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The brain of the beholder: honouring individual representational idiosyncrasies
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Abstract

In the early days of neuroimaging, brain function was investigated by averaging across voxels within a region, stimuli within
a category and individuals within a group. These three forms of averaging discard important neuroscientific information. Recent
studies have explored analyses that combine the evidence in better-motivated ways. Multivariate pattern analyses enable researchers
to reveal representations in distributed population codes, honouring the unique information contributed by different voxels (or
neurons). Condition-rich designs more richly sample the stimulus space and can treat each stimulus as a unique entity. Finally,
each individual’s brain is unique and recent studies have found ways to model and analyse the interindividual representational
variability. Here we review our field’s journey towards more sophisticated analyses that honour these important idiosyncrasies
of brain representations. We describe an emerging framework for investigating individually unique pattern representations of
particular stimuli in the brain. The framework models stimuli, responses and individuals multivariately and relates representations
by means of representational dissimilarity matrices. Important components are computational models and multivariate descriptions
of brain and behavioural responses. These recent developments promise a new paradigm for studying the individually unique brain

at unprecedented levels of representational detail.
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We would like to understand “the brain”. However, every
brain is different. Our unique brains, products of our genes
and individual experience, give rise to our unique personali-
ties. Even the same person’s brain is constantly in flux, with
its plasticity adapting the individual to a changing environment
[1, 2, 3]. Given the idiosyncratic and plastic nature of any indi-
vidual brain, it is amazing that brain science has been quite suc-
cessful with a research paradigm that assumes that all brains are
identical. At the gross scale of the global layout of functional
regions, brain imaging studies have documented a significant
degree of consistency across individual brains in both the func-
tional decomposition and the approximate localisation of func-
tional components. However, we know that functional corre-
spondency between individual brains must break down at some
level [4]. As far as we know, no neuron in a higher level cortical
region in one person’s brain has an exact functional equivalent
in another person’s brain.

In this paper, we argue that neuroscience needs to honour
the uniqueness of the individual brain, the unique contribution
of each patch of an individual cortex (and ultimately each neu-
ron) to brain representations and processing and the particular
properties and meaning of each particular stimulus (Figure 1).
Most studies in neuroimaging have averaged across individuals,
across cortical columns (within functional regions) and across
particular stimuli. Reducing the complexity by averaging has
provided a natural starting point for our investigations. In the
domain of vision, early functional magnetic resonance imaging
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(fMRI) reported several cortical regions that selectively respond
to particular categories of images. For example [5], contrasted
brain activations elicited by faces and other objects and anal-
ysed the fMRI signal averaged across the voxels within each
region, across stimuli within each category and across subjects
(in a random-effects analysis). They observed that the activ-
ity within a region in the fusiform gyrus was stronger for face
images compared to images depicting objects from other cate-
gories. Regions selective for other categories, including places
[6] and bodies [7], have also been discovered with this ap-
proach.

The approach of analysing three-way average activation has
served the purposes of revealing the big picture, focusing analy-
ses on what is consistent across individuals, simplifying the in-
ference and increasing power by combining the evidence. How-
ever, averaging across individuals, cortical patches and stimuli
also discards a lot of information in the brain-activity data that
will ultimately be essential to understanding brain function.

An emerging literature is beginning to honour the idiosyn-
crasies that are at the heart of how the individual brain gives
rise to the individual mind, endowing a complex world with
a unique meaning and producing successful behaviour. We
sketch a framework for multivariate analyses that link stimulus,
brain representations and behaviour without averaging across
stimuli, brain locations or individuals. In the context of this
framework, we review previous studies in object vision that
have made forays along these dimensions of progress. Finally,
we describe what elements are still missing for cognitive neu-
roscience to engage the challenges of individuality.
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Figure 1: Honouring the unique response of each individual brain, in each cortical patch or column to each particular stimulus. Early neuroimaging studies have
focused on analyses of regional-mean activation, averaging across voxels within the region of interest (e.g. a face region), across stimuli within a given category
(e.g. individual faces) and across individual subjects (black circle). The field has begun to honour these distinctions, by analysing patterns of activity within each
region, responses to single particular images and the variation across individuals. However, only recently have all these components of progress been combined (red

circle) in a single study.

