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ABSTRACT

Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried15

to provide a formal framework for the description of the adaptive process. Out of these, two16

complementary modelling approaches have emerged: While so-called adaptive-walk models17

consider adaptation from the successive fixation of de-novo mutations only, quantitative ge-18

netic models assume that adaptation proceeds exclusively from pre-existing standing genetic19

variation. The latter approach, however, has focused on short-term evolution of population20

means and variances rather than on the statistical properties of adaptive substitutions. Our21

aim is to combine these two approaches by describing the ecological and genetic factors that22

determine the genetic basis of adaptation from standing genetic variation in terms of the23

effect-size distribution of individual alleles. Specifically, we consider the evolution of a quan-24

titative trait to a gradually changing environment. By means of analytical approximations,25

we derive the distribution of adaptive substitutions from standing genetic variation, that is,26

the distribution of the phenotypic effects of those alleles from the standing variation that be-27

come fixed during adaptation. Our results are checked against individual-based simulations.28

We find that, compared to adaptation from de-novo mutations, (i) adaptation from standing29

variation proceeds by the fixation of more alleles of small effect; (ii) populations that adapt30

from standing genetic variation can traverse larger distances in phenotype space and, thus,31

have a higher potential for adaptation if the rate of environmental change is fast rather than32

slow.33
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INTRODUCTION

One of the biggest surprises that has emerged from evolutionary research in the past few34

decades is that, in contrast to what has been claimed by the neutral theory (Kimura 1983),35

adaptive evolution at the molecular level is wide-spread. In fact, some empirical studies36

concluded that up to 45% of all amino acid changes between Drosophila simulans and D.37

yakuba are adaptive (Smith and Eyre-Walker 2002; Orr 2005b). Along the same line,38

Wichman et al. (1999) evolved the single-stranded DNA bacteriophage ΦX174 to high tem-39

perature and a novel host and found that 80− 90% of the observed nucleotide substitutions40

had an adaptive effect. These and other results have led to an increased interest in providing41

a formal framework for the adaptive process that goes beyond traditional population- and42

quantitative-genetic approaches and considers the statistical properties of suites of substitu-43

tions in terms of “individual mutations that have individual effects” (Orr 2005a). In general,44

selection following a change in the environmental conditions may act either on de-novo muta-45

tions or on alleles already present in the population, also known as standing genetic variation.46

Consequently, from the numerous studies that have attempted to address this subject, two47

complementary modelling approaches have emerged.48

So-called adaptive-walk models (Gillespie 1984; Kauffman and Levin 1987; Orr 2002,49

2005b) typically assume that selection is strong compared to mutation, such that the popula-50

tion can be considered monomorphic all the time and all observed evolutionary change is the51

result of de-novo mutations. These models have produced several robust predictions (Orr52

1998, 2000; Martin and Lenormand 2006a,b), which are supported by growing empirical53

evidence (Cooper et al. 2007; Rockman 2012; Hietpas et al. 2013; but see Bell 2009),54

and has provided a statistical framework for the fundamental event during adaptation, that55

is, the substitution of a resident allele by a beneficial mutation. Specifically, the majority56

of models (e.g., Gillespie 1984; Orr 1998; Martin and Lenormand 2006a) consider the57

effect-size distribution of adaptive substitutions following a sudden change in the environ-58
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ment. Recently, Kopp and Hermisson (2009b) and Matuszewski et al. (2014) extended59

this framework to gradual environmental change.60

In contrast, most quantitative-genetic models consider an essentially inexhaustible pool of61

pre-existing standing genetic variants as the sole source for adaptation (Lande 1976). Evolv-62

ing traits are assumed to have a polygenic basis, where many loci contribute small individual63

effects, such that the distribution of trait values approximately follows a Gaussian distribution64

(Bulmer 1980; Barton and Turelli 1991; Kirkpatrick et al. 2002). Since the origins65

of quantitative genetics lie in the design of plant and animal breeding schemes (Wricke and66

Weber 1986; Tobin et al. 2006; Hallauer et al. 2010), the traditional focus of these mod-67

els was on predicting short-term changes in the population mean phenotype (often assuming68

constant genetic variances and covariances), and not on the fate and effect of individual69

alleles. The same is true for the relatively small number of models that have studied the70

contribution of new mutations in the response to artificial selection (e.g. Hill and Rasbash71

1986a) and the shape and stability of the G-matrix (i.e., the additive variance-covariance72

matrix of genotypes; Jones et al. 2004, 2012).73

It is only in the past decade that population geneticists have thoroughly addressed adaptation74

from standing genetic variation at the level of individual substitutions (Orr and Betan-75

court 2001; Hermisson and Pennings 2005; Chevin and Hospital 2008). Hermisson76

and Pennings (2005) calculated the probability of adaptation from standing genetic vari-77

ation following a sudden change in the selection regime. They found that, for small-effect78

alleles, the fixation probability is considerably increased relative to that from new mutations.79

Furthermore, Chevin and Hospital (2008) showed that the selective dynamics at a focal80

locus are substantially affected by genetic background variation. These results where experi-81

mentally confirmed by Lang et al. (2011), who followed beneficial mutations in hundreds of82

evolving yeast populations and showed that the selective advantage of a mutation plays only a83

limited role in determining its ultimate fate. Instead, fixation or loss is largely determined by84

variation in the genetic background – which need not to be preexisting, but could quickly be85
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generated by a large number of new mutations. Still, predictions beyond these single-locus86

results have been verbal at best, stating that “compared with new mutations, adaptation87

from standing genetic variation is likely to lead to faster evolution [and] the fixation of more88

alleles of small effect [...]” (Barrett and Schluter 2008). Thus, despite recent progress,89

one of the central questions still remains unanswered: From the multitude of standing genetic90

variants segregating in a population, which are the ones that ultimately become fixed and91

contribute to adaptation, and how does their distribution differ from that of (fixed) de-novo92

mutations?93

The aim of the present article is to contribute to overcoming what has been referred to as “the94

most obvious limitation” (Orr 2005b) of adaptive-walk models and to study the ecological95

and genetic factors that determine the genetic basis of adaptation from standing genetic vari-96

ation. Specifically, we consider the evolution of a quantitative trait in a gradually changing97

environment. We develop an analytical framework that accurately describes the distribu-98

tion of adaptive substitutions from standing genetic variation and discuss its dependence on99

the effective population size, the strength of selection and the rate of environmental change.100

In line with Barrett and Schluter (2008), we find that, compared to adaptation from101

de-novo mutations, adaptation from standing genetic variation proceeds, on average, by the102

fixation of more alleles of small effect. Furthermore, when standing genetic variation is the103

sole source for adaptation, faster environmental change can enable the population to remain104

better adapted and to traverse larger distances in phenotype space.105
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MODEL AND METHODS

Phenotype, Selection and Mutation106

We consider the evolution of a diploid population of N individuals with discrete and non-107

overlapping generations characterized by a single phenotypic trait z, which is under Gaussian108

stabilizing selection with regard to a time-dependent optimum zopt(t):109

w(z, t) = exp
[
−(z − zopt(t))2

2σ2
s

]
, (1)

where σ2
s describes the width of the fitness landscape. Throughout this paper we choose the110

linearly moving optimum,111

zopt(t) = vt, (2)

where v is the rate of environmental change.112

Mutations enter the population at rate Θ
2 (with Θ = 4Nu where u is the per-haplotype muta-113

tion rate), and we assume that their phenotypic effect size α follows a Gaussian distribution114

with mean 0 and variance σ2
m (which we will refer to as the distribution of new mutations),115

that is116

p(α) = 1√
2πσ2

m

exp
(
− α2

2σ2
m

)
. (3)

Throughout this paper we equate genotypic with phenotypic values and, thus, neglect any117

environmental variance. Note that this model is, so far, identical to the moving-optimum118

model proposed by Kopp and Hermisson (2009b) (see also Bürger 2000).119

Genetic assumptions and simulation model120

To study the distribution of adaptive substitutions from standing genetic variation, we con-121
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ducted individual-based simulations (IBS; available upon request; see Bürger 2000; Kopp122

and Hermisson 2009b) that explicitly model the simultaneous evolution at multiple loci,123

while making additional assumptions about the genetic architecture of the selected trait, the124

life cycle of individuals and the regulation of population size. This will serve as our main125

model.126

Genome Individuals are characterized by a linear (continuous) genome of diploid loci,127

which determine the phenotype z additively (i.e., there is no phenotypic epistasis; note,128

however, that there is epistasis for fitness). Mutations occur at constant rate Θ
2N = u per129

haplotype. In contrast to the majority of individual-based models (e.g., Jones et al. 2004;130

Kopp and Hermisson 2009b; Matuszewski et al. 2014), we do not fix the number of131

loci a-priori, but instead assume that each mutation creates a unique polymorphic locus,132

whose position is drawn randomly from a uniform distribution over the entire genome (where133

genome length is determined by the recombination parameter r described below). Thus, each134

locus consists only of a wild-type allele with phenotypic effect 0 and a mutant allele with135

phenotypic effect α, which is drawn from equation (3). Thus, we effectively design a bi-allelic136

infinite-sites model with a continuum of alleles.137

To monitor adaptive substitutions, we introduce a population-consensus genome G that keeps138

track of all loci, that is, of all mutant alleles that are segregating in the population. If a139

mutant allele becomes fixed in the population it is declared the new wild-type allele and its140

phenotypic effect is reset to 0. The phenotypic effects of all fixed mutations are taken into141

account by a variable zfix, which can be interpreted as a phenotypic baseline effect. Thus,142

the phenotype z of an individual i is given by143

zi = zfix +
∑

h∈{1,2}

∑
l∈G

1(i, l, h)αl.

where144
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1(i, l, h) =


1 if individual i carries mutant allele α at locus l on haplotype h

0 otherwise.

