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Abstract

The ability to sequence mitochondrial genomes quickly and
cheaply has led to an explosion in available mtDNA data.
As a result, an expanding literature is exploring links be-
tween mtDNA features and susceptibility to, or prevalence
of, a range of diseases. Unfortunately, this great technologi-
cal power has not always been accompanied by great statis-
tical responsibility. I will focus on one aspect of statistical
analysis, multiple hypothesis correction, that is absolutely
required, yet often absolutely ignored, for responsible inter-
pretation of this literature. Many existing studies perform
comparisons between incidences of a large number (N) of
different mtDNA features and a given disease, reporting all
those yielding p-values under 0.05 as significant links. But
when many comparisons are performed, it is highly likely
that several p-values under 0.05 will emerge, by chance, in
the absence of any underlying link. A suitable correction
(for example, Bonferroni correction, requiring p < 0.05/N)
must therefore be employed to avoid reporting false positive
results. The absence of such corrections means that there
is good reason to believe that many links reported between
mtDNA features and various diseases are false; a state of
affairs that is profoundly negative both for fundamental bi-
ology and for public health. I will show that statistics match-
ing those claimed to illustrate significant links can arise, with
a high probability, when no such link exists, and that these
claims should thus be discarded until results of suitable sta-
tistical power are provided. I also discuss some strategies for
responsible analysis and interpretation of this literature.

Introduction

In the interests of making this communication suitable for
a general audience, I hope that expert readers will forgive
a basic introduction. Mitochondrial DNA (mtDNA) is a
molecule that encodes important aspects of the cellular ma-
chinery required for mitochondrial functionality in eukaryotic
cells. MtDNA encodes this machinery through a sequence
of nucleotides, chemical units that are often represented by
their initial letters A, C, G and T'. This nucleotide sequence
is interpreted by the cell as a set of instructions for pro-
ducing proteins and other components of the mitochondrion.
MtDNA is subject to mutations, giving rise to variability
in mtDNA sequences in individuals and across populations.
Mutations in mtDNA can involve a replacement of one nu-
cleotide by another (for example, an A becoming a G), in-
sertions or deletions of sets of nucleotides (for example, an

A being omitted from a sequence), and others which are of
less concern in this communication.

Mitochondria are central sources of cellular energy, and
dysfunction in mitochondria is linked to many diseases [1].
Mutations in mtDNA can result in the incorrect production
of mitochondrial machinery and thus cause human disease.
An example is the A3243G mutation (also written in forms
including 32434 > G, mt3243A > G, 3243A/G, and others;
to be read as ‘a change at position 3243 in mtDNA from
A to G), which often causes the inherited disease MELAS
[2]. Many other disease-linked mtDNA mutations have been
reported; the ability to sequence mtDNA cheaply and quickly
has led to a common recent research theme seeking links
between such mutations and disease.

A recent, large-scale analysis of biomedical literature found
that most published research is wrong [3]. It is important to
realise that this statement is not provocative hyperbole, but
is a quantitative claim, substantiated by a large scale meta-
analysis, showing that statistical errors and misdemeanours
mean that over 50% of reported results are incorrect. This
profoundly disturbing finding is anecdotally supported by re-
ports of the lack of repeatability in papers considered ‘land-
marks’ in cancer science ([4]; only 6 of 53 papers could be
reproduced) and more general drug design ([5]; only about
25% of published preclinical results could be appropriately
validated). Many statistical and scientific issues contribute
to this state of affairs; in this communication I focus on one
statistical problem, multiple hypothesis correction (reviewed
in, for example, Ref. [6]), in one particular field, identify-
ing mtDNA links to disease. I will demonstrate how seem-
ingly significant results can arise by chance when multiple
hypotheses are not corrected for, briefly show how these cor-
rections can be applied, and discuss a (non-exhaustive) set of
recent results which should be discarded due to their absence
of such correction. I conclude by urging authors and review-
ers to avoid the incorrect and unethical neglect of multiple
hypothesis correction, and readers to bear this vital approach
in mind.