Representations:
goals of the brain

linking neurons to the computational

The concept of representation is central to the brain and cog-
nitive sciences. Researchers often refer to a characteristic pat-
tern of neuronal activity that reliably occurs when a particu-
lar stimulus is presented as a ’representation’ of the stimulus.
When we refer to an activity pattern as a representation, we go
beyond a statement of the statistical dependency between stim-
ulus and response pattern established by data analysis. The term
representation’ implies a functional interpretation, namely that
the brain-activity pattern in question serves the function of rep-
resenting the stimulus in the context of the organism’s overall
brain information processing [8, 9]. This functional interpre-
tation, although questionable in each particular case, has been
extraordinarily helpful in building theories of brain function.

David Marr famously proposed the pursuit of brain science at
three levels of description [10, 11]. The highest level is that of
the computational goals of the system. The intermediate level
is that of representations and algorithm. And the lowest level is
that of neuronal implementation. This framework continues to
guide theoretical and empirical brain science [12]. The repre-
sentational interpretation, thus, provides the link between neu-
ronal activity and the computational goals of the brain.

Cognitive psychology has tested cognitive theories with be-
havioural data, linking theory to experiment at a high level of
description. At the opposite end of the spectrum, computational
neuroscience has tested single neuron computational models
with activity recorded from single neurons, linking theory and
experiment at Marr’s lowest level. Both approaches are lim-
ited: behavioural data do not provide sufficient empirical con-
straints to explain brain function, and single-neuron computa-
tional models will never explain complex cognitive processes.
Neuronal representations reside at an intermediate level that

promises to link neurons to cognition. Neuronal representa-
tions are commonly associated with the activity of populations
of neurons within a functional area. They exist at a spatial scale
that lies between the level of single neurons, whose activity is
classically recorded with electrodes, and the regional average
activation of functional regions, which has been characterised
by classical brain imaging methods. A major current challenge
is to link theory and experiment at this crucial intermediate level
of description, the level of neuronal population representations
(Figure 2).

In the domain of visual perception, the recognition of an ob-
ject takes place along a hierarchy of visual areas [13], whose
representational content ranges from local image features to
representations of the parts of natural objects and their relation-
ships, and on to semantic properties, as information moves for-
ward along the ventral stream [14, 15, 16]. The cascade of rep-
resentations arises through feedforward, lateral recurrent and
feedback signalling between interconnected regions. Higher
cognitive processes make use of the representations to produce
successful behaviour and construct or update the organism’s
knowledge [17]. Understanding the representation within each
area would provide a major stepping stone towards understand-
ing the brain as a whole.

From univariate selectivity to pattern information

Brain science has experienced a paradigm shift from univari-
ate analyses of selectivity to multivariate analyses of pattern
information. This paradigm shift started with the theoretical
concept of a neuronal “population code” and has more recently
led to widespread multichannel measurement and multivariate
pattern-information analyses (Figure 3) in both cell recording
and functional imaging [18].
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Figure 2: Levels of description in theory and experiment. The explanatory gap between single neurons (bottom) and cognition is bridged on the side of theory (left)
by models at multiple levels of description. On the experimental side (right), the gap is bridged by neuronal array recordings and high-resolution imaging. However,
the cognitive and brain sciences have yet to learn how to connect theory and experiment at the crucial intermediate level of description. The study of representational

geometry offers one avenue of addressing this challenge.

In neuroimaging, the paradigm shift towards pattern infor-
mation analyses was pioneered by Haxby et al. [19], whose
pattern-decoding approach revealed widely distributed category
information in the ventral temporal cortex. This study was
among the first to honour the distinct contribution to the rep-
resentation of each little patch of cortex measured by an fMRI
voxel. However, like previous work on category selectivity,
response patterns were averaged across many distinct stimuli
(which were presented in a category-block design), and al-
though activity patterns were not averaged across individuals,
individual idiosyncrasies were not investigated.