Life cycle Each generation, the following steps are performed:145

1. Viability selection: Individuals are removed with probability 1− w(z) (see eq. 1).146

2. Population regulation: If, after selection, the population size N exceeds the carrying147

capacity K, N −K randomly chosen individuals are removed.148

3. Reproduction: The surviving individuals are randomly assigned to mating pairs, and149

each mating pair produces exactly 2B = 4 offspring. Note that under this scheme, the150

effective population size Ne equals 4/3 times the census size (Bürger 2000, p. 274). To151

account for this difference, Θ in the analytical approximations needs to calculated on152

the basis of this effective size, i.e., Θ = 4Neu. The offspring genotypes are derived from153

the parent genotypes by taking into account segregation, recombination and mutation.154

Recombination For each reproducing individual, the number of crossing-over events dur-155

ing gamete formation (i.e., the number of recombination breakpoints) is drawn from a Poisson156

distribution with (genome-wide recombination) parameter r (i.e., the total genome length is157

r ·100cM, see Supporting Information 1). The genomic position of each recombination break-158

point is then drawn from a uniform distribution over the entire genome, and the offspring159

haplotype is created by alternating between the maternal and paternal haplotype depending160

on the recombination breakpoints. Free recombination (where all loci are assumed to be161

unlinked) corresponds to r →∞. In this case, for each locus a Bernoulli-distributed random162

number is drawn to determine whether the offspring haplotype will receive the maternal or163

the paternal allele at that locus.164
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Simulation initialization and termination Starting from a population of K wild-type165

individuals with phenotype z = 0 (i.e., the population was perfectly adapted at t = 0),166

we allowed for the establishment of genetic variation, σ2
g , by letting the population evolve167

for 10,000 generations under stabilizing selection with a constant optimum. Increasing the168

number of generations had no effect on the average σ2
g . Following this equilibration time, the169

optimum started moving under ongoing mutational input, and the simulation was stopped170

once all alleles from the standing genetic variation had either been fixed or lost (i.e., when171

σ2
sgv = 0). Simulations were replicated until a total number of 5000 adaptive substitutions172

from standing genetic variation was recorded.173

Analytical approximations: Evolution of a focal locus in the presence of genetic174

background variation175

In order to obtain an analytically tractable model, we need to approximate the multi-locus176

dynamics. Clearly, simple interpolation of single locus theory will fail, because when alleles177

at different loci influencing the same trait segregate in the standing genetic variation, the178

selective dynamics of any individual allele are critically affected by the collective evolutionary179

response at other loci. In particular, any allele that brings the mean phenotype closer to the180

optimum simultaneously decreases the selective advantage of other such alleles (epistasis for181

fitness). Thus, if simultaneous evolution at many loci allows the population to closely follow182

the optimum, large-effect alleles at any given locus are likely to remain deleterious (as their183

carriers would overshoot the optimum). To account for these effects, we adopt a quantitative-184

genetics approach originally developed by Lande (1983) and introduce a genetic background185

zB that evolves according to Lande’s equation186

∆z̄ = σ2
gβ, (5a)

where187
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β = ∂ log(w̄)
∂z̄

(5b)

denotes the selection gradient, which measures the change in log mean fitness per unit change188

of the mean phenotype and σ2
g gives the genetic variance (Lande 1976). Furthermore,189

assuming that the distribution of phenotypic values from the genetic background is Gaussian190

and the genetic variance remains constant, the mean background phenotype evolves according191

to192

z̄B(t) ≈ vt− v

γ
(1− (1− γ)t) (6a)

with193

γ =
σ2
g

σ2
g + σ2

s

(6b)

(Bürger and Lynch 1995).194

Given the dynamics of the genetic background, we choose one focal locus and derive the195

time-dependent selection coefficient s(α, t) for an allele with phenotypic effect α (for details196

see below). We then use theory for adaptation from standing genetic variation (Hermisson197

and Pennings 2005) and for fixation under time-inhomogeneous selection (Uecker and198

Hermisson 2011) to estimate the fixation probability for this allele (see also Appendix 1).199

As long as there is no linkage (i.e., there is free recombination between all loci), each locus200

can be viewed as the focal locus (with a specific phenotypic effect α), allowing us to get an201

estimate for the overall distribution of adaptive substitutions from standing genetic varia-202

tion. Thus, in these approximations, our multi-locus model is effectively treated within a203

single-locus framework. Note that a similar focal-locus approach has recently been used to204

analyze the effect of genetic background variation on the trajectory of an allele sweeping to205

fixation (Chevin and Hospital 2008), and to study the probability of adaptation to novel206
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environments (Gomulkiewicz et al. 2010), with both studies stressing the fact that genetic207

background variation cannot be neglected and critically affects the adaptive outcome.208

Wright-Fisher simulations: A focal locus with recurrent mutations209

To simulate evolution at a focal locus, we followed Hermisson and Pennings (2005) and210

implemented a multinomial Wright-Fisher (WF) sampling approach (available upon request).211

These simulations serve as an additional analysis tool that has been adjusted to the approx-212

imation method and allows the adaptive process to be simulated fast and efficiently. In213

addition, they go beyond the individual-based model in one aspect, as they do not make the214

infinite-sites assumption but allow for recurrent mutation at the focal locus.215

Genome At the focal locus, mutations with a fixed allelic effect α appear recurrently216

at rate θ and convert ancestral alleles into derived mutant alleles. Accordingly, despite a217

genetic background with normally distributed genotypic values, there are at most two types218

of (focal) alleles in the population, where each type “feels” only the mean background z̄B,219

which evolves according to Lande’s equation (eq. 5, see above). The genetic background220

variation σ2
g is assumed to be constant and serves as a free parameter that is independent of221

θ, Ne and σ2
s . Note that the evolutionary response at the focal locus is influenced by that of222

the genetic background, and vice versa, meaning that the two are interdependent.223

Procedure We follow the evolution of 2Ne alleles at the focal locus. Each generation is224

generated by multinomial sampling, where the probability of choosing an allele of a given type225

(ancestral or derived) is weighted by its respective (marginal) fitness. Furthermore, the mean226

phenotype of the genetic background z̄B evolves deterministically according to equation (5)227

with constant σ2
g . To let the population reach mutation-selection-drift equilibrium, each228

simulation is started 4Ne generations before the environment starts changing. Initially, the229

population consists of only ancestral alleles “0”; the derived allele “1” is created by mutation.230
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If the derived allele reaches fixation before the environmental change (by drift), it is itself231

declared “ancestral”; i.e., the population is set back to the initial state. After 4Ne generations,232

the optimum starts moving, such that the selection coefficient of the derived allele, which is233

initially deleterious (i.e., s(α, t) ≤ 0), increases and may eventually become beneficial (i.e.,234

s(α, t) > 0), depending on the response at the genetic background. Simulations continue until235

the derived allele is either fixed or lost. Fixation probabilities are estimated from 100,000236

simulation runs.237

Both simulation programs are written in C++ and make use of the Gnu Scientific Library238

(Galassi et al. 2009). Mathematica (Wolfram Research, Inc., Champaign, USA) was used239

for the numerical evaluation of integrals and to create plots and graphics, making use of the240

LevelScheme package (Caprio 2005).241

A summary of our notation is given in Table 1.242

Table 1 – A summary of notation and definitions.

α phenotypic effect of mutation
p(α) (Gaussian) distribution of new mutations
z phenotype
z̄B mean genetic background phenotype
v rate of environmental change
w(z, zopt(t)) (Gaussian) fitness function
σ2
s width of Gaussian fitness function
σ2
m variance of new mutations
σ2
g (background) genetic variance
s(α, t) time-dependent selection coefficient for allele with phenotypic effect α
x frequency of mutant allele
Ne effective population size
θ per locus mutation rate
Θ population-wide mutation rate (per trait)
Πfix fixation probability
ρ(x, α) Distribution of mutant allele frequency at a single locus with phenotypic effect α
PSGV Probability to adapt from standing genetic variation
pSGV Distribution of adaptive substitutions from standing genetic variation
δeq equilibrium lag
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RESULTS

In the following, we calculate, first, the probability that a focal allele from the standing genetic243

variation becomes fixed when the population adapts to a moving phenotypic optimum, and244

second, the effect-size distribution of such alleles. Note that the first result will be derived245

under the assumption of recurrent mutation (see “Wright-Fisher simulations”), and serves246

as an intermediate step for the second result, which is based on an infinite-sites model (see247

“Genetic assumptions and simulation model”).248

The probability for adaptation from standing genetic variation249

The probability that a focal mutant allele from the standing genetic variation contributes to250

adaptation depends on the dynamics of its the selection coefficient in the presence of genetic251

background variation. For an allele with effect α and a genetic background with mean z̄B252

and variance σ2
g , the selection coefficient can be calculated as253

s(α, t) = w(α + z̄B(t), t)
w(z̄B(t), t) − 1

≈ − α2

2
(
σ2
s + σ2

g

) + α

σ2
s + σ2

g

(vt− z̄B(t)). (7)

Note that the genetic background variance has the effect of broadening the fitness landscape254

experienced by the focal allele (the term σ2
s + σ2

g).255

Plugging equation (6a) into equation (7) then yields the selection coefficient,

s(α, t) ≈ − α2

2
(
σ2
s + σ2

g

) + αv

γ
(
σ2
s + σ2

g

)(1− (1− γ)t). (8)

Assuming that the population is perfectly adapted at t = 0 (z̄B = 0), the initial (deleterious)256

selection coefficient is given by257
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s(α, 0) = − α2

2
(
σ2
s + σ2

g

) .
Unlike in the model without genetic background variation (Kopp and Hermisson 2009b),258

s(α, t) does not increase linearly, but instead depends on the evolution of the phenotypic lag259

