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Abstract

In this report we present a multimarker association tool (Flash) based on a
novel algorithm to generate haplotypes from raw genotype data. It belongs
to the entropy minimization class of methods [4, 7] and is composed of a two
stage deterministic - heuristic part and of a optional stochastic optimization.
This algorithm is able to scale up well to handle huge datasets with faster per-
formance than the competing technologies such as BEAGLE[5] and MACH[10]
while maintaining a comparable accuracy. A quality assessment of the results is
carried out by comparing the switch error. Finally, the haplotypes are used to
perform a haplotype-based Genome-wide Association Study (GWAS). The as-
sociation results are compared with a multimarker and a single SNP association
test performed with Plink [12]. Our experiments con�rm that the multimarker
association test can be more powerful than the single SNP one as stated in the
literature. Moreover, Flash and Plink show similar results for the multimarker
association test but Flash speeds up the computation time of about an order of
magnitude using 5 SNP size haplotypes.

1. Introduction

Genome-wide association studies (GWAS) are used to identify common ge-
netic factors that in�uence health and disease. Basically GWAS are performed
at the single nucleotide level. In Ballard et al.[3] is stated that the joint use of
information from multiple markers may be more e�ective to reveal association
between a genomic region and a trait than single marker analysis. Since a mul-
timarker GWAS requires the reconstruction of the phase from genotyped data,
which is usually a time expensive task, a fast haplotyping algorithm is crucial.

In this report we present a scalable, fast and reasonably accurate haplotype-
based association tool that reconstructs haplotypes used to perform a multi-
marker chi-square association test.

Unlike most phasing tools, based on a statistical approach (i.e Hidden Markov
Model), our method is composed of a two stage deterministic-heuristic part and
of a optional stochastic optimization.

The work is organized as follows. In Section 2 the new algorithm is sketched.
Section 2.1 is devoted to the description of the deterministic initial part of the
method and to show that it is able to e�ciently compute haplotypes up to 6
SNP. In Section 2.2 a stochastic approach to phasing is described that turns
out to be useful when windows are larger than 6 SNPs. A possible extension
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of the algorithm to work with a dynamic window size by computing the linkage
disequilibrium (LD) on the �y is planned.

Numerical tests to check for quantitative di�erences among di�erent hap-
lotyping techniques are in Section 4 where a thorough comparison of phasing
results is presented.

The �nal section focuses on GWAS performed both on single SNPs and
haplotype-based. The main goal is to show that association results are not
in�uenced by small di�erences among inferred haplotypes.

2. Description of the FLASH algorithm

The Flash algorithm is based on a minimization approach to phase a given
set of genotypes. It exploits the correlation among individual SNP data to
�nd the minimum set of haplotypes that describe them. At the same time the
algorithm tries to minimize the entropy of the solution.

At the moment, the algorithm phases consecutive segments of the chromo-
some by means of a �xed size sliding window. Depending on the windows size
a totally deterministic approach, which explores the whole solution space to
�nd the optimal one, is not feasible. To cope with this problem two algorithms
were developed and implemented: a heuristic based (baseline algorithm) and a
stochastic based (Simulated annealing). The former one is more accurate but
can reach window size of about 6 SNP on a common workstation. The latter
can work with larger window sizes with a small accuracy loss.

2.1. Baseline Algorithm

For the generic segment seg some data structures are de�ned:

1. The Individual Genotypes list Gseg holds the genotypes related to each
individual (ID).

2. The individual compatible diplotypes Dseg map holds a list for each ID
with all possible phased diplotypes (the haplotype couple).

3. The Mseg diplotype matrix is built to store at the i, j position the ID
solved by the i, j diplotype.

4. The haplotypes occurrence table Hseg stores the occurrences of the hap-
lotypes that are in Dseg.

5. The solution set Sseg contains the solving haplotypes.

6. The unsolved individuals Useg set holds the IDs temporarily unsolved.

7. The legal haplotype set (if needed) Lseg holds the haplotypes used to
perform a heuristic search.

8. Extended haplotypes set Eseg is used to extend Ssegwith a combination
of haplotypes taken from Lseg.

For each segment the algorithm performs the following steps:

1. Computation of the Dseg map: All genotypes in Gseg are analyzed
and a list of compatible diplotypes is built. IDs with the same genotype
in Gseg are considered indistinguishable and will be solved with the same
diplotype. The diplotype matrix Mseg is also created.