The approach described in Haxby et al. [19] was an example
of the important concept of late combination of the evidence
[20]. Combining the evidence across multiple measurements
is essential when dealing with noisy data, as it improves the
signal-to-noise ratio. The combination of the evidence can be
achieved early on in the analysis procedure, by averaging ac-
tivation levels across voxels, stimuli or individuals. Howeyver,
averaging is not the only way to combine the evidence. Haxby
et al. (2001) did not average across voxels within a region. In-
stead, they correlated category-related response patterns across
voxels as part of their pattern-decoding approach. Pattern-
information analyses, such as multivariate decoding, combine
the evidence across voxels without averaging the activity lev-
els. This exploits a major strength of fMRI, the large number of
response channels (voxels), and can greatly enhance sensitivity
[21, 4]. The case for late combination of the evidence has been
articulated for evidence distributed across voxels [19, 4] across
stimuli [20, 22] and across individuals [23, 19].

From category averages to rich sets of particular stimuli

Following Haxby et al. [19], multivoxel decoding became
popular in neuroimaging [24, 21, 25]. Most studies took a
simple-decoding approach, asking, for example, whether re-
gional activity patterns contain information about a particular
stimulus dichotomy. While engaging the complexity of dis-
tributed representations, the literature largely ignored individ-
ual differences and seldom analysed the representation of indi-
vidual stimuli. Kriegeskorte and Bandettini [4] investigated the
pattern representations of particular stimuli. However, in or-
der to obtain stable estimates of the response patterns, the study
was limited to four particular object images, two faces and two
houses.

A number of studies have explored more complex stimulus
spaces, while averaging across voxels and focusing on com-
monalities across subjects [26, 27, 28]. Mur et al. [26] investi-
gated whether the category preferences of regions in the visual
ventral stream held for every exemplar of a set of 96 object im-
ages. They found that face and place regions exhibit almost per-
fectly categorical ranking of the single-image activations, but
also graded responses within the preferred and non-preferred
categories. This study also took a step towards honouring in-
dividually unique representations by investigating both subject-
average and subject-unique activation profiles.

Three fMRI studies published in 2008 explored the pattern
representations of richer sets of particular stimuli. Mitchell
et al. [29] investigated the representation of noun concepts.
They showed that a semantic model fitted on the basis of re-
sponse patterns elicited by 58 word picture pairs could predict
response patterns elicited by novel noun concepts (not used in
training the model). Kay et al. [30] took a similar approach in
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Figure 3: Population-coding theory and pattern-information analysis: a two-
stage paradigm shift for systems neuroscience. The paradigm shift from uni-
variate selectivity to pattern information in neuronal population codes had
two historical stages. In the 1960s, cell recording studies mostly used sin-
gle electrodes to measure single-neuron (or single-site) response amplitudes.
The responses were analysed univariately to assess neuronal selectivity. In the-
ory, similarly, the dominant idea was that information important to the animal
should be explicitly represented in single-cell responses. Cognitive science pro-
ceeded quite separately from neurophysiology in this period, constructing box-
and-arrow models based on behavioural data. Stage 1 of the paradigm shift
concerned theory and occurred when population coding became the prevalent
concept in neurophysiology. Cognitive science concurrently embraced the con-
cept of parallel-distributed processing, which brought it closer to brain science.
Although distributed population coding was the dominant theoretical concept,
measurement and analysis of neuronal responses (red) remained mostly uni-
variate. Then the advent of neuroimaging led to the inception of cognitive neu-
roscience. However, spatial resolution was initially low (in the cm range with
positron emission tomography) and so the initial approach was to link brain
regions to the boxes of the box-and-arrow models of cognitive psychology.
Researchers assessed each region’s overall involvement in different tasks with
univariate analyses. More recently, cell-array recordings and high-resolution
functional imagining have enabled us to measure distributed representations in
unprecedented detail. Stage 2 of the paradigm shift concerned analysis and
occurred when the field began to measure large numbers of responses simulta-
neously within a region and to analyse them jointly with multivariate pattern-
analysis techniques.

the domain of vision, investigating the representation of partic-
ular images in early visual cortex. They showed that a Gabor-
filter model fitted on the basis of response patterns elicited by
1750 training images could predict response patterns elicited by
novel images.