δ between the optimum and the mean background phenotype. In particular, the population260

will reach a dynamic equilibrium with ∆z̄B = v, where it follows the optimum with a constant261

lag262

δeq = v

γ
(9)

(Bürger and Lynch 1995). Consequently, the selection coefficient for α approaches263

lim
t→∞

s(α, t) = − α2

2
(
σ2
s + σ2

g

) + αv

γ
(
σ2
s + σ2

g

) . (10)

Note that the right-hand side can be written as s(α, 0) + αβeq, where βeq is the equilibrium264

selection gradient (Kopp and Matuszewski 2014). In this case, the largest obtainable265

selection coefficient is for α = δeq and evaluates to266

smax = s(δeq,∞) = v2

2γ2
(
σ2
s + σ2

g

) . (11)

The range of allelic effects α that can reach a positive selection coefficient is bounded by267

αmin = 0 and αmax = 2δeq. Note that in previous adaptive-walk models (e.q., Kopp and268

Hermisson 2009b; Matuszewski et al. 2014) there was no strict αmax, since the popula-269

tion followed the optimum by stochastic jumps, whereas in the present model, the genetic270

background evolves deterministically and establishes a constant equilibrium lag.271

Assuming that α was deleterious prior to the environmental change, its allele frequency272

spectrum ρ(x, α) is given by equation (A5). When genetic background variation is absent273
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the fixation probability Πfix(α) (eq. A7) can be calculated explicitly using274

ϕσ2
g=0(α) = 1 + 1

2

√
π

2αv
σ2
s

exp
s(α, 0)2

2αv
σ2
s

 erfc
s(α, 0)√

2αv
σ2
s

 . (12)

For the general case, however, Πfix(α) can only be calculated numerically using equation (8)275

in equation (A7b), yielding276

2ϕ(α) = 1 +
∫∞
0 (1 + s(α, t)) exp

[
−
((
− α2

2(σ2
s+σ2

g)

)
+
(
(1− (1− γ)t) 1

log[(1−γ)t] + 1
)

αv

γ(σ2
s+σ2

g)

)
t
]

dt. (13)

The fixation probability for an allele from the standing genetic variation with allelic effect α277

and a recurrent (per locus) mutation rate θ can then be calculated as278

PSGV(α) =


1− C(α)

∫ 1
0 x

θ−1 exp[−4Ne|s(α, 0)|x]
(

1− 1
ϕ(α)

)2Nex

dx if 0<α<αmax

0 otherwise,
(14)

where C(α) =
(
γ[θ,4Ne|s(α,0)|]
(4Ne|s(α,0)|)θ

)−1
.279

When checked against Wright-Fisher simulations (see Methods for details), our analytical280

approximation equation (14) performs generally very well (Figs. 1 and S3_1). The only281

exception occurs when the background variation is high (large σ2
g) and stabilizing selection282

is weak (i.e., if σ2
s is large). In this case, equation (14) underestimates PSGV(α) for small283

α ∼ 0.5σm. The reason is that, under a constant optimum (i.e., before the environmental284

change), the genetic background compensates for the deleterious effect of α (i.e., z̄B < 0,285

in violation of our assumption that z̄B(0) = 0), effectively reducing the selection strength286

against the deleterious mutant allele. Consequently, α is, on average, present at higher287

initial frequencies than predicted by equation (A5).288

Note that, if α is small compared to the genetic background variation (i.e., in the limit of289

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2015. ; https://doi.org/10.1101/015685doi: bioRxiv preprint 

https://doi.org/10.1101/015685
http://creativecommons.org/licenses/by-nc-nd/4.0/


α/σm → 0) and environmental change is slow (i.e., v � 10−5), PSGV(α) will approach the290

probability of fixation from standing genetic variation for a neutral allele (i.e., α = 0), which291

can be calculated as292

PSGV, neutral =
∫ 1

0
xρ(x)dx = Hθ − 1

γ + ψ(θ) . (15)

where ρ(x) is given by equation (A3), Hn denotes the nth harmonic number, γ ≈ 0.577 is293

Euler’s gamma and ψ(·) is the polygamma function (see dashed lines in Figs. 1 and S3_1).294

Figures 1 and S3_1 show some general trends: First, the probability for a mutant allele to295

become fixed increases with the rate of environmental change, v, (irrespective of its effect296

size α, the per locus mutation rate θ and the width of the fitness landscape σ2
s) since only297

the positive term in equation (8) depends (linearly) on v. Second, PSGV(α) is proportional298

to θ as long as θ is small (compare θ = 0.004 and θ = 0.04 in Fig. S3_1), simply because the299

probability that α is present in the population is linear in θ. Thus, Figure 1 is representative300

for the limit θ → 0 which will be used below. Indeed, only if the per-locus mutation rate301

is fairly large (θ > 0.1), does the shape of the distribution of allele frequencies become302

important, and the increase in PSGV(α) with θ becomes less than linear (Fig. S3_1). Third,303

changes in the width of the fitness landscape, σ2
s , have a dual effect: While increasing σ2

s304

promotes the initial frequency of the focal allele in the standing genetic variation (because305

stabilizing selection is weaker), the selection coefficient increases more slowly after the onset306

of environmental change (such that the allele is less likely to be picked up by selection;307

see eq. 7). Our results, however, show that the former effect always outweighs the latter308

(as PSGV(α) increases with σ2
s). Finally, if the genetic background variation σ2

g is below309

a threshold value (e.g., σ2
g < 0.005; the exact threshold should depend on θ and σ2

s) it310

only marginally affects the fixation probability of the focal allele α. Once σ2
g surpasses this311

value, however, it critically affects PSGV(α) (in accordance with the results by Chevin and312
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Hospital 2008). In particular, as σ2
g increases PSGV(α) decreases, because most large-effect313

alleles remain deleterious even if environmental change is fast. Thus, enlarged background314

variation acts as if reducing the rate of environmental change v. In summary, our analytical315

results are in good agreement with the WF-simulation model, and will serve as an important316

first step towards deriving the distribution of adaptive substitutions from standing genetic317

variation.318
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Figure 1 – The probability for a mutant allele to adapt from standing genetic variation as a function of the rate of environmental change v. Solid lines correspond to the
analytical prediction (eq. 14), the grey dashed line shows the probability for a neutral allele (α = 0; eq. 15), and symbols give results from Wright-Fisher
simulations. The phenotypic effect size α of the mutant allele ranges from 0.5σm (top line; black) to 3σm (bottom line; purple) with increments of 0.5σm.
The figures in each parameter box (per locus mutation rate θ, width of fitness landscape σ2

s) correspond to different values of the genetic background
variation σ2

g with σ2
g = 0 (no background variation; top left), σ2

g = 0.005 (top right), σ2
g = 0.01 (bottom left) and σ2

g = 0.05 (bottom right). Other
parameters: Ne = 25000, θ = 0.004, σ2

m = 0.05.
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The distribution of adaptive substitutions from standing genetic variation321

We now derive the distribution of adaptive substitutions from standing genetic variation322

over all mutant effects α. In the previous section, we derived the fixation probability at323

a focal locus (with a given effect α) by treating the genetic background variance σ2
g as an324

independent model parameter. In the full model, this variance results from a balance of325

mutation, selection and drift at all background loci. As such, it is a function of the basic326

model parameters for these forces. Since we use an infinite-sites model, there is no recurrent327

mutation and each allele originates from a single mutation. Consequently, the amount of328

background variation σ2
g is accurately predicted by the Stochastic-House-of-Cards (SHC)329

approximation (not shown; Bürger and Lynch 1995)330

σ2
g = Θσ2

m

1 + Neσ2
m

σ2
s

, (16)

where mutation is parametrized by the total (per trait) mutation rate Θ and the mutational331

variance σ2
m, the width of the fitness landscape is given by σ2

s , and the effective population332

size Ne is a measure for genetic drift.333

To derive the probability that an allele with a given phenotypic effect α contributes to334

adaptation, we first need to calculate the probability that such an allele segregates in the335

population at time 0. Following Hermisson and Pennings (2005), the probability P0 that336

the allele is not present can be approximated by integrating over the distribution of allele337

frequencies ρ(x, α) (eq. A5) from 0 to 1
2Ne yielding338

P0(α) ≈
(

2Ne

4Ne|s(α, 0)|+1

)−θ

= exp
[
−θ log

[
2Ne

4Ne|s(α, 0)|+1

]]
(17)
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(eq. 7 and Appendix of Hermisson and Pennings 2005). The fixation probability can then339

be calculated by conditioning on segregation of the allele in the limit θ → 0 (due to the340

infinite-sites assumption). Using equation (14), this probability reads341

Πseg(α) = lim
θ→0

PSGV(α)
1− P0(α)

≈ lim
θ→0

1− C(α)
∫ 1

0 x
θ−1 exp[−4Ne|s(α, 0)|x]

(
1− 1

ϕ(α)

)2Nx
dx

1− exp
[
−θ log

[
2Ne

4Ne|s(α,0)|+1

]] , (18)

where C(α) =
(
γ[θ,4Ne|s(α,0)|]
(4Ne|s(α,0)|)θ

)−1
(see also eq. A5) and with ϕ(α) according to equation (13).342

The limit in equation (18) can be approximated numerically by setting θ to a very small, but343

positive value.344

Multiplying by the rate of mutations with effect α (i.e., Θp(α)), the distribution of adaptive345

substitutions from standing genetic variation is given by346

pSGV(α) ≈ Θp(α)Πseg(α)∫ αmax
0 Θp(α)Πseg(α)dα

= C1(α)p(α)Πseg(α), (19)

where C1(α) is a normalization constant (black line in Figs. 2, 3 and Fig. 4). Note that347

equation (19) still depends on Θ through its effect on the background variance σ2
g (which348

affects Πseg(α)). In particular, in the SHC approximation (eq. 16), σ2
g scales linearly with Θ.349