Results

Incorrect results arise from association stud-
ies without multiple hypothesis correction

A typical study in this field will examine a set of patients
and a set of controls, and seek links between specific mtDNA
features and disease in these groups. For example, a recent
paper [7] has reported that a mutation at site 16290 in human
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mtDNA is significantly linked to AIDS prevalence. The line
of reasoning is as follows. 18 people possess this mutation:
of these, 9 have AIDS and 9 do not. 220 people do not
possess the mutation: of these, 61 have AIDS and 159 do not.
Based on these figures, the odds of having AIDS given the
mutation (9/9) are higher than those of having AIDS without
the mutation (61/159). However, it is not unreasonable to
think that these figures could have arisen purely through
chance, with no connection between the mutation and AIDS
prevalence. To provide support for the existence of a real
connection, we need a way to quantify how likely such figures
are to arise under this ‘null hypothesis’ that no connection
exists.

The way this likelihood is often presented is based around
the concept of a ‘p-value’. A p-value generally represents the
probability that an observation at least as extreme as the one
observed could arise under a null hypothesis. In the context
of these association studies, a p-value gives the probability
with which we expect to see a difference in odds as high as
the one we actually observe, if no link exists between mtDNA
feature and disease. Thus, a p-value of 0.05 corresponds to a
5% probability that the result we have observed could have
arisen by chance without any underlying link. This thresh-
old of 5% is often deemed ‘significant’ for a single obser-
vation. Statistical analyses including Pearson’s chi-squared
test and Fisher’s exact test [8] are typically employed to es-
timate the p-value associated with seeing the observed figure
under the null hypothesis of no link. In the case above (9/9
and 61/159), Pearson’s chi-squared test gives a p-value of
p =~ 0.046, which the authors report as the signature of a
significant link.

However, we must reflect on what a p-value means when
we make many observations. Recall that the p-value reflects
the probability with which an observation can arise when no
link exists; we must thus expect to see p-values of 0.05 or
under around 5% of the time even when no link exists. For
example, if we investigate 1000 features, none of which are
linked to the disease of interest, we would still expect to see
around 50 features with p < 0.05 arising purely by chance.
An individual observation of p < 0.05 is thus (much) more
common when multiple comparisons are performed, and such
an observation provides little or no evidence against the null
hypothesis (captured, for example, in Ref. [9]).

This brings us to the key message of this communica-
tion: The p < 0.05 ‘significance’ condition cannot be applied
over more than one comparison without correcting for the
number of comparisons involved. Because of this, many re-
ported links between disease prevalence and individual SNPs
or other mtDNA features cannot be regarded with the ‘sig-
nificance’ that the authors claim.

To demonstrate this problem, I present a simulation study.
S = 1000 synthetic datapoints are constructed, each corre-
sponding to a ‘patient’. N = 25 mtDNA features will be
considered in each patient. Each of these N features is ran-
domly chosen, either mutated (with probability 1 = 0.2) or
wildtype (with probability 1 — p). Each patient is then ran-
domly categorised as diseased (with probability o = 0.2) or
healthy (with probability 1 — o), completely independently
of any genetic feature. I then use Pearson’s chi-squared ap-
proach, as in Ref. [7], to seek links between genetic features

and disease, with the knowledge that no such links in fact
exist. A typical set of results is present in Table [I} where we
observe two p-values under 0.05. In Fig. we see that it is
very common for one or more p-values under 0.05 to appear
even when there is no link between any genetic feature and
the disease in question. To summarise the problem: an un-
corrected analysis of multiple comparisons is likely to yield
(many) false positive results.

For example, in Ref. [7], the authors consider 25 mtDNA
mutations. They thus explore 25 possible links between ge-
netic features and AIDS, and find p-values under 0.05 for
two of these features. These are then interpreted as signifi-
cant evidence against the null hypothesis. But as 25 different
experiments have been performed, we should expect to see
p-values under 0.05 arising just by chance (as in Table .
In fact, there is a 72% chance in this case that at least one
p-value under 0.05 will arise, and a 23% chance that will we
see exactly two, as the authors do, under the null hypothesis
(Fig. [[]A). The appropriate probabilities — that of observing
a given number of p-values under 0.05 — arise from a bino-
mial distribution with p = 0.05 and N equal to the number
of comparisons (25 in this case), which can straightforwardly
be visualised and explored using software like the Caladis
probabilistic calculator [10].