Kriegeskorte and Bandettini [4] investigated the represen-
tation of 92 object images in the inferior temporal cortex of
humans (hIT) and monkeys (IT). They found that the patterns
associated with individual images formed clusters correspond-
ing to natural categories and that these clusters (along with
the within-category representational dissimilarities) matched
closely between human and monkey. These three studies, re-
viewed in [31], all honoured the distinct contributions of indi-
vidual voxels and the representations of particular stimuli. By
exploiting the late combination of evidence, they managed to
forgo averaging across stimuli, while exploring richer sets of
stimuli than previous studies.

From pattern information to representational geometry and
tests of computational models

The three papers just mentioned [30, 22, 29] also took the
analysis of representational patterns in a novel direction. While
previous pattern analyses used generic statistical models to
demonstrate the presence of information about the stimuli in a
brain region, these three studies tested computational models
of brain information processing, which predicted not merely
the presence of information about particular stimulus dimen-
sions, but the format in which the information was represented.
In population receptive-field modelling [32, 30, 29], computa-
tional models are used to predict the responses of individual
voxels. In representational similarity analysis [20, 22] com-
putational models predict the dissimilarity relationships of the
response patterns (Figure 4 and Figure 5). The fMRI activity
pattern elicited by each particular stimulus is compared to the
pattern elicited by each other stimulus. All pairwise compar-
isons are assembled in a representational dissimilarity matrix
(RDM). RDMs are useful because they capture not only the
information present, but also the format in which it is repre-
sented. Moreover, RDMs from brain regions can be directly
compared to RDMs predicted by computational models. Pop-
ulation receptive-field modelling, by contrast, requires a sep-
arate data-set for fitting a linear model that predicts the re-
sponse of each voxel from the computational model representa-
tion. RDMs also enable straightforward comparisons between
brain regions, between individuals, between species and be-
tween modalities of brain-activity measurement [9].

From stable to task-flexible representations

The representational geometry of a brain region has recently
been shown to be somewhat influenced by top-down mecha-
nisms such as attention and behavioural goals [33, 34, 35, 36].
Cukur et al. [33] used fMRI to study the impact that search-
ing for an object category during a natural movie has on the
semantic representation measured in the brain. The volunteers
were asked to either “search for humans” or “search for vehi-
cles” while their brain activities were recorded. Similarly to
the procedure described in Huth et al. [37], the authors used
WordNet to label object and action categories in natural movies.
Using voxel-wise modelling and regularised regression, the au-
thors showed how attending one category distorted the seman-
tic structure of the neural representations of both attended and
unattended categories, with category-attended expansion of the
representational geometry at the cost of a compression of the
distant category [33]. In another study, Harel et al. [34] used
fMRI to investigate how the neural representations in regions
of the ventral temporal cortex vary as a function of task. They
compared the brain-activity patterns for a single set of objects
under six different tasks (fixation, colour, tilt, content, move-
ment and size). Their results demonstrated the presence of
flexible task-dependent neural representations in the lateral oc-
cipital and in the lateral prefrontal cortex, indicating that ob-
ject processing is highly influenced by the aim of the observer
[34]. These two studies clearly demonstrated the task-adaptive
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Figure 4: Combining multivariate descriptions of stimuli, brain representations, and behavioural responses. With recent advances in pattern information analyses,
progress has been made in understanding object-vision processes in the brain, and to relate them to behaviour. Advances in computer vision enable us to model
the similarity structure of stimulus properties with ecologically valid, neuropsychology inspired and biologically plausible computational models. One example of
such computer vision model is the deep convolutional neuronal network (DCNN) model of vision, which made significant advances in object recognition and offer
similar representational performance to human inferior temporal (hIT) cortex. For example, there is a great deal of correspondency in representational geometry
between the fully connected layer 7 of the DCNN and the representational geometry in individual subjects hIT cortex. Future research will seek to establish whether
understanding the computations achieved throughout the model’s architecture can help us understand the computational mechanisms that enable an individual’s
brain to recognise objects. These brain representations can also be compared across subjects, and related to multidimensional accounts of subjective behaviour.
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flexibility of the representations of the ventral temporal cortex
and of the prefrontal cortex. Both these studies were designed
to characterise commonalities across individuals in the brain’s
ability to flexibly adapt to task demands.

