations in each gene, we are able to account for gene-to-gene variation in mutation
rate (e.g. variation associated with replication timing (Lawrence et al., 2014b) as well as differ-
ences in gene length and the proportion of each gene occupied by domains).

Domains with less than 25 mutations across all cancer types were excluded in the permutation
analysis to avoid spurious results due to low mutation counts. Furthermore, to ensure proper
random redistribution of mutations across genes and their domains, we omitted domains where
the fraction of amino acids assigned as domains was larger than 75% of the all amino acids in
the domain-containing proteins.

Domain mutation enrichment score

To calculate an enrichment score of mutations in the domain (ed), we compared the observed
domain mutation burden (md) to the expected domain mutation burden (me). We calculated me

based on the total number of mutations observed (ng) and the fraction of amino acids assigned
as domains compared to total length of all genes in the domain family (fd):

ed =
md

me

,me = ng × fd (1)

Multiple sequence alignment of protein domains

The domain amino acid sequences were obtained as sub-strings from the protein sequences and
aligned across domain-containing genes using the MathWorks multialign package with BLO-
SUM80 as scoring matrix and default parameters. For aligning domains present in only two
genes, the Needleman-Wunsch algorithm was by applied using the MathWorks nwalign pack-
age with default parameters. After alignment of domains, missense mutations were tallied
across analogous residues of domain-containing genes using the coordinates of the multiple
sequence alignment. Residues with alignment gaps in more than 75% of the sequences were
excluded from the domain hotspot analysis.
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Identification of mutation hotspots within domain alignments

To identify putative hotspots for mutations within domains, we used as a null model the case of
mutations falling with equal likelihood at all sites within a domain. Following multiple sequence
alignment of all genes within a domain family, we tallied the number of observed mutations
within the domain. We assumed that, for a particular residue to be called a putative hotspot,
more mutations must fall on that residue than would be expected by chance if mutations were
randomly distributed throughout the body of the domain. Assuming that each mutation falls
at a random site along the domain body, the frequency of mutations at any particular residue
follows a binomial distribution:

P (n = k) =

(
n

k

)
pk(1− p)n−k (2)

where n is the total number of mutations in the domain, k is the number of mutations falling at
a particular residue, and p is the probability of any individual mutation falling at a particular
residue, and P (n = k) is precisely the probability of observing k mutations at a single residue,
assuming that n mutations were observed across the entire domain. Because our null model
assumes an equal likelihood of mutations at any residue, p = 1

L
, where L is the length of the

domain.
Thus, to assign a probability to the observation of k mutations falling at a particular site by
change (i.e. a p-value), we calculate the probability of at least k mutations falling at a particular
site from our null model

P (n ≥ k) =
n∑

i=k

(
n

k

)
pk(1− p)n−k (3)

To correct for multiple hypothesis testing, p-values for all considered hotspots (aligned domain
residues with more than two mutations) were adjusted using the Bonferroni correction method.

Calculating z-scores for mutation counts

To provide an estimate whether the number of mutations at a given mutation hotspot (muta-
tion count) is different from the mutation counts at other residues of the domain alignment, we
calculated a z-score for each position of the alignment. Assuming a normal distribution, the
z-score expresses the number of standard deviations a given hotspot is above the mean of the
distribution of mutations counts observed in the alignment. Additionally, we calculated a nor-
malized z-score that takes into account the biases in amino acid mutation frequencies observed
in different cancers by calculating the z-score based on a normalized mutation count (ĉ):

ĉ = c× fp
fm

(4)

where c is the observed mutation count, fp is the background frequency of a given amino acid
in the proteome, and fm is the observed mutation frequency of a given amino acid in a specific
cancer type.
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Entropy calculations

To assess how uniformly the mutations in a specific domain are spread across the genes con-
taining such domain, we rely on the notion of Shannons information entropy. The information
entropy S of a discrete probability distribution P (x) is defined to be

S = −
n∑

i=1

P (xi) lnP (xi) (5)

where P (xi) is the probability of the ith value of x. The entropy is maximal when P (x) is uniform,
i.e. each value of x is equally probable (Smax = lnn), and minimal when P (x) is equal to 1 for a
single value of x (Smin = 0). In order to facilitate the comparison of entropy values for vectors of
different dimension (e.g. domain families with different numbers of constituent genes), we use
a normalized entropy measure S̄ defined as

S̄ =
−
∑n

i=1 P (xi) lnP (xi)

lnn
(6)

where n is the dimension of the vector x.
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