The reader will note that the synthetic case in Table
displays comparable (in fact, stronger) evidence than Ref.
[7] for the existence of specific links, despite the fact that
no such links exist. This problem arises because multiple
comparisons have not been suitably accounted for, and with-
out further evidence, the claimed links between mtDNA and
AIDS of Ref. [7] must be regarded as unsupported.

It is important to note that these results are a general prop-
erty of statistical tests interpreted through p-values, and are
not a consequence of a particular choice of methodology (for
example, Pearson’s chi-squared test). Multiple comparison
p-values from, for example, linear regressions also need to be
corrected. In the simulation example, the results do not de-
pend on choice of parameterisation; different u, o, and S will
give comparable results, and I have deliberately chosen rea-
sonably large sample sizes (S = 1000) to illustrate that the
necessity for multiple hypothesis correction is not removed
through increased sample size. To summarise, multiple hy-
pothesis correction is not an optional statistical nicety that
can be employed if and when it is desired; it is of absolute
importance to avoid the reporting of spurious false positive
results.

Multiple hypothesis correction is simple and
should be ubiquitous

Fortunately, methods for correcting this multiple comparison
problem exist, and there is a substantial literature on the sub-
ject (Ref. [6] gives a comprehensive review). Broadly, these
methods involve an adjustment of the definition of ‘signifi-
cance’ to reflect the number of comparisons that have been
performed. To link with the existing statistical literature
and textbooks, a slightly more formal nomenclature must be
adopted. A false rejection of the null hypothesis, as demon-
strated above (a false positive result) is a Type I error; a
false negative result is a Type II error. The probability of
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mtDNA Disease Control % p
mutation patients patients

with muta- | with muta-

tion (total | tion (total

n = 185) n = 815)
1 32 166 0.895 0.344
2 30 165 1.56 0.211
3 31 174 1.95 0.162
4 34 167 0.418 0.517
5 35 177 0.707 0.400
6 43 171 0.458 0.498
e 27 174 4.28 0.0384*
8 38 140 1.17 0.280
9 28 170 3.11 0.0777
10 32 165 0.828 0.362
11 37 147 0.387 0.533
12 35 157 0.0115 0.914
13 34 153 0.0154 0.901
14 36 163 0.0276 0.867
15 33 153 0.0870 0.767
16 41 163 0.434 0.509
17 35 169 0.306 0.579
18 41 158 0.728 0.393
19 37 172 0.111 0.738
20 24 177 7.18 0.00737*
21 37 159 0.0230 0.879
22 39 144 1.17 0.278
23 42 169 0.350 0.553
24 31 159 0.742 0.388
25 33 163 0.447 0.503

Table 1: False positive results from applying a p < 0.05 signifi-
cance criterion over multiple comparisons without correction.
Results from a synthetic study investigating the link between differ-
ent mtDNA mutations and disease prevalence (see text). Mutations
and disease are randomly assigned and are in no way linked; however,
due to the large number of comparisons, we observe some associated
p-values under 0.05 (asterisks; associated with mutations 7 and 20).
These do not signal any link between mutation and disease (none ex-
ists) but arise due to chance. Multiple hypothesis correction must be
employed to avoid erroneously labelling these links as ‘significant’. This
is not an unlikely, cherry-picked example; Fig. shows how often we
can expect such observations due to chance.
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Figure 1: Several p-values under 0.05 should be expected

when performing multiple comparisons, even when no signif-
icant link exists. A. The probability of observing a given number
of p-values under 0.05 when performing 25 comparisons, none of which
is associated with a real link. Results are presented both for the the-
oretical expectation and for the simulation experiment in Table [1| and
described in the text. There is a 72% chance that we observe at least
one ‘significant’ result despite the fact that none exist; clearly, we need
to correct for this effect. B. Bonferroni correction in this case requires
p < 0.05/25 for a result to be labelled as ‘significant’. The probabil-
ity of reporting a false significant link having corrected for multiple
hypotheses is now a more reasonable 0.05.
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at least one Type I error is known as the family-wise error
rate. The expected proportion of Type I errors is known as
the false discovery rate. The probability that the proportion
of Type I errors exceeds a certain value is known as the false
discovery exceedance.