From group characterisations to individually unique repre-
sentations

Honouring individual voxels and stimuli, the cited studies
have made important advances. However, most of this literature
tacitly assumed that representations are consistent across indi-
viduals [38, 39, 24, 37, 30, 40, 22, 29, 41, 42, 43, 44, 45, 46].
Several studies have explicitly demonstrated representational
commonalities between individual [19, 47] and even between
species [22].

Even if all individuals had functionally identical brains and
the spatial layout of functional units were similar across indi-
viduals, the precise anatomical location of functional units in a
common brain space might still be variable. This would reflect
limitations of our alignment methods (defining the common
brain space) rather than true functional differences between in-
dividuals. Brains are commonly aligned using volume-based
(Talairach or MNI) or surface-based (FreeSurfer, BrainVoyager,
AFNI-SUMA) methods or individual functional localiser ex-
periments.

Considering the variability of functional localisation across
individuals (as it appears in a given common brain space) can
improve the outcome of activation analyses. For example, Fe-
dorenko and colleagues have stressed the importance of defin-
ing functional regions in a subject-specific manner, before av-
eraging activation across subjects [48, 49]. Neuroimaging has a
long history of individually defined functional regions of inter-
est (e.g. Kanwisher et al., 1997). In pattern-information studies,
similarly, activity patterns are usually not averaged across indi-
viduals [19, 21]. A recent study demonstrated that structure-
function relationships can be consistent between individuals,
even when the precise localisation in a given common brain
space is variable. Saygin et al. [50] demonstrated that the pre-
cise location of face-selective responses in the fusiform gyrus
of an individual subject can be predicted on the basis of anatom-
ical connectivity measured with diffusion-weighted imaging.
Face-selective responses in the fusiform gyrus were associated
with a particular fingerprint of anatomical connectivity across
the rest of the brain. The prediction model was cross-validated
across subjects, demonstrating the consistency across individu-
als of the relationship between structure (anatomical connectiv-
ity) and function [50].

The most widely used paradigm of group analysis in neu-
roimaging assumes some common brain space and treats
across-subject variation in activation levels as a random effect.
In contrast to fixed-effects analysis, where the variability across
subjects is not modelled at all, random-effects analysis models
interindividual variation as noise [51, 52, 53]. It is important to
note that neither of these approaches treats the interindividual
variation as an effect of interest.

Despite the widespread focus on commonalities, there is also
an expanding neuroimaging literature on individual differences

(for a review, see [54]), with most studies addressing individ-
ual differences in regional-average activation. Individual differ-
ences in regional-average activation are commonly investigated
in memory research, higher order cognitive functions, intelli-
gence research and social neuroscience [55, 56, 57, 58].

As an example from the object-vision literature, Furl et al.
[55] showed that regional-average face responses predict a per-
son’s ability to recognise faces. Other studies have investigated
how interindividual variability in connectivity [59] and brain
anatomical measures relates to behavioural differences between
individuals [60, 61, 62].

Most studies that investigated individual differences in brain
function focused on regional-average activation and its relation-
ship to behaviour. While pattern-information studies usually
allow for the precise location of representational units to vary
across individuals, few studies to date have addressed hypothe-
ses about the individuality of brain representations. Can brain
representational idiosyncrasies explain a person’s unique per-
ception and behaviour?