Furthermore, equation (19) should be valid for any distribution of mutational effects p(α).350

In the limit where the equilibrium lag is reached fast (i.e., when γ is large; eq. 6b), the351

moving-optimum model reduces to a model with constant selection for any focal allele (i.e., as352

in Hermisson and Pennings 2005). Using equations (A6) and (17) the fixation probability353
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for a segregating allele can be calculated as354

Πseg,SGV,δeq(α) ≈ lim
θ→0

1− exp
[
−θ log

[
1 + 4Nes(α,∞)

4Ne|s(α,0)|+1

]]
1− P0(α) . (20)

Plugging equation (20) into equation (19), the distribution of adaptive substitutions from355

standing genetic variation can be approximated by356

pSGV,δeq(α) ≈ C2(α)p(α)Πseg,SGV,δeq(α), (21)

where C2(α) is a normalization constant (red line in Figs. 2, 3).357

Similarly, the fixation probability of de-novo mutations under the equilibrium lag δeq can be358

derived (using 11 and eq. A2 with an initial frequency of 1/(2N)) as359

Πfix,DNM,δeq(α) =
(

1− exp
[
−α(2δeq − α)

σ2
s + σ2

g

])
, (22)

yielding the distribution of adaptive substitutions360

pDNM,δeq(α) ≈ p(α)C3(α)Πfix,DNM,δeq(α), (23)

where C3(α) is a normalization constant (grey curve in Figs. 2, 3).361

In contrast, if the environment changes very slowly, we can calculate the limit distribution of362

adaptive substitutions from standing genetic variation by approximating the fixation proba-363

bility by that of a neutral allele (i.e., its allele frequency x). In this case,364

Πseg,v→0(α) ≈ lim
θ→0

F(α)
1− P0(α) (24a)

with365
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F(α) =
∫ 1

0
ρ(x, α)xdx = 1F (0, θ + 1, 4Ne|s(α, 0)|)1

1F (0, θ, 4Ne|s(α, 0)|)1
, (24b)

where ρ(x, α) is given by equation (A4) and the right-hand side is a ratio of hypergeometric366

functions.367

Using equation (24a) the distribution of substitutions from standing genetic variation reads368

pSGV,v→0(α) ≈ C4(α)p(α)Πseg,v→0(α), (25)

where C4(α) again denotes a normalization constant (blue line in Figs. 3, S3_2).369

The accuracy of the approximation When compared to individual-based simulations,370

our analytical approximation for the distribution of adaptive substitutions from standing371

genetic variation (eq. 19) performs, in general, very well as long as selection is strong, that is,372

the rate of environmental change v is high and/or the width of the fitness landscape σ2
s is not373

too large (Fig. 2). Under weak selection, however, equation (19) fails to capture the fixation374

of alleles with neutral or negative effects (“backward fixations”; α ≤ 0). The reason is that375

equation (A7) only considers the fixation of alleles whose selection coefficient s(α, t) becomes376

positive in the long term. But if the rate of environmental change is slow (or σ2
s is very377

large), most alleles get fixed or lost simply by chance, that is, genetic drift. In particular, if378

genetic drift is the main driver of phenotypic evolution (i.e., Ne|s(α, t)|< 1), the distribution379

of adaptive substitutions is almost symmetric around 0 (see Fig. S3_2). This distribution380

is described very well by equation (25), which assumes that the fixation probability of an381

allele is proportional to its initial frequency in the standing variation. In addition, even382

for cases where environmental change imposes modest directional selection, equation (25)383

still captures the shape of the distribution of adaptive substitutions reasonably well, when384

centered around the empirical mean (blue line in Figs. 2, 3).385
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Figure 2 – The distribution of adaptive substitutions from standing genetic variation. Histograms show results from individual-based simulations. The black line corresponds to the
analytical prediction (eq. 19), with the genetic background variation σ2

g determined by the SHC approximation (eq. 16). The red line gives the analytical prediction for the
limiting case where the equilibrium lag δeq is reached fast (eq. 21). The blue line is based on the analytical prediction eq. (25) – which assumes a neutral fixation
probability – but has been shifted so that it is centered around the empirical mean. The grey curve gives the analytical prediction for substitutions from de-novo
mutations under the assumption that the phenotypic lag δeq has reached its equilibrium (eq. 23). The asterisks indicate where Nesmax ≥ 10. Fixed parameter: σ2

m = 0.05.396
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Figure 3 – The distribution of adaptive substitutions from standing genetic variation for various rates of environmental change. For further details see Fig. 2. Fixed
parameters: Θ = 2.5, N = 2500, σ2

m = 0.05.
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With a moving phenotypic optimum, the selection coefficient (eq. 8) is initially very small.386

Accordingly, there is always a phase during the adaptive process where genetic drift domi-387

nates, that is, where Ne|s(α, t)|< 1 for all mutant alleles. The length of this phase (i.e., the388

time it takes until selection becomes the main force of evolution) depends on the interplay of389

multiple parameters, notably v, σ2
s , Ne and Θ. A good heuristic to determine whether evo-390

lution will ultimately become dominated by selection is to calculate Nesmax (eq. 11), which391

gives the maximal population-scaled selection coefficient. Since the selection coefficient of392

most mutations will be smaller than this value, one can consider as a rule of thumb that393

selection is the main driver of evolution as long as Nesmax ≥ 10. In this case, equation (19)394

matches the individual-based simulations very well (see asterisks in Figs. 2, 3). In summary,395

the accuracy of our approximation crucially depends on the efficacy of selection.400

The effects of linkage on the distribution of adaptive substitutions from standing genetic401

variation are discussed in Supporting Information 1. The main result is that only tight402

linkage has a noticeable effect, namely to reduce the efficacy of selection and increase the403

proportion of “backward” fixations (moving the distribution closer to the prediction from404

eq. 25).405

Biological interpretation As shown in Figures (2) and (3), adaptive substitutions from406

standing genetic variation have, on average, smaller phenotypic effects than those from de-407

novo mutations. There are two reasons for this result. First, in the standing genetic variation,408

small-effect alleles are more frequent than large-effect alleles and might already segregate409

at appreciable frequency (increasing their fixation probability). Second, substitutions from410

standing variation occur in the initial phase of the adaptive process, where the phenotypic411

lag is small, whereas our approximation for de-novo mutations (eq. 23) assumes that the phe-412

notypic lag has reached its maximal (equilibrium) value (which need not be large, depending413

on the amount of genetic background variation). The relative importance of these two effects414

can be seen in Figures (2) and (3): Comparing the grey shaded area (eq. 23; de-novo muta-415
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tions under the equilibrium lag) with the red line (eq. 21; standing genetic variation under416

the equilibrium lag) shows the effect of larger starting frequencies of small-effect mutations417

from the standing genetic variation. The difference of the black (eq. 19; standing genetic418

variation) and red (eq. 21; standing genetic variation under the equilibrium lag) lines show419

the effects of the initially smaller lag (i.e., the effect of the dynamical selection coefficient).420

Note that the first effect is always important (even if Θ and σ2
s are large and v is small, where421

the red line and the grey curve almost coincide—though this is only because the approxima-422

tion is bad). The second effect, however, becomes particularly important if γ = σ2
g/(σ2

g +σ2
s)423

is small (i.e, if the time to reach the equilibrium lag is large), such that selection coefficients424

are dynamic and small-effect alleles are selected earlier than large-effect alleles, explaining425

the relative lack of large-effect alleles in the distribution of adaptive substitutions.426

Generally, the distribution of adaptive substitutions is unimodal and generally resembles a427

log-normal distribution (Figs. 2, 3). Only if selection is very weak (i.e., when σ2
s is large428

and/or v is small), does it contain a significant proportion of “backward fixations” (with429

negative α; Fig. 3; see “Accuracy of the Approximation” ). As the rate of environmental430

change v increases, the mean phenotypic effect of substitutions increases (Fig. 4, top row),431

too, but the mode may actually decrease (Fig. 3), that is, the distribution becomes more432

asymmetric and skewed, resembling the “almost exponential” distribution of substitutions433

from de-novo mutations in the sudden change scenario (Orr 1998). A likely explanation434

is that small-effect alleles, which are common in the standing variation, are under stronger435

selection and have an increased fixation probability if v is large (see Fig. 1).436

Interestingly, if the environment changes very fast the simulated distribution of adaptive437

substitutions from standing genetic variation almost exactly matches the one predicted by438

equation (23) for de-novo mutations (Fig. 5, see also Figs. 2, 3). However, this seems to be an439

artefact rather than a relevant biological phenomenon. The reason is that the environment440

changes so fast that the population quickly dies out. Thus, the resulting distribution of441

adaptive substitutions is that for a dying population and might not necessarily reflect the442
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adaptive process. In an experimental setup, though, where populations evolve until they443

go extinct, the distribution of adaptive substitutions from standing genetic variation might444

truly be indistinguishable from that from de-novo mutations.445
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Figure 4 – The mean size of adaptive substitutions from standing genetic variation, measured in units of mutational
standard deviations (σm) as a function of the rate of environmental change v (top row) and for various v as a
function of the population-wide mutation rate Θ (bottom left), the width of the fitness landscape σ2

s (bottom
middle) and the population size N (bottom right). Lines show the analytical prediction (the mean of the
distribution eq. eq:pDistMoveOpt), and symbols give results from individual-based simulations. Error bars
for standard errors are contained within the symbols. For v = 0.1, no simulation results are shown, as these
constitute a degenerate case (for details see “The accuracy of the approximation”). Fixed parameter:
σ2
m = 0.05.
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Figure 5 – The distribution of adaptive substitutions from standing genetic variation in the case of fast environmental
change. For further details see Fig. 2. Fixed parameters: σ2

s = 100, Θ = 10, N = 2500, v = 0.1, σ2
m = 0.05.