2. Useg initialization: The Useg list is �lled with all the IDs.

3. Haplotype occurrence computation: for each haplotype in the Dseg

map the occurrence is computed and stored in Hseg.
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4. Computation of Sseg with mandatory haplotypes: IDs with only
one occurrence in Mseg can be solved only with one or two mandatory
haplotypes. These haplotypes are used to create Sseg. IDs solved are
removed from Useg. If no IDs have mandatory haplotypes Sseg ≡ ∅.

5. Iteration to solve unsolved people using haplotypes added to
Sseg: If Sseg 6= ∅and Useg 6= ∅ the algorithm tries to solve remaining IDs
using haplotypes in Sseg. When an ID is solved it is removed from Useg.
If Useg ≡ ∅ the computation is completed and all the IDs are then phased
using haplotypes in Sseg.

6. An heuristic phase search in the con�guration space to �nd the
complete solution (if needed): If Useg 6= ∅ after the previous steps
means Sseg set has to be augmented with other haplotypes to solve the
global problem. To �nd them the following heuristic algorithm is used:

(a) Consider all thehi haplotypes taken from diplotype compatible solu-
tions of IDs still in Useg.

(b) Create the legal set Lseg with hi : hi /∈ Sseg. Sort hi in Lseg with
respect to their occurrence stored in Hseg. Let M be the cardinality
of Lseg.

(c) For n ∈ [1 : M ]:

i. For each combination Cin of n haplotypes in Lseg:

A. Create the extended haplotype set Eseg = Sseg ∪ Cin.
B. If Eseg haplotypes can describe all the IDs in Useg the prob-

lem is considered solved. The algorithm is completed.
C. If Eseg haplotypes is not able to describe the IDs in Useg

keep on iterating among combinations.

A brief analysis of the algorithm provides an upper bound of the total itera-
tions needed to phase a single segment of W SNPs. Even though the di�erent
possible genotypes are 3W , the maximum number of haplotypes that can phase
the segment is 2W . Now, suppose that there is no genotype with mandatory
symbols. The Sseg ≡ ∅ and the Lseg set contains all compatible haplotypes. If
the global solution is Sseg ≡ Lseg, the number of iterations needed to compute
it, is

2W∑
k=1

(
2w

k

)
This worst case is shown in the table 1 for di�erent values of W :

W Iterations

1 3.00× 100

2 1.50× 101

3 2.55× 102

4 6.55× 104

5 4.29× 109

6 1.84× 1019

7 3.40× 1038

8 1.15× 1077

Table 1: Number of iterations of the worst case
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ID Genotype Compatible diplotypes

0 010,010 010,010
1 100,100 100,100
2 001,010 001,010 - 000,011
3 001,001 001,001
4 100,101 100,101
5 011,101 011,101 - 001,111

Table 2: Compatible diplotype table for the example case. The �rst column refers to the
individual ID, the second one to the related genotype. The third column shows the possible
phasing solutions for the ID.

000 001 010 011 100 101 110 111

000 2 5
001 3 2
010 0
011 5
100 1 4
101
110
111

Table 3: Diplotype matrix for the example case. The i, j cell holds the individual ID solved
by the i, j diplotype.

During the development of the algorithm we observed that in most cases a
large number of individuals (over 90%) are solved in a relatively small number
of iterations while reaching the totality of the solution often takes a lot of time.
This is probably due to the fact that a small set of individuals have to be solved
with low frequency haplotypes making the algorithm iterate among the less
likely solutions. To give �exibility to the algorithm a feature to exit from the
heuristic step when a given ratio of solved individuals or computation e�ort is
reached, has been implemented. The computation e�ort is de�ned as the ratio
between the current iteration and the theoretical maximum iterations as given
by Table 1.