Correction methods seek to control the family-wise er-
ror rate, the false discovery rate, or the false discovery ex-
ceedance. Bonferroni correction is perhaps the best known
of these approaches. A Bonferroni correction using the 0.05
significance level involves regarding p-values as signals of
a significant departure from the null hypothesis only when
p < 0.05/n, where n is the number of comparisons performed.
This aims to ensure that the family-wise error rate does not
exceed 0.05. The application of Bonferroni correction to the
earlier simulation example confirms that this criterion is sat-
isfied (Fig. [IB), demonstrating the dramatic reduction of
false positive reports compared to the case where multiple
hypothesis correction is absent.

Bonferroni correction is viewed as quite conservative, and
its strict nature may lead to Type II errors. Arguably, sta-
tistical conservatism is no bad thing in a research climate
where more than half of published results are incorrect [3],
but alternative correction strategies exist to reduce the prob-
ability of Type II errors, and can be employed as long as
they are compatible with the structure of the scientific study.
The names of some methods controlling the family-wise error
rate include Bonferroni, Holm, Hochberg, and Sid4k; proce-
dures controlling the false discovery rate include Benjamini-
Hochberg or are often simply referred to by the acronym
FDR. The purpose of this communication is not to describe
and review these methods (a task performed, for example, in
Ref. [6]), but to urge the reader to seek evidence of multiple
hypothesis correction in interpreting mtDNA studies.

Many recent studies present unsupported re-
sults linking mtDINA with disease

We have seen that the results from Ref. [7], reporting links
between mtDNA mutations and AIDS prevalence, can easily
result by chance under a null hypothesis of no links, and must
therefore be discarded until stronger confirmatory evidence
is provided. This study is by no means unique in the litera-
ture: here I examine a small set of other studies in which the
statistical methodology must be questioned. These examples
are drawn simply from examining a set of search results for
mtDNA associations with disease from recent publications
and is certainly not exhaustive.

Ref. [I1] analyses 35 SNPs seeking links with Huntingdon’s
disease. The authors report 8 SNPs that display p < 0.05.
An additional problem exists with this study in that authors
do not quote exact p-values, rather just noting those values
below 0.05. It is therefore impossible to immediately inter-
pret whether the authors have found 8 p-values of 0.049, all
of which Bonferroni correction would discard, or 8 p-values
of 10716 all of which would remain ‘significant’ under Bon-
ferroni. A re-analysis of their data using Fisher’s exact test
shows that all but two of the reported SNPs should be dis-
carded under Bonferroni correction (see below).

Two other examples focus on mutations in the D-loop
region of mtDNA linked to ovarian cancer [12] and non-

Hodgkin lymphoma [I3]. Disturbingly, these studies seem
to be representative of a set of similar studies, in a variety
of journals, on links between mtDNA D-loop features and
various cancer incidences, all of which fail to employ multi-
ple hypothesis correction [14] [I5] [16]. These studies follow
a very similar core methodology, identifying a set of SNPs
in a patient and control cohort, focussing on a set of SNPs
where the rare allele is present in more than 5% of controls
or patients, and seeking links between this set and the can-
cer of interest. Ref. [I3] gives the size of the set of SNPs
considered as 26; Ref. [12] apparently omits this important
information. Both studies then report SNPs with p-values
under 0.05 as significantly linked to their respective cancer
types without multiple hypothesis correction. Furthermore,
both studies claim a p-value of zero for some SNPs, making
the claim that there is zero probability that their observed
links could have arisen by chance. This is an impossible
statement under any reasonably constructed null hypothe-
sis (although p-values may be extremely small) and makes
it impossible for the reader to apply the required multiple
hypothesis correction themselves.