446

447

In the following, we discuss the influence of the other model parameters (Θ, σ2
s and N) on448

the distribution of adaptive substitutions from standing genetic variation, and in particular,449
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its mean ᾱ (Fig. 4).450

The effect of the rate of mutational supply Θ depends strongly on the rate of environmental451

change v: ᾱ decreases with Θ if v is small but is independent of Θ if v is large (Fig. 4B).452

Recall that Θ enters pSGV(α) (eq. 19) only indirectly through the background variance σ2
g .453

Accordingly, as Θ increases, so does σ2
g and, thus, γ (eq. 6b). In the limit t → ∞, the454

population will follow the optimum at a constant lag δeq = v
γ
. Thus, if v is large (such that,455

even for large σ2
g , the lag is large relative to the mutational standard deviation σm) increasing456

Θ does not affect ᾱ. In contrast, if v is small, increasing Θ (and, hence, σ2
g) will reduce the457

lag even further, such that most large-effect alleles will be deleterious. Consequently, for458

small v, ᾱ decreases as Θ increases.459

The width of the fitness landscape σ2
s affects different aspects of the adaptive process, but its460

net effect is an increase of the mean effect size of fixed alleles as σ2
s increases (i.e., as stabilizing461

selection gets weaker), especially if the rate of environmental change is intermediate (Fig. 4D).462

The reason is that weak stabilizing selection increases the frequency of large-effect alleles in463

the standing variation. In addition, weak selection also increases the phenotypic lag (eq. 9;464

see also Kopp and Matuszewski 2014), again favoring large effect alleles. Note that the465

latter point holds true even though weak selection increases the background variance σ2
g .466

Finally, the effect of σ2
s is strongest for intermediate v, because for small v, large-effect alleles467

are never favored, whereas for large v, all alleles with positive effect have a high fixation468

probability.469

Similar arguments hold for Ne (when the rate of mutational supply, Θ, is held constant).470

First, increasing Ne will always increase the efficacy of selection, resulting in lower initial471

frequencies of mutant alleles (eq. A4) and decreased σ2
g (eq. 16). If the environment changes472

slowly, ᾱ increases with Ne, because the equilibrium lag increases (caused by the decrease473

in σ2
g). In contrast, if the rate of environmental change is fast, ᾱ slightly decreases with Ne474

due to the lower starting frequency of large-effect alleles and because small-effect alleles are475
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selected more efficiently (i.e., they are less prone to get lost by genetic drift; Fig. 4F).476

The potential for adaptation from standing genetic variation and the rate of477

environmental change478

So far, we have focussed on the distribution of adaptive substitutions for individual fixation479

events. We now address what can be said about the total progress that can be made from480

standing genetic variation following a moving phenotypic optimum. The overall potential for481

adaptation from standing genetic variation depends on the mean number of alleles segregating482

in the standing genetic variation, which can be accurately approximated as (Foley 1992)483

|G|= 1 + Θ log
[

2σ2
s

σ2
m

]
(26)

(results not shown). The mean number of alleles that become fixed can then be calculated484

as485

|G|fix = |G|
∫ αmax

0
p(α)Πseg(α)dα, (27)

where the integral equals the normalization constant in equation (19) (i.e., the proportion of486

fixed alleles). Finally, using equation (27), the average distance travelled in phenotype space487

before standing variation is exhausted is given by488

z∗ = 2|G|fix ᾱ = 2|G|
∫ αmax

0
αp(α)Πseg(α)dα, (28)

where ᾱ is the mean phenotypic effect size of adaptive substitutions from standing genetic489

variation, and the factor 2 in equation (28) comes from the fact that we are considering490

diploids (and α denotes the phenotypic effect per haplotype). Note that, once the shift of491

the optimum considerably exceeds z∗, the population will inevitably go extinct without the492

input of new mutations.493
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Figure 6 (see also Figs. S3_3, S3_4, S3_5 and Figs. S3_6, S3_7) illustrate these predictions494

and compare them to results from individual-base simulations (where, unlike in the rest of495

this paper, new mutational input was turned off after the onset of the environmental change).496

Both the mean number of fixations |G|fix and the mean phenotypic distance travelled z∗497

increase with the rate of environmental change, reflecting the fact that more and larger-effect498

alleles become fixed if the environment changes fast. Only for very large v, where the rate499

of environmental change exceeds the “maximal sustainable rate of environmental change”500

(Bürger and Lynch 1995), which for our choice for the number of offspring B = 2 equals501

vcrit = σ2
g

√√√√√√2 log
[
2
√

σ2
s

σ2
g+σ2

s

]
σ2
g + σ2

s

, (29)

do |G|fix and z∗ decrease sharply, because the population goes extinct before fixations can be502

completed (grey-dashed line in Figs. 6, S3_6 and S3_7). At small values of v, |G|fix matches503

the “neutral” prediction (grey-dashed line in Figs. S3_3, S3_4 and S3_5). Note that these504

fixations have almost no effect on z∗, because their average effect is zero. At intermediate505

v, equation (28) slightly underestimates z∗ for parameter values leading to large background506

variance σ2
g (i.e., high Θ and σ2

s). The likely reason is that the analytical approximation507

assumes σ2
g to be constant, while it obviously decreases in the simulations (since there are508

no de-novo mutations). All these results are qualitatively consistent across different values509

of σ2
s and Θ (Figs. 6, S3_6, S3_7).510
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Figure 6 – The average distance traversed in phenotype space, z∗, as a function of the rate of environmental change v,
when standing genetic variation is the sole source for adaptation. Symbols show results from individual-based
simulations (averaged over 100 replicate runs). The black line gives the analytical prediction (eq. 28), with
σ2
g taken from equation (16). The grey-dashed line gives the critical rate of environmental change (eq. 29).

Error bars for standard errors are contained within the symbols. Fixed parameters: N = 2500, σ2
m = 0.05.
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The relative importance of standing genetic variation and de-novo mutations513

over the course of adaptation514

Until now we have compared adaptation from standing genetic variation to that from de-515

novo mutations in terms of their distribution of fixed phenotypic effects. We now turn to516

investigating their relative importance over the course of adaptation. For this purpose, we517

recorded (in individual-based simulations) the contributions of both sources of variation to518

the phenotypic mean and variance. An average time series for both measures is shown in519

Figure 7. As expected, the initial response to selection is almost entirely based on standing520

variation, but the contribution of de-novo mutations increases over time. As a quantitative521
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measure for this transition, we define tDNM,50 (z̄) as the point in time where the cumulative522

contribution of de-novo mutations has reached 50%. Indeed, we find that, beyond this time,523

adaptation almost exclusively proceeds by the fixation of de-novo mutations (Fig. 7A). As524

expected, tDNM,50 (z̄) decreases with v (Figs. 8, S3_8, first row), while the total phenotypic525

response z̄ increases (Figs. 8, S3_8, second row). The reason is that faster environmental526

change induces stronger directional selection and increases the phenotypic lag, such that527

standing variation is depleted more quickly and de-novo mutations and contribute earlier.528

Note that, as in Figure 6, the total phenotypic response at time tDNM,50 (z̄) decreases once529

v exceeds the “maximal sustainable rate of environmental change”, for the same reasons as530

discussed above. Furthermore, tDNM,50 (z̄) increases with both Θ and σ2
s (due to the increased531

standing variation; see eq. 16). Interestingly, the relative contribution of original standing532

genetic variation to the total genetic variance at time tDNM,50 (z̄) remains largely constant (at533

around 20%) over large range of v and does not show any dependence on Θ nor σ2
s (Figs. 8,534

S3_8; third row). Deviations occur only if v is either very small or very large. In particular,535

if v is small, standing variation is almost completely depleted before new mutations play536

a significant role. Conversely, if v is very large, standing genetic variation still forms the537

majority of the total genetic variance. As mentioned above, this is most likely because the538

population goes extinct before fixations can be completed, that is, before the entire (standing)539

adaptive potential is exhausted. All these results remain qualitatively unchanged if, instead540

of tDNM,50 (z̄), we define tDNM,50
(
σ2
g

)
as the point in time where 50% of the current genetic541

variance goes back to de-novo mutations (Figs. S3_9, S3_10).542
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Figure 7 – The contributions of standing genetic variation (light grey) and de-novo mutations (dark grey) to the
cumulative phenotypic response to selection z̄ (A) and the current genetic variance (B) over time. Plots
show average trajectories over 1000 replicate simulations. The red dot marks the point in time where 50% of
the total phenotypic response were due to de-novo mutations. The inset in (A) shows a more detailed plot of
the dynamics of z̄ up to this point. Fixed parameters: σ2

s = 50, Θ = 5, N = 2500, v = 0.001, σ2
m = 0.05.
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DISCUSSION

Global climate change has forced many populations to either go extinct or adapt to the543

altered environmental condition. When studying the genetic basis of this process, most the-544

oretical work has focused on adaptation from new mutations (e.g., Gillespie 1984; Orr545

1998, 2000; Collins et al. 2007; Kopp and Hermisson 2007, 2009a,b; Matuszewski et al.546