As an example of the baseline algorithm, consider a single segment with the
3-SNPs genotypes speci�ed in table 2.

Their alleles are coded using digits 1 and 0. The third column shows the
possible diplotypes that �solve� the phasing problem for that ID. The solutions
di�ering for just the initial phase are considered equal (for instance 001,010 is
equal to 010, 001).

The corresponding diplotype matrix is shown in table 3:
At �rst, the haplotype occurrences are computed (see table 4).
Then the solution alphabet is populated with the mandatory haplotypes. So

at the �rst step we have:
S = {001, 010, 100, 101}
U = {2, 5}
Since U 6= ∅, the algorithm tries to solve the remaining IDs with the haplo-

types in S.
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Haplotype Occ.

000 1
001 4
010 3
011 2
100 3
101 2
110 0
111 1

Table 4: Haplotype occurrence table for the example case. For each haplotype, the number of
occurrences among all the possible compatible diplotypes shown in the third column of table
is computed.

At this point, only the ID 2 has a compatible diplotype (001,010) with both
haplotypes contained in S, so it can be marked as solved. Unfortunately, the
ID 5 has just one haplotype in the set S for each compatible diplotype and
therefore cannot be solved. To �nd a haplotype that completes the solution for
the ID 5, the heuristic step is then invoked.

The legal set L is built using the haplotypes taken from the set of compatible
diplotypes of ID 5 not present in S. This set is then sorted with respect to the
haplotype occurrences stored in theH table (i.e. L = {011, 111}). At this
point the E set is created using the �rst of the combinations of one haplotype
(C11 = {011}) from the L set: E = S ∪ C11 = {001, 010, 100, 101, 011}. At this
point at least one compatible diplotype for each ID has both haplotypes in the
set E. The �nal solution is then S ≡ E.

It is worth to note that the algorithm stops once a solution is found. It is
not an actual brute force approach since the other possible E sets built using
all the L combinations (S ∪{111},S ∪{011, 111}) are not analyzed even though
are all valid solutions. This heuristic approach, however, provides good results
reducing computation time. Moreover, sorting the legal set L allows often to
�nd the minimum entropy solution among the ones with the same number of
haplotypes.

2.2. Simulated annealing (SA) optimization

The method described in the previous section is usually capable of quickly
�nd the smallest set of symbols able to describe the whole population. When
the window size is larger than s = 6 the space of possible symbol combinations
grows to a computationally prohibitive size (see table 1). An exhaustive search
of such a space of combinations is inherently ine�cient and not very clever. This
problem is reminiscent of the estimation of the average value of some physical
quantity for systems described by statistical mechanics in some thermodynamic
ensemble.

Trying to mimic the statistical mechanics approach, we drop the determin-
istic method for �nding the best solution and exploit a stochastic strategy in
which some functional is optimized. To solve this problem the quantity to be
minimized is the entropy of the haplotype solution. Here the de�nition of the
Shannon entropy is used (H = −

∑
i pi log2 pi where pi is the probability of the
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i-th haplotype and S can also be seen as the average value of the logarithm of
p).

As described in Section 2.1, at the beginning of the haplotyping procedure,
the set Sseg is generated by selecting the strictly necessary haplotypes. These
haplotypes can be seen as degrees of freedom that the problem loses at the very
beginning. This is done in a completely deterministic fashion.