Raizada et al. [63] investigated interindividual differences
in brain representations and the degree to which they pre-
dict interindividual differences in perception. Using pattern-
information analyses, they compared brain representations of
the phonemes /ra/ and /la/ in English and Japanese speakers,
showing that the behavioural ability to discriminate these vo-
calisations could be predicted from the discriminability of their
representational patterns in auditory cortex [63, 64]. This re-
lationship held across groups (English vs. Japanese speakers)
and even across individuals within the two groups.

Another study investigated the role of the hippocampus in
episodic memory using pattern-information analyses [65]. The
authors showed that the activity patterns observed in the hip-
pocampus carried information about the temporal positions of
objects in learned sequences. Furthermore, individuals who
performed better in object sequence retrieval had more robust
hippocampal object-position binding as indicated by larger hip-
pocampal voxel pattern similarity. The studies by Raizada et al.
[63] and Hsieh et al. [65] used pattern representations measured
in each subject to predict a unidimensional subject covariate
(behavioural performance). A recent study by Charest et al.
[23] investigated the relationship between high-dimensional
perceptual judgements of the similarity among a set of objects
and the multivariate brain representations of the objects. Earlier
work has shown that object similarity judgements exhibit sim-
ilar categorical divisions and similar within-category similar-
ity structure as ventral temporal representational patterns [66].
Charest et al. [23] showed that even individual idiosyncrasies
of the perceptual judgements could be predicted from idiosyn-
crasies of the brain representational geometries. The method-
ological approach and key result of this paper are shown in Fig-
ure 5.

From univariate to multivariate descriptions of stimuli and
behavioural responses

We have argued that brain representations are inherently mul-
tivariate and should thus be described and analysed multivari-
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Figure 5: Characterising individually unique object representations. (a) Individual subjects are scanned on two separate days. This allows characterising their object
representational geometry independently on each occasion. This allows characterising the stability of a representational geometry within and between subjects (red
and black bars). This also enables us to compute an individuation index, consisting of the average within-subject RDM correlation across days, minus the average
between-subject RDM correlation across days. If the within-subject RDM correlation is significantly larger than the between-subject RDM correlation, this indicates
some degree of individual uniqueness in the representation. After defining whether components of the brain representations are individually unique, one can also
investigate whether the brain representations are predictive of the idiosyncrasies in behaviour using the above mentioned framework. (b) Actual results from a recent
study on individually unique brain representations. The left panel shows the stability of the representational geometry of the hIT activity patterns to visual objects
(within-and between-subjects; red and black bar). The within-subject RDM correlation was significantly larger than the between-subject RDM correlation across
days, reflecting the idiosyncrasies in the hIT representation (blue bar). The right panel shows a significant correlation between the brain representations (averaged
across the two scanning days) and the similarity judgments obtained from the multiple arrangements task (within-and between subjects; red and black bar). The
brain-behaviour correlation was significantly larger within than between subjects, indicating that an individual’s similarity judgments are better predicted by that
individual’s mental representations than by another’s.
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Figure 6: Multivariate description of stimulus, brain representation, and behaviour. Early studies have focussed on particular dimensions of stimulus, brain response,
and behaviour. However, the sensory information, its representation in the brain, and behaviour are fundamentally multivariate phenomena. Recent studies have
begun to engage this inherent complexity, linking stimulus to brain response, brain response to behaviour, or all three elements, while treating several of them in a

multivariate framework.

ately. The same is true for the objects in the external world
and our behavioural responses to them (Figure 6). The study
by Charest et al. [23], cited above, demonstrated how we can
investigate the individually unique relationships between multi-
variate brain representations and multivariate behavioural mea-
sures. The multivariate behavioural measure used in this study
was similarity judgements. Judgements for all pairwise object
comparisons were acquired using a novel multi-arrangement
task [67, 68]. In this method, subjects communicate perceived
object similarity by arranging object images on a computer
screen by mouse drag-and-drop operations. In an adaptive mea-
surement procedure, the subject is asked to arrange subsets of
the objects in 2D according to their similarity. The higher di-
mensional perceptual similarity space is then inferred from the
multiple arrangements by inverse MDS [68].