2014). Consequently, very little is known about the details of adaptation from standing ge-547

netic variation (but see Orr and Betancourt 2001; Hermisson and Pennings 2005),548

that is, which of the alleles segregating in a population will become fixed and contribute549

to the evolutionary response. Here, we have used analytical approximations and stochastic550

simulations to study the effects of standing genetic variation on the genetic basis of adap-551

tation in gradually changing environments. Supporting a verbal hypothesis by Barrett552

and Schluter (2008), we show that, when comparing adaptation from standing genetic553

variation to that from de-novo mutations, the former proceeds, on average, by the fixation of554

more alleles of small effect. In both cases, however, the genetic basis of adaptation crucially555

depends on the efficacy of selection, which in turn is determined by the population size,556

the strength of (stabilizing) selection and the rate of environmental change. When standing557

genetic variation is the sole source for adaptation, we find that fast environmental change en-558

ables the population to traverse larger distances in phenotype space than slow environmental559

change, in contrast to studies that consider adaptation from new mutations only (Perron560

et al. 2008; Bell and Gonzalez 2011; Lindsey et al. 2013; Bell 2013). We now discuss561

these results in greater detail.562

The genetic basis of adaptation in the moving-optimum model563

Introduced as a model for sustained environmental change, such as global warming (Lynch564

et al. 1991; Lynch and Lande 1993), the moving-optimum model describes the evolution of565

a quantitative trait under stabilizing selection towards a time-dependent optimum (Bürger566

2000). A large number of studies have analyzed both the basic model and several modifi-567
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cations, for example, models with a periodic or fluctuating optimum, or models for multi-568

ple traits (Slatkin and Lande 1976; Charlesworth 1993; Bürger and Lynch 1995;569

Lande and Shannon 1996; Kopp and Hermisson 2007, 2009a,b; Gomulkiewicz and570

Houle 2009; Zhang 2012; Chevin 2013; Matuszewski et al. 2014). Following traditional571

quantitative-genetic approaches, the majority of these studies assumed that the distribution572

of genotypes (and phenotypes) is Gaussian with constant (time-invariant) genetic variance,573

and they have mostly focussed on the evolution of the population mean phenotype and on574

the conditions for population persistence (Bürger and Lynch 1995; Lande and Shannon575

1996; Gomulkiewicz and Houle 2009). None of these models, however, allows to address576

the fate of individual alleles (i.e., whether they become fixed or not). In a recent series of577

papers on the moving-optimum model, Kopp and Hermisson (2007, 2009a,b) studied the578

genetic basis of adaptation from new mutations and derived the distribution of adaptive579

substitutions (i.e, the distribution of the phenotypic effects of those mutations that arise580

and become fixed in a population); this approach has recently been generalized to multiple581

phenotypic traits by Matuszewski et al. (2014). The shape of this distribution resembles582

a Gamma-distribution with an intermediate mode. Thus, most substitutions are of inter-583

mediate effect with only a few large-effect alleles contributing to adaptation. The reason is584

that small-effect alleles – despite appearing more frequently than large-effect alleles – have585

only small effects on fitness (and are, hence, often lost due to genetic drift), while large-effect586

alleles might be removed because they “overshoot” the optimum (Kopp and Hermisson587

2009b). A detailed comparison and discussion of the distribution of adaptive substitutions588

from de-novo mutations with (eq. 23) and without (Kopp and Hermisson 2009b) genetic589

background variation is given in Supporting Information 2.590

Here, we have studied the genetic basis of adaptation from standing genetic variation. We591

find that the distribution of substitutions from standing genetic variation depends on the592

distribution of standing genetic variants (i.e., distribution of alleles segregating in the popu-593

lation prior to the environmental change) and the intensity of selection. The former is shaped594
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primarily by the distribution of new mutations and the strength of stabilizing selection, which595

removes large-effect alleles. Depending on the speed of change v, we find two regimes that are596

characterized by separate distributions of standing substitutions. If the environment changes597

sufficiently fast, the distribution of adaptive substitutions resembles a lognormal distribu-598

tion with a strong contribution of small-effect alleles (eq. 19; Fig. 2). The reason is that, in599

the standing genetic variation, small-effect alleles are more frequent than large-effect alleles600

and might already segregate at appreciable frequency (so that they are not lost by genetic601

drift). With a moving optimum, they furthermore are the first to become positively selected,602

hence reducing the time they are under purifying selection. Finally, epistatic interactions603

between co-segregating alleles (or between a focal allele and the genetic background) also604

favor alleles of small effect. Consequently, when adapting from standing genetic variation,605

most substitutions are of small phenotypic effect.606

The second regime occurs if the rate of environmental change v is very small. In this case,607

allele-frequency dynamics are dominated by genetic drift, and the distribution of adaptive608

substitutions reflects the approximately Gaussian distribution of standing genetic variants609

(eq. 25; Fig. S3_2). It should be noted, however, that fixations under this regime take a very610

long time, similar to that of purely neutral substitutions (i.e., on the timescale of 4Ne).611

Finally, we have studied the relative importance of standing genetic variation and de-novo612

mutations over the course of adaptation. As shown in Figures 7 and 8, the initial response613

to selection is almost entirely based on standing variation, with de-novo mutations becoming614

gradually more important. The time scale of this transition strongly depends on the rate615

of environmental change, but for slow or moderately fast change, it typically occurs over at616

least hundreds of generations (Figs. 8, S3_8 and Figs. S3_9, S3_10). This observation is617

in contrast to results by Hill and Rasbash (1986b), who found that under strong artificial618

(i.e., truncation) selection in small populations (N = 20), new mutations might contribute619

up to one third of the total response after as little as 20 generations. Our results show620

that the situation is very different for large populations under natural selection in gradually621
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changing environments. The likely reason for this difference is that truncation selection622

induces strong directional selection (corresponding to large v) and only extreme phenotypes623

reproduce. Thus, truncation selection is much more efficient in maintaining large-effect de-624

novo mutations, while eroding genetic variation more quickly (because it introduces a large625

skew in the offspring distribution). However, the similarities and differences in the genetic626

basis of responses to artificial versus natural selection is an interesting topic—in particular,627

for the interpretation of the large amount of genetic data available from breeding programs628

(Stern and Orgonzo 2009)—that should be addressed in future studies.629

Throughout this study, we have focused on adaptation to a moving optimum, that is, a sce-630

nario of gradual environmental change. An obvious question is how our results would change631

under the alternative scenario of a one-time sudden shift in the optimum (as assumed in632

numerous studies, e.g., Orr 1998; Hermisson and Pennings 2005; Chevin and Hospi-633

tal 2008). While beyond the scope of this paper, our approach should, in principle, still be634

applicable. In particular, each focal allele still experiences a gradual change in its selection635

coefficient, due to the evolution of the genetic background. Unlike in the moving-optimum636

model, however, the selection coefficient decreases, as the mean phenotype gradually ap-637

proaches the new optimum. Hence, a suitably modified version of equation 13 would give638

the probability that a focal allele establishes in the population (i.e., escapes stochastic loss),639

but in the absence of continued environmental change, establishment does not guarantee640

fixation. In other words, alleles need to “race for fixation” before other competing alleles get641

fixed and they become deleterious (Kopp and Hermisson 2007, 2009a). The dynamics of642

a mutation along its trajectory should therefore be even more complex than in the moving-643

optimum model, and show an even stronger dependence on the genetic background (Chevin644

and Hospital 2008).645

Extinction and the rate of environmental change646

Recently, several experimental studies have explored how the rate of environmental change647
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affects the persistence of populations that rely on new mutations for adapting to a gradually648

changing environment (Perron et al. 2008; Bell and Gonzalez 2011; Lindsey et al.649

2013). In line with theoretical predictions (Bell 2013), all studies found that “evolutionary650

rescue” is contingent on a small rate of environmental change. In particular, Lindsey et al.651

(2013) evolved replicate populations of E. coli under different rates of increase in antibiotic652

concentration and found that certain genotypes were evolutionarily inaccessible under rapid653

environmental change, suggesting that “rapidly deteriorating environments not only limit654

mutational opportunities by lowering population size, but [...] also eliminate sets of mutations655

as evolutionary options”. This is in stark contrast to our prediction that faster environmental656

change can enable the population to remain better adapted and to traverse larger distances657

in phenotype space when standing genetic variation is the sole source for adaptation (Fig. 6658

and Figs S3_6, S3_7; in line with recent experimental observations; H. Teotonio, private659

communication). The difference between these results arises from the availability of the660

“adaptive material”. While de-novo mutations first need to appear and survive stochastic loss661

before becoming fixed, standing genetic variants are available right away and might already662

be segregating at appreciable frequency. Thus, in both cases, the rate of environmental663

change plays a critical, though antagonistic, role in determining the evolutionary options.664

While fast environmental change eliminates sets of new mutations, it simultaneously helps665

to preserve standing genetic variation until it can be picked-up by selection. Under slow666

change, in contrast, most large-effect alleles from the standing variation, by the time they667

are needed, are already eliminated by drift or stabilizing selection.668

Our results also mean that, if the optimum stops moving at a given value zopt,max, popula-669

tions will achieve a higher degree of adaptation (higher z̄∗) if the final optimum is reached670

fast rather than slowly (see also Uecker and Hermisson 2014), at least if standing genetic671

variation is the sole source for adaptation. While this assumption is an obvious simplification,672

it may often be approximately true in natural populations. The same holds true in exper-673

imental populations, where selection is usually strong and the duration of the experiment674
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short, such that de-novo mutations can frequently be neglected (see Fig. 8).675

Testing the predictions676

The predictions made by our model can in principle be tested empirically, even though suit-677

able data might be sparse and experiments challenging. There is, of course, ample evidence678

for adaptation from standing genetic variation. For example, Domingues et al. (2012)679

showed that camouflaging pigmentation of oldfield mice (Peromyscus polionotus) that have680

colonized Florida’s Gulf Coast has evolved quite rapidly from a pre-existing mutation in the681