Although absence of important data in some of the above
papers prevents a full re-analysis, some consequences of Bon-
ferroni correction are immediately clear. Such a re-analysis
can straightforwardly be applied by the reader by multiplying
each p-value (stated without multiple hypothesis correction)
by the number of mtDNA features examined, and checking
if the result remains under 0.05. For example, correcting a
p-value of 0.01 to account for a study of 20 SNPs would give
0.20, which is over 0.05 and thus discarded. Following Bon-
ferroni correction, neither mtDNA haplogroup A, nor specific
mutations at sites 16209 or 16319, can be linked to AIDS [7].
A263G cannot be linked to non-Hodgkin lymphoma; G200A,
C16362T, A249del cannot be linked to diffuse large B-cell
lymphoma; C'315insC' cannot be linked to T-cell lymphoma
[13]. Nomne of G207A, C523del, T254G, A259G, C418G,
C441A, C476A, C530T, A249del, A263G can be linked to
ovarian cancer [12] (there is also an issue in this study with
the use of Pearson’s chi-squared test with low observation
counts). None of C160697, T16126C, T16189C, C16223T,
T16086C, C'161507 can be linked to Huntingdon’s disease
[T1]. Multiple hypothesis correction also removes support
for SNPs described as significantly connected to gastric can-
cer [16], breast cancer [15]; other erroneous reports no doubt
exist in the broader literature.

These and similar corrections do not mean that no link
exists, but rather that statistical support for such a link is
not yet evident. In some of the above studies, a subset of
reported links between some proposed mtDNA features and
disease do survive multiple hypothesis correction and can
therefore be subjected to scientific scrutiny with less concern
that they represent statistical artefacts. Large-scale and rig-
orous analyses (such as a recent examination of mtDNA links
to cancer [I7]) is desirable to test these hypotheses appropri-
ately.
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Discussion

This communication has focused on a particular aspect of
statistical methodology frequently employed in mtDNA stud-
ies. A discussion of this topic should naturally be framed in a
broader discussion of the merits and shortcomings of analyses
based upon p-values [I8], a focus on statistical significance
as opposed to the size and importance of effects [19], and
frequentist and Bayesian approaches to multiple hypothesis
testing [20]. Space in this communication limits such a dis-
cussion but the references above and references therein may
provide valuable context.

Working in the paradigm of frequentist tests for mtDNA-
disease association, we have seen that multiple hypothesis
correction is vital to avoid reporting erroneous links between
mtDNA and disease. A range of correction strategies ex-
ist and can be applied; but an appropriate form of multiple
hypothesis correction must be performed in analysing the
results of these studies. To fail to do so is not just scientif-
ically incorrect, but is unethical and runs a tangible risk of
misguiding biological and medical research. Readers should
be aware that multiple hypothesis correction is necessary and
seek evidence of one of the above (or other) procedures hav-
ing been applied; and should discard reports resembling those
in Table [I] which are uncorrected and cannot be regarded as
demonstrating any link, even a ‘trend’ or ‘suggestion’, be-
tween mtDNA and disease.

Specific guidelines

To avoid the reporting of false positive results and to promote
reproducible analyses in association studies, the following in-
formation should be included when applying frequentist tests
for the presence of relationships or links between factors.

(i) A description of all the comparisons performed, including
the total number and the statistical approach employed.

(ii) The source data and a measure of relationship strength
(for example, an odds ratio), ideally for each comparison,
and certainly for each comparison claimed to be significant,
such that the statistical approach can easily be reproduced
and the magnitude of reported effects can be assessed.

(iii) Precise p-values, ideally for each comparison, and cer-
tainly for each comparison claimed to be significant. The re-
porting of inequalities alone (for example, p < 0.05) should
be discouraged, as this prevents subsequent re-analysis of the
results. If a p-value is so low that computational issues exist
in obtaining a precise estimate, an upper bound inequality
can be used (for example, p < 10716).

(iv) A description of an appropriate multiple hypothesis cor-
rection protocol applied to the results (for example, Bonfer-
roni correction). This important inclusion is the focus of this
communication.

(v) A definition of significance given the correction in (iv)
(for example, p < 0.05/n for Bonferroni correction with n
comparisons), and a list of those results that fulfil this crite-
rion.
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