In the next stage of the process we are left with a subset of individuals Useg

not solved yet by the haplotypes present inSseg. The goal is to �nd a com-
plementary set Cseg of extended haplotypes which can be built in a stochastic
manner by starting with an educated guess among ID diplotypes (choosing them
in a random fashion makes the convergence slower). This part of the process
replaces the one described at point 6 of Section 2.1. The main di�erence relies
essentially in how the con�gurations space is explored: no more iteration over
the legal haplotype combinations, but generation of random moves trying to
�nd the extremal minimal entropy:

1. When a �fully legal� solution compatible with the starting genotypes of all
the individuals has been prepared, the optimization process can begin by
computing its entropy H0 and setting an initial temperature T0;

2. The previous solution is modi�ed in a way that it is still legal but one of the
individuals chosen at random (and eventually those compatible with it) is
described by a di�erent haplotype. This random choice of the haplotypes
can be uniform or can be biased depending on the relative occurrence of
each haplotype;

3. The entropy of the proposed modi�ed solution Hmod is computed and:

(a) if it is lower than the entropy of the previous state (at the beginningH0)
it becomes the new current solution;

(b) if it is higher, it is accepted with some relatively small probability
when a random number r ∈ [0, 1) is larger than exp(∆H/kT ). So it is
possible to accept a solution with a largerH depending on the entropy
change ∆H and on the temperature parameter. The temperature
should slowly go to zero within a reasonable amount of iterations as
if the system would undergo an annealing process.

4. If the trend in the entropy of the solutions meets some empirical scheme
for reached stability, the solution is considered the �nal one. Instead the
algorithm goes back to the point 2 to get a new modi�ed solution.

2.3. Missing data management

So far it was assumed that genotypes were given without missing data. In
real datasets this situation is very unlikely and a certain amount of missing
data is always present. During the haplotyping process an imputation phase
is mandatory to �ll the nocall (NC) sites. The Flash baseline algorithm and
the SA use two di�erent approaches to impute data. The following subsections
describe both situations.

2.3.1. Baseline

Missing SNPs in a segment are managed using the following steps:

1. All IDs with one or more nocall loci are inserted in a list NCseg. They
are not present in the Useg list discussed in 2.1.
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2. After the baseline algorithm introduced in 2.1 has completed, the haplo-
types in the global solution Sseg are used to create compatible diplotypes
for IDs in NCseg in order to phase them.

3. If after the previous step NCseg 6= ∅, a process like the heuristic used
in the baseline algorithm is performed. From each IDs in NCseg a list of
compatible diplotype is created and the relative haplotypes are inserted
in the LNCsegset. This set is used in the same manner as the Lsegset to
build extended haplotype sets used to �nd a legal solution for all IDs in
NCseg. The algorithm stops once NCseg is empty.

2.3.2. Simulated annealing

Before the beginning of the SA optimization, every individual with a geno-
type segment containing one or more NC data is detected and it is treated as if
it had multiple possible genotypes. These compatible genotypes are generated
as a tree which has three branches every time a NC site is found. At this point
the individual with a segment containing incomplete genotype data acts as a
�degrees of freedom multiplier� with respect to the �nal global solution. Since
the SA optimizer has the goal of entropy minimization, the description of the
segments with NCs will be the one (among all the combinations of the tree just
described) that guarantees the least global entropy. In other words, if among
the branches of the tree there is some haplotype that has already been used as a
diplotype solution for some other ID, it will be favoured against those symbols
adding complexity to the global solution.

2.4. Missing features in the current Flash implementation

The current implementation of �ash lacks of some features that will be added
in the future versions:

• A stochastic management of genotypes dataset errors

• Imputation of the raw data using a high resolution reference panel

• Phasing with a LD driven dynamic size sliding window

These add-ons can improve phasing accuracy of Flash and also speed perfor-
mance. A brief discussion on their implementation is made in the following
subsections.

2.4.1. Genotype data error management

Raw genotype data contains some loci marked as NC. Moreover every po-
sition in the genotype is labeled with a �level of con�dence� parameter. Up to
now the algorithm cannot exploit this information.

There are two main possible approaches:

• The NC code (see Sec. 2.3) could be generalized to include a continuous
range of con�dence c ∈ [0, 1) (no calls have almost zero con�dence by
de�nition.) This solution impacts negatively on the whole e�ciency of
the process due to the large number of degrees of freedom added to the
optimization process.