Mc1r gene; Limborg et al. (2014) investigated selection in two allochronic but sympatric682

lineages of pink salmon (Oncorhynchus gorbuscha) and identified 24 divergent loci that had683

arisen from different pools of standing genetic variation, and Turchin et al. (2012) showed684

that height-associated alleles in humans display a clear signal for widespread selection on685

standing genetic variation.686

However, testing the predictions of our model requires, in addition, detailed knowledge of687

the genotype-phenotype relation. Currently, there is only a small (yet increasing) number of688

systems for which both a set of functionally validated beneficial mutations and their selec-689

tion coefficients under different environmental conditions are available (Jensen 2014). Thus,690

estimating the distribution of standing substitutions will be challenging, because of the of-691

ten unknown phenotypic and fitness effects of beneficial mutations and the large number of692

replicate experiments needed to obtain a reliable empirical distribution. Furthermore, even if693

these problems were solved, small-effect alleles might not be detectable due to statistical lim-694

itations (Otto and Jones 2000), and in certain limiting cases where the population quickly695

goes extinct (i.e., when the environment changes very fast), the distribution of adaptive sub-696

stitutions from standing genetic variation might be indistinguishable to that from de-novo697

substitutions (Fig. 5).698

Recent developments in laboratory systems (Morran et al. 2009; Parts et al. 2011), how-699

ever, have created opportunities for experimental evolution studies in which population size,700
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the selective regime and the duration of selection can be manipulated, and adaptation from701

de-novo mutations and standing genetic variation can be recorded (Burke 2012). Applying702

these techniques in experiments in the vein of Lindsey et al. (2013), but starting from a703

polymorphic population, should make it possible to test the relation between the rate of704

environmental change and population persistence, and to assess the probability of adapta-705

tion from standing genetic variation. First experiments along these lines are currently being706

carried out in populations of C. elegans, with the aim of determining the limits of adap-707

tation to different rates of increase in sodium chloride concentration (H. Teotonio, private708

communication). Furthermore, Pennings (2012) recently applied the Hermisson and Pen-709

nings (2005) framework to show that standing genetic variation plays an important role in710

the evolution of drug-resistance in HIV, affecting up to 39% of patients (depending on treat-711

ment) and explaining why resistance mutations in patients who interrupt treatment are likely712

to become established within the first year. A similar approach should also be applicable713

to scenarios of gradual environmental change (e.g., evolution of resistance mutations under714

gradually increasing antibiotic concentrations).715

Conclusion716

As global climate change continues to force populations to respond to the altered environ-717

mental conditions, studying adaptation to changing environments – both empirically and718

theoretically – has become one of the main topics in evolutionary biology. Despite increased719

efforts, however, very little is known about the genetic basis of adaptation from standing720

genetic variation. Our analysis of the moving-optimum model shows that this process has,721

indeed, a very different genetic basis than that of adaptation from de-novo mutations. In722

particular, adaptation proceeds via the fixation many small-effect alleles (and just a few large723

ones). In accordance with previous studies, the adaptive process critically depends on the724

tempo of environmental change. Specifically, when populations adapt from standing genetic725

variation only, the potential for adaptation increases as the environment changes faster.726
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APPENDIX

Appendix 1: Theoretical Background892

In this Appendix, we briefly recapitulate results from previous studies that form the basis893

for our analytical derivations.894

The probability of adaptation from standing genetic variation for a single bi-895

allelic locus after a sudden environmental change896

Hermisson and Pennings (2005) studied the situation where the selection scheme at a897

single bi-allelic locus changes following a sudden environmental change. In particular, they898

derived the probability for a mutant allele to reach fixation that was neutral or deleterious899

prior to the change but has become beneficial in the new environment. In the continuum900

limit for allele frequencies this probability is given by901

PSGV =
∫ 1

0
ρ(x)Πxdx, (A1)

where ρ(x) is the density function for the allele frequency x of the mutant allele in mutation-902

selection-drift balance and Πx denotes its fixation probability.903

For a mutant allele present at frequency x and with selective advantage sb in the new envi-904

ronment, the fixation probability is given by (Kimura 1957)905

Πx(sb) ≈
1− exp[−4Nesbx]
1− exp[−4Nesb]

. (A2)

There are two points to make here. First, mutational effects in the Hermisson and Pen-906

nings (2005) model are directly proportional to fitness, whereas mutations in our model907

affect a phenotype under selection. Second, in our framework, sb denotes the (beneficial)908
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selection coefficient for heterozygotes.909

Approximations for ρ(x) can be derived from standard diffusion theory (Ewens 2004; for910

details see Hermisson and Pennings 2005). If the mutant allele was neutral prior to the911

change in the selection scheme912

ρ(x) = CxΘ−1 1− x1−θ

x− 1 . (A3)

Here, C = (γ +ψ(θ))−1 denotes a normalization constant where γ ≈ 0.577 is Euler’s gamma913

and ψ(·) is the polygamma function. Similarly, if the mutant allele was deleterious before the914

environmental change (with negative selection coefficient sd) the allele-frequency distribution915

is given by916

ρ(x) = C
(1− exp [(1− x)4Ne|sd|])xθ−1

x− 1 , (A4)

where C = (1F1(0, θ, 4Ne|sd|))−1 denotes a normalization constant and 1F1(a, b, c) is the hy-917

pergeometric function. If the allele was sufficiently deleterious (4Ne|sd|≥ 10), equation (A4)918

can further be approximated as919

ρ(x) = Cxθ−1 exp[−4Ne|sd|x], (A5)

where C = (γ[θ,4Ne|sd|]
(4Ne|sd|)θ

)−1 again denotes a normalization constant with γ[a, b] =
∫ b

0 t
a−1 exp[−t]dt920

denoting the lower incomplete gamma function.921

Finally, the probability that a population successfully adapts from standing genetic variation922

can be derived as923
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PSGV = 1−
(

1 + 4Nesb
4Ne|sd|+1

)−θ

= 1− exp
[
−θ log

[
4Nesb

4Ne|sd|+1

]]
. (A6)

Fixation probabilities under time-inhomogeneous selection924

In gradually changing environments, the selection coefficient of a given (mutant) allele is925

not fixed but changes over time (i.e., as the position of the optimum changes). Uecker926

and Hermisson (2011) recently developed a mathematical framework based on branching-927

process theory to describe the fixation process of a beneficial allele under temporal variation928

in population size and selection pressures. They showed that the probability of fixation of a929

mutation starting with n initial copies is given by930

Πfix(n) = 1−
(

1− 1
ϕ

)n
, (A7a)

where931

2ϕ = 1 +
∫ ∞

0
(N(0)/Ne(t)) exp

[
−
∫ t

0
s(τ)dτ

]
dt. (A7b)

932

Assuming that the population size remains constant and that the selection coefficient in-933

creases linearly in time, s(t) = sd + svt, equation (A7a) becomes934

Πfix = 1−
1−

[
1 + 1

2

√
π

2sv
exp

(
s2
d

2sv

)
erfc

(
sd√
2sv

)]−1
n , (A8)

where erfc(·) denotes the complementary Gaussian error function.935
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SUPPORTING INFORMATION

Supporting Information 1: Limited Recombination936
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Figure S1_1 – The distribution of adaptive substitutions from standing genetic variation for free recombination (dark bins) compared to that for limited recombination (light bins).
The black line corresponds to the analytical prediction (eq. 19). σ2

g is given by equation (16). Fixed parameters: σ2
s = 50, N = 2500, v = 0.001, σ2

m = 0.05.
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Figure S1_2 – The distribution of adaptive substitutions from standing genetic variation for free recombination (dark bins) compared to that for limited recombination (light bins).
The black line corresponds to the analytical prediction (eq. 19). σ2

g is given by equation (16). Fixed parameters: Θ = 5, N = 2500, v = 0.001, σ2
m = 0.05.
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Figure S1_3 – The distribution of adaptive substitutions from standing genetic variation for complete linkage (no
recombination). The black and the grey line corresponds to the analytical prediction (eq. 25) that are
centred around the mean of the individual-based simulation. For the grey line Ne has been adjusted by
a factor 0.385 to match the distribution from the individual-based simulations. Other parameters:
v = 0.001, r = 0, N = 2500, σ2

m = 0.05.

The individual-based simulation results presented in the main text were obtained under939

the assumption of free recombination. In this Supplementary Information, we relax this940

assumption and study the effects of linkage (i.e., limited recombination).941

We first clarify the meaning of the recombination parameter r, which determines the mean942

number of crossover events per meiosis. By definition, the simulated genome corresponds943

to a single chromosome of length DG = r · 100cM, and the mean distance between two944

randomly chosen sites is 1
3DG. The mean distance between two adjacent polymorphic loci is945

DG,adjacent = 1
|G|DG+1, where G is the mean number of polymorphic loci, which depends on Θ946

and σ2
s (eq. 26).947

The corresponding recombination rate r between two polymorphic loci is given by the inverse948

of Haldane’s mapping function (Speed 2005), that is,949

r = 1
2 (1− exp [−2DG]) , (S1)

see Table S1_1.950
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Table S1_1 – The classical population genetic recombination rate r (eq. S1) between two adjacent loci for different
values of σ2

s , Θ and r. Other parameters: σ2
m = 0.05.951

r

0 0.01 0.1 1

(Θ
,σ

2 s
) (5/50) 0 0.019 0.16 0.49

(10/50) 0 0.01 0.089 0.43

(5/100) 0 0.017 0.15 0.49

952

The effect of limited recombination on the distribution of adaptive substitutions from stand-953

ing genetic variation is illustrated in Figures S1_1 and S1_2. For r = 1 (corresponding to a954

genome length of 100cM and an average recombination rate r of close to 0.5, see table S1_1),955

the distribution is essentially identical to that for linkage equilibrium. As r decreases, the956

distribution progressively shifts to the left, becomes more symmetric and includes more and957

more alleles with negative phenotypic effect. For r = 0 (corresponding to complete linkage958

or asexual reproduction), it resembles the distribution for “drift-driven” evolution (i.e., when959

selection is not efficient; Fig. S3_2). The reason is that fixation involves entire haplotypes960

carrying multiple mutations, whose (positive and negative) effects largely cancel. From a961

different perspective, limited recombination leads to Hill-Robertson interference between co-962

segregating alleles (Hill and Robertson 1966), which in many respects corresponds to a963

decrease in effective population size Ne (Comeron et al. 2008), which in turn reduces the964

efficacy of selection. Note, however, that unlike in the case of a slowly changing environment965