Recent studies have increasingly employed multivariate de-
scriptions of the stimuli. One example cited above is the study
by Mitchell et al. [29], who used a 25-dimensional semantic
space to describe their stimuli. A more recent example is the
study by Huth et al. [37] who defined detailed semantic predic-
tors describing a movie stimulus. The predictors described the
presence of objects from different categories in the scene and
utilised the is-a hierarchy of the WordNet model [69]. Using
a regularised linear regression on the voxel activity patterns,
they showed how the continuous semantic space provided by
the WordNet labels predicted the activity of each voxel in the
brain [37].

The semantic models of Mitchell et al. [29] and Huth et al.
[37] require the stimuli to come with labels. The computational
model linking stimuli to brain representations, thus, is not fully
explicit in these studies. The cited study by Kay et al. [30] pro-
vides an example of a test of a simple image-computable model
(Gabor model). Characterising the multivariate nature of the

stimuli in the external world is now also possible for higher
level representations, using more complex computational mod-
els. One influential model of object vision is the HMAX model
[70, 71]. HMAX is a computational model inspired by the neu-
roscience literature, which aims at characterising the represen-
tations along the visual hierarchy. Efforts have been made to
compare the representational geometry of the HMAX model
to the representational geometry of activity patterns along the
visual ventral stream [72, 20, 22, 73]. The classical implemen-
tation of the HMAX model so far fails to satisfactorily explain
the categorical divisions of higher level object representations.

Recent advances with deep convolutional neural networks
(DCNNs) have improved the performance of computers at vi-
sual object recognition [74, 75, 76]. These models are loosely
biologically inspired in their hierarchical layered architecture
and acquire their representations through supervised learning
with large category-labelled image sets. Recent studies sug-
gest that the performance achieved by the DCNNSs in object
classification approaches that of IT cortex in human and non-
human primates [77]. The DCNN developed by A. et al. [74]
outperformed other computer vision models at predicting the
representational geometry of human and monkey IT [78] for
isolated object images. These authors showed that the models
strong categorical boundaries (acquired through strong supervi-
sion) contributed to its better performance at predicting the IT
representational geometry. For the contextualised images from
Charest et al. [23] as well, we observed that the A. et al. [74]
model captures major categorical distinctions similarly to hu-
man IT (Figure 4, previously unpublished data). These recent
studies have given us a better understanding of the computa-
tional mechanisms underlying object vision.
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Do the analyses honour the patterns of response across...

voxels?

stimuli?

subjects?

Talairach/MNI block-
design activation
mapping

(e.g. Haxby et al., 1994)

No: Single-subject maps
are smoothed for inferential
mapping and/or voxels
within an ROI averaged.

No: Responses to distinct
stimuli within a block are
averaged.

No: Single-subject maps
(or ROI activations) are
averaged across subjects
for fixed- or random-effects
analysis.

Category-block activation
group studies

(e.g. Kanwisher et al.,
1997)

No: Voxels within a
functional region are
averaged across.

No: Responses to stimuli
within each predefined
category are averaged.

ROIs defined in each
subject, but no detailed
analysis of individual
differences.

Pattern-information
category-block group
studies

(e.g. Haxby et al., 2001)

ROI based analyses of
voxel pattern information,
but no detailed analyses of
voxel-to-voxel variation.

No: Responses to stimuli
within each predefined
category are averaged.

Each subject allowed
different representational
patterns, but

no detailed individual
differences analysis.

Single-stimulus
representational
geometry studies
(e.g. Kriegeskorte, Mur,
Ruff, et al., 2008)

ROI based analyses of
pattern representational
geometry, no detailed

mapping.

Each stimulus is a separate
condition and is analysed
inferentially with multiple-
testing correction.

Each subject allowed
different representational
patterns. Interspecies, but
no individual differences
are analysed.

Single-voxel encoding
models
(e.g. Huth et al., 2012)

Detailed descriptive
mapping of single-voxel
responses (no inferential
mapping with control of
false-positives rate).

Movie responses modelled
categorically (but extremely
richly). Inferences pool
effects over stimuli.