• Another way to exploit this information could be to post-process the result
of the standard algorithm.
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2.4.2. Reference Panel

The imputation of data from a higher resolution reference panel helps the
accuracy of the global phasing. To tackle this problem an algorithm was devel-
oped but at the moment it is not implemented yet in the Flash software package.
A description of this algorithm can be summarized as follow:

1. From the reference panel take the haplotypes and put them in the Sseg

set. These haplotypes are considered as mandatory for our dataset.
2. Since the panel has an higher resolution, SNPs in a window of the dataset

to be phased have to be considered not contiguous but with �holes� be-
tween them. These �holes� are marked as nocall loci.

3. The algorithm used for nocall data introduced in 2.3.1 is then used to
impute missing data.

2.4.3. Dynamic size sliding window

At the moment the haplotyping algorithm expects as input a raw genotyped
data that has been cut into many �xed lengthW overlapping segments by means
of a sliding window. Every couple of consecutive segments has exactly W − 1
SNPs in common. This procedure would work well if the raw data could be
characterized by an homogeneous linkage disequilibrium value compatible with
a �xed length window.

When very large datasets, possibly of di�erent origin and with di�erent
SNP spacing distribution have to be haplotyped, having the ability to compute
the local distribution of LD for every SNP location could be very useful. For
instance, it would be possible to dynamically adapt the window size to the local
value of LD.

3. Application of the method to haplotype based GWAS

A genome-wide association study (GWAS) is an examination of many com-
mon genetic variants in di�erent individuals to see if any variant is associated
with a phenotypical trait. GWAS typically focuses on associations between (sets
of) SNPs and traits like major diseases.

In this kind of study there is usually a pool of genomes partly built from
subjects showing the trait (cases) and others who do not (controls). If one allele
is more frequent in people with the disease, the marker is said to be "associated"
with the disease.

Most of the association studies are based on the calculation of the correlation
between a single SNPs marker and the phenotype: this is the easiest and least
computationally intensive approach. It has been demonstrated that an associa-
tion study based not on single SNPs but on haplotypes can increase statistical
power [11, 13, 2, 6]. This advantage means that the useful signal will be less
buried in the noise in a Manhattan plot and usually a smaller p-value (along
with a larger χ2) will be obtained from the analysis.

To exploit the improved statistical power of the multimarker procedure, for
each phased segment we performed a haplotype based χ2 association test. The
approach is similar to the one followed by Plink, but its phasing method is based
on a estimation-maximization (EM). We perform both an OMNIBUS and a per
haplotype association test. The details of this Flash application is shown in
section 4.2.
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4. Results

This section describes the tests performed to evaluate the haplotype infer-
ence performance and the ability to detect associations between haplotypes and
phenotypes.

4.1. Haplotype estimation accuracy and computation performance

To evaluate the haplotype inference accuracy and computation performance,
we compared the Flash and Beagle [5] results using both simulated and real data.
The simulated data was generated using the MS [8] application whereas the real
data were taken from the GENOME1000 project1. As a way to compare the
accuracy of the phasing processes we employed the switch error de�ned as the
proportion of successive pairs of heterozygote markers with incorrect phasing
(in an individual) with respect to each other. As regards the computation
performance, the time di�erence between the start of the application and the
end of the data output is used.

The phasing tests are then performed using a set of overlapping SNPs win-
dows (each window overlaps the adjacent ones for its size minus one) obtained
slicing the input data accordingly.

The current implementation of Flash lacks the Simulated Annealing op-
timization (described in section 2.2) so haplotype inference obtains relevant
speedups, with respect other similar applications like Beagle or Plink [12], when
windows up to 5 SNPs wide are used.

Since Beagle lacks the feature to phase overlapping windows automatically,
we performed two di�erent Beagle runs for each dataset. The �rst one was
performed on the whole dataset having the results sliced at the end of the
computation in order to obtain the output in the same format as that produced
by Flash. In the second run the dataset was sliced before the computation and
a single instance of Beagle for each window was run. Since Beagle is based on a
statistical approach (i.e Hidden Markov Model), slicing the dataset before the
computation causes an information loss hindering the full Beagle performance,
but it's the only way allowing a parallel execution. In practice we found that, in
the case of Beagle, the overhead of running a single instance of the application
for each window, limits the advantages of running simultaneously on di�erent
nodes as shown in section 4.1.2.