(Fig. S3_2) reducing Ne also affects the equilibrium allele-frequency distribution ρ(x, α) (by966

reducing the strength of selection against large-effect alleles). In line with previous simulation967

results (Comeron et al. 2008), we find that equation (25) provides a very good fit, when Ne968

is set to 38.5% of its original value.969
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Supporting Information 2: The distribution of adaptive substitutions from de-970

novo mutations with and without genetic background variation971

There are two ways in which the distribution of adaptive substitutions from standing genetic972

variation can be compared to that from de-novo mutations. The first comparison consid-973

ers a population without genetic background variation. This is the situation studied by974

Kopp and Hermisson (2009a), where an essentially monomorphic population performs an975

adaptive walk following a moving optimum. The second situation is the one described by976

equation (23), where new mutations interact with a genetic background of constant variance977

(this background is presumably itself constantly replenished by new mutations). Analytical978

predictions for all three distributions are compared in Figures. S2_1, S2_2 and S2_3. It979

can be seen that the adaptive-walk prediction (eq. 14 in Kopp and Hermisson 2009b; red980

line) is always shifted towards larger α compared to the distribution of adaptive substitutions981

from standing genetic variation (eq. 19, black line). The predicted distribution from de-novo982

mutations in the presence of genetic background variation (eq. 23, grey curve) shifts from983

the latter to the former as v increases. The reason is that, for small v, the fixation of both984

standing variants and new mutations in the presence of background variation is strongly985

constrained by the equilibrium lag (eq. 9). For large v, in contrast, the lag is large and adap-986

tation is primarily limited by the available alleles, independent of their source and initial987

frequency (mutation-limited regime sensu Kopp and Hermisson 2009b). Note, however,988

that in both limiting cases, equation (19) is a poor predictor for the simulated substitutions989

from standing variation (Fig. 5, S3_2). Nevertheless, it remains true that adaptive substi-990

tutions from new mutations are generally smaller than those from new mutations, with or991

without genetic background variation.992
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Figure S2_1 – Comparison of the analytical predictions for the distribution of adaptive substitutions from standing genetic variation and de-novo mutations. The black
line corresponds to eq. (19), with the genetic background variation σ2

g determined by the SHC approximation (eq. 16). The grey curve gives the
analytical prediction for substitutions from de-novo mutations under the assumption that the phenotypic lag δeq has reached an equilibrium (eq. 23).
The red line gives the analytical prediction for the first substitution from de-novo mutations under the adaptive-walk assumption that there is no genetic
background variation (Kopp and Hermisson 2009b, eq. 14). Note that, for some parameter combinations, the simulated distribution from standing
variation deviates from eq. (19). In particular, for small v, it approaches the “neutral” prediction eq. (25, see Fig. 3 , and for large v, it may approach the
distribution from new mutations, eq. (23), see Fig. 5. Fixed parameters: Θ = 2.5, N = 2500, σ2

m = 0.05.
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Figure S2_2 – Comparison of the analytical predictions for the distribution of adaptive substitutions from standing genetic variation and de-novo mutations. For
further details see Fig. S2_1. Fixed parameters: Θ = 5, N = 2500, σ2

m = 0.05.
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Figure S2_3 – Comparison of the analytical predictions for the distribution of adaptive substitutions from standing genetic variation and de-novo mutations. For
further details see Fig. S2_1. Fixed parameters: Θ = 10, N = 2500, σ2

m = 0.05.
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Figure S3_1 – The probability for a mutant allele to adapt from standing genetic variation as a function of the rate of environmental change v. Solid lines correspond
to the analytical prediction (eq. 14), the grey dashed line shows the probability for a neutral allele (α = 0; eq. 15), and symbols give results from
Wright-Fisher simulations. The phenotypic effect size α of the mutant allele ranges from 0.5σm (top line; black) to 3σm (bottom line; purple) with
increments of 0.5σm. The figures in each parameter box (per locus mutation rate θ, width of fitness landscape σ2

s) correspond to different values of the
genetic background variation σ2

g with σ2
g = 0 (no background variation; top left), σ2

g = 0.005 (top right), σ2
g = 0.01 (bottom left) and σ2

g = 0.05 (bottom
right). Other parameters: Ne = 25000, σ2
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Figure S3_2 – The distribution of adaptive substitutions from standing genetic variation in the case of slow environmental change (v = 10−5). Histograms show results
from individual-based simulations. The blue line gives the analytical prediction (eq. 25), with σ2

g given by eq. 16), which assumes a neutral fixation
probability. Fixed parameters: σ2

m = 0.05.
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Figure S3_3 – The average number of fixed adaptive substitutions from standing genetic variation, |G|fix, as a function
of the rate of environmental change v, when standing genetic variation is the sole source for adaptation.
Symbols show results from individual-based simulations (averaged over 100 replicate runs). The black
line gives the analytical prediction (eq. 27) and the grey line corresponds to the average number of
neutral fixations (|G|fix,v→0 = |G|

∫∞
−∞ p(α)Πseg,v→0(α)dα.). In both cases, σ2

g was taken from
equation (16). Error bars for standard errors are contained within the symbols. Fixed parameters:
N = 1000, σ2

m = 0.05.
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Figure S3_4 – The average number of fixed adaptive substitutions from standing genetic variation, |G|fix, as a function
of the rate of environmental change v, when standing genetic variation is the sole source for adaptation.
Symbols show results from individual-based simulations (averaged over 100 replicate runs). The black
line gives the analytical prediction (eq. 27) and the grey line corresponds to the average number of
neutral fixations (|G|fix,v→0 = |G|

∫∞
−∞ p(α)Πseg,v→0(α)dα.). In both cases, σ2

g was taken from
equation (16). Error bars for standard errors are contained within the symbols. Fixed parameters:
N = 2500, σ2

m = 0.05.
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Figure S3_5 – The average number of fixed adaptive substitutions from standing genetic variation, |G|fix, as a function
of the rate of environmental change v, when standing genetic variation is the sole source for adaptation.
Symbols show results from individual-based simulations (averaged over 100 replicate runs). The black
line gives the analytical prediction (eq. 27) and the grey line corresponds to the average number of
neutral fixations (|G|fix,v→0 = |G|

∫∞
−∞ p(α)Πseg,v→0(α)dα.). In both cases, σ2

g was taken from
equation (16). Error bars for standard errors are contained within the symbols. Fixed parameters:
N = 5000, σ2

m = 0.05.
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Figure S3_6 – The average distance traversed in phenotype space, z∗, as a function of the rate of environmental change
v, when standing genetic variation is the sole source for adaptation. Symbols show results from
individual-based simulations (averaged over 100 replicate runs). The black line gives the analytical
prediction (eq. 28), with σ2

g taken from equation (16). The grey-dashed line gives the critical rate of
environmental change (eq. 29). Error bars for standard errors are contained within the symbols. Fixed
parameters: N = 1000, σ2

m = 0.05.
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Figure S3_7 – The average distance traversed in phenotype space, z∗, as a function of the rate of environmental change
v, when standing genetic variation is the sole source for adaptation. Symbols show results from
individual-based simulations (averaged over 100 replicate runs). The black line gives the analytical
prediction (eq. 28), with σ2

g taken from equation (16). The grey-dashed line gives the critical rate of
environmental change (eq. 29). Error bars for standard errors are contained within the symbols. Fixed
parameters: N = 5000, σ2

m = 0.05.
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Figure S3_8 – First row: the point in time tDNM,50 (z̄) where 50% of the phenotypic response to moving-optimum
selection have been contributed by de-novo mutations as a function of the rate of environmental change
for various values of Θ (left) and σ2

s (right). Insets show the results for large v on a log-scale. Second
row: The mean total phenotypic response at this time. Third row: The relative contribution of original
standing genetic variation to the total genetic variance at time tDNM,50 (z̄). Data are means and
standard errors from 1000 replicate simulation runs. Fixed parameters (if not stated otherwise):
σ2
s = 50, Θ = 5, N = 1000, σ2

m = 0.05.
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Figure S3_9 – First row: the point in time tDNM,50
(
σ2
g

)
where 50% of the genetic variance is composed of de-novo

mutations as a function of the rate of environmental change for various values of Θ (left) and σ2
s (right).

Insets show the results for large v on a log-scale. Second row: The mean total phenotypic response from
standing genetic variation at this time. Third row: The relative contribution of original standing genetic
variation to the total genetic variance at time tDNM,50

(
σ2
g

)
. Data are means and standard errors from

1000 replicate simulation runs. Fixed parameters (if not stated otherwise): σ2
s = 50, Θ = 5, N = 1000,

σ2
m = 0.05.
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Figure S3_10 – First row: the point in time tDNM,50
(
σ2
g

)
where 50% of the genetic variance is composed of de-novo

mutations as a function of the rate of environmental change for various values of Θ (left) and σ2
s

(right). Insets show the results for large v on a log-scale. Second row: The mean total phenotypic
response from standing genetic variation at this time. Third row: The relative contribution of original
standing genetic variation to the total genetic variance at time tDNM,50

(
σ2
g

)
. Data are means and

standard errors from 1000 replicate simulation runs. Fixed parameters (if not stated otherwise):
σ2
s = 50, Θ = 5, N = 2500, σ2

m = 0.05.
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