Each subject allowed
different representational
patterns, but no detailed
analysis of individual
differences.

Common
representational
geometry studies

(e.g. Haxby et al., 2011)

Each voxel allowed a
unigue response profile
and response pattern
spaces linearly mapped
between subjects.

Rich stimulus-space
sample (movie) without
categorical averaging, but
inferences pool effects over
stimuli.

Subject-unique patterns,
but common geometries.
Subject relationships
modelled, but not analysed
in detail.

Individual
representational
geometry studies
(e.g. Charest et al., in
press)

ROI based analyses of
pattern representational
geometry, no detailed

mapping.

Each stimulus is a separate
condition, but inferences
pool effects over stimuli.

Subject-unique
representational
geometries demonstrated
to be distinct and predictive
of judgment idiosyncrasies.

no
(averaged)

yes

(but not analysed)

yes
(target of analysis)

Figure 7: Honouring idiosyncrasies of voxels, stimuli, and subjects. Early neuroimaging studies (top row) tended to average across voxels, stimuli, and subjects.
These studies gave us a coarse-scale view of brain function, revealing how the regional-average activation of large chunks of brain differed between tasks (each
involving complex processing of particular stimuli, which were represented by block averages). The resulting brain maps were typically averaged across subjects.
Recent studies have attempted to honour the idiosyncrasies of voxels, stimuli, and subjects. Here we compare particular exemplary studies (cited in the left column)
with regard to the way they treated variation across these dimensions. We distinguish two levels of honouring differences between voxels, stimuli, and subjects: (1)
The differences are modelled and not treated as noise, but they are not the target of the analyses (light gray). The motivation for this approach is usually the greater
power such analyses can confer for testing hypotheses of interest. For example, pattern-information studies that do not average activation across voxels or subjects
tend to have greater power for detecting information encoded in subject-unique patterns of activity within a region. (2) The differences are not only modelled, but
form the target of the analyses. An additional more technical dimension that we do not consider here is the distinction between fixed- and random-effects analyses
(across subjects, stimuli, or voxels). An analysis that treats subject as a random-effects factor is useful for generalising from the sample of subjects to the population.
However, the variation across subjects is part of the noise model (thus not honoured) and the inference targets the population mean.
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Honouring the idiosyncrasies

Figure 7 explores the extent to which a number of exemplary
studies conducted over the past two decades honoured the id-
iosyncrasies of voxels, stimuli and subjects. We see a clear de-
velopment from averaging to more sophisticated data modelling
that engages these idiosyncrasies. Future studies will push fur-
ther along these dimensions, linking multivariate descriptions
of the world via explicit computational models of brain infor-
mation processing to multivariate measurements of brain activ-
ity in individual organisms and to multivariate measurements
of behaviour. One framework for pursuing these directions is
the analysis of representational dissimilarity matrices (Figure 4
and Figure 5; for a review, see [9]), which enable us to relate
multivariate descriptions of stimuli, brain regions, model rep-
resentations and behavioural responses without complex fitting
procedures.

Beyond basic science, the characterisation of individually
unique brain function is likely to contribute to our understand-
ing of disorders and of the continuous variation across patients.
If functional brain imaging is to become useful in the diagno-
sis and monitoring of patients, we will need to develop a rich
repertoire of methods for characterising subtle functional dif-
ferences between individual brains and minds. Disorders are
increasingly recognised to fall on a complex manifold where
every patient has a unique place. For example, individuals with
an autism spectrum condition (ASC) tend to exhibit atypical
perceptual processing [79]. However, every case is different.
Grandin and Panek [80] describe three challenges that neu-
roimaging researchers of autism face: the absence of apparent
brain structural abnormalities [81], the heterogeneity of causes
of ASC and the heterogeneity of behavioural symptoms. In the
future, it might become possible to characterise the biological
underpinnings of the unique behavioural dysfunction of a given
individual patient. Multivariate characterisations of an individ-
ual’s brain representations might one day help tailor therapeutic
interventions in the context of personalised medicine.
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