4.1.1. Simulated data

Each dataset, with di�erent mutation and recombination rate (assigned with
di�erent MS parameter t and r), was created by simulating 100 di�erent samples
of 2000 haplotypes (made of 30 up to 300 SNPs). Results were then computed
by averaging over 100 samples for each dataset. Since each sample contains
relatively few SNPs, we did not perform the slicing before the computation, for
the Beagle case, because we were mainly interested to evaluate the accuracy
rather than the speed. By the way, performing real data tests, we discovered
that running Beagle in parallel did not speedup the execution.

These tests were performed by using the following computing setup: a PC
powered by an 8 core Intel Xeon E5440 (2.83GHz) with 16 GB of RAM.

1ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
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(t, r) 4, 0 4, 4 4, 40 40, 0 40, 4 40, 40

Switch Error 11.24 10.36 9.54 9.83 11.24 10.55

Table 5: Switch error (%) of the randomized sample: Each column refers to a randomized
dataset generated with di�erent MS t, r parameters whereas each value is the result of com-
puting �rst the switch error in every window and then calculating their average

(t, r) 4, 0 4, 4 4, 40 40, 0 40, 4 40, 40

Flash 1.9 2.1 7.7 2.1 1.7 1.9
Beagle 2.6 1.4 2.0 0.7 0.6 0.6

Table 6: Phased switch error (%�): Each column refers to a dataset generated with di�erent
di�erent mutation and recombination rate (MS t, r parameters). Each value is the average of
the switch errors computed for every overlapping window.

The results are shown in Tables 5, 6, 7 where each column refers to a
randomized-phase dataset generated with di�erent MS t, r parameters.

Table 5 contains the switch error rates for the data after a phase randomiza-
tion (mimicking the output of a genotyping process) which is used as a reference
to evaluate the e�ectiveness of the phasing algorithms.

The randomized datasets were given to Beagle and Flash to reconstruct the
phase information. Table 6 shows the switch error rate after the application of
both phasing methods. Each value is the average of the switch errors computed
for every overlapping window.

The Table 7 shows the computation time taken for each test and the relative
speedup of Flash with respect to Beagle (last row).

4.1.2. Real data

Real data are taken from the Genome 1000 project [1]. In particular we use
phased data from the phase1, release v3 20101123 chromosome 20.

As described in the previous section, the Beagle tests were performed slicing
the data before and after the computation. We named the �rst one Beagle
Whole and the second Beagle Sliced.

The computing setup for Flash and Beagle Whole test was composed by a
single node PC with an Intel Q6600 quadcore CPU (2.40GHz), 8GB RAM. The
Beagle Sliced one was performed in a parallel environment using a Pydoop based
application [9] as launcher. The parallel computing setup was composed by a
cluster of 16 nodes with the same speci�cation of the PC used for the simulated
data test, for every node.

The Genome 1000 chromosome phased data contains information of di�erent

(t, r) 4, 0 4, 4 4, 40 40, 0 40, 4 40, 40

Flash (s) 0.05 0.05 0.05 0.24 0.25 0.24
Beagle (s) 4.28 2.23 2.24 11.05 11.64 13.17
Speedup 85.6 44.6 44.8 47.9 46.6 54.9

Table 7: Processing time (s): Each column refers to a phased dataset. Each value in the Flash
and Beagle rows is the time di�erence between the start of the application and the writing of
the data to the storage. The speedup row contains the relative speedup of Flash with respect
to Beagle.
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populations and obtained by di�erent genotyping technologies. Therefore, to
perform the haplotyping tests, we divided the chromosome data into the di�erent
populations and took the SNPs common to all the individuals. This data was
then phase-randomized and used as input for the successive tests.

Flash runs were performed with two di�erent con�gurations (the �rst one
with a threshold of 100% both for solved individuals and computation e�ort
whereas the second one with a threshold of 98% for the solved individuals and
10−6% for the computation e�ort) as explained in section 2.1.

The Beagle command line was the same for both Whole and Sliced runs
(java -Xmx2048m with the remaining parameters left to the default value).

Table 8 shows the accuracy results. Each row refers to a di�erent population.
Flash Th and Flash NoTh columns show the Flash execution with and without
threshold. The Beagle Wh column is related to the Beagle Whole run whereas
the Beagle Sl refers to the sliced input dataset with each slice processed in
parallel by a single Beagle istance.

Table 9 shows the speed results. This test lacks the Beagle Sliced result
because the computation of each window introduces a large overhead hindering
any parallel execution advantage(i.e. actual results show that for a single win-
dow of 5 SNPs Beagle takes about 1 second on average leading roughly to 4000
seconds for the ASW dataset on a 100 nodes parallel run).

As stated in section 2.1 using Flash with the threshold makes the execution
faster. The accuracy also improves. This is probably due to a constraint relax
of the heuristic step of the algorithm when the threshold option is selected.
Without threshold, the algorithm tries to solve all the individuals using the
least number of haplotypes and, among the solutions with the same size, the
most likely is selected. Analyzing the solutions in detail we found that this
behavior forces the inclusion of haplotypes leading to an increased entropy (of
the haplotype set) thus to a worse accuracy. Forcing a threshold focuses the
haplotype selection on the most similar individuals thus lowering the entropy.
The remaining individuals are solved using the most likely diplotype among the
their compatible ones.

As expected BeagleWhole accuracy is by far better than BeagleSliced that
shows lower accuracy also with respect to Flash.

Both simulated and real data show that Beagle is less accurate than Flash
but slower (with the exception of the IBS dataset that is not so signi�cant given
the accuracy results for both the applications). With respect to di�erent phasing
uses (for instance the imputation of low resolution phased data), when dealing
with association studies a lower accuracy could be less important. The speed
advantage of Flash could be therefore a very attractive feature for GWAS.

4.2. Association test

To perform the association test the haplotypes for the whole population are
selected by means of a sliding window approach into many overlapping stripes
of �xed size.

The data set used is related to the chromosome 10 phenotyped for the type
1 diabetes. It is composed by 8286 SNPs and 5554 IDs divided in 3894 controls
and 1660 cases.

To compare Flash with the well known Plink application, a standard χ2 test
is performed on every window using a multimarker approach with 5 consecutive
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SNPs. Moreover we create di�erent datasets, derived from the previous one by
randomizing the phenotype information to create a worst case benchmark for
the association. The comparison results are shown in �gure 4.1. Flash, Plink
and randomized phenotype results are depicted from the bottom to the top.

As expected, the association test performed on the randomized datasets does
not produce any meaningful result, while Flash and Plink show a very similar
behavior both �nding a p-value of ∼ 10−8 in a region of a known association, but
Flash is able to get these results with a speedup of about an order of magnitude.

To evaluate the power of a multimarker association test with respect to the
single SNP one, we performed the 1-SNP test using Plink and compared the
result with the Flash multimarker one for the same dataset. As can be seen in
�gure 4.2, the single SNP approach can resolve association in the same region
with a smaller statistical power obtaining a p-value of about 10−5.

5. Conclusions

In this report we present Flash, an entropy minimization algorithm to infer
local haplotypes of unrelated individuals. When compared with some state of
the art applications such as BEAGLE[5] and MACH[10] it shows a speedup in
execution time while maintaining a comparable accuracy. Finally we tested the
statistical power of haplotype-based Genome Wide Association Study (GWAS)
making a comparison with a single SNP association test performed with Plink
[12]. Our tests show that the multimarker association test in this case is more
powerful than the single SNP one as often reported in the literature. Moreover,
Flash and Plink show similar results for the multimarker association test but
Flash speeds up the computation time of about an order of magnitude using 5
SNP size haplotypes.
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