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Abstract 
 
Protein expression and post-translational modification levels are tightly regulated in neoplastic cells to 
maintain cellular processes known as ‘cancer hallmarks’. The first Pan-Cancer initiative of The 
Cancer Genome Atlas (TCGA) Research Network has aggregated protein expression profiles for 
3,467 patient samples from 11 tumor types using the antibody based reverse phase protein array 
(RPPA) technology. The resultant proteomic data can be utilized to computationally infer protein-
protein interaction (PPI) networks and to study the commonalities and differences across tumor types. 
In this study, we compare the performance of 13 established network inference methods in their 
capacity to retrieve literature-curated pathway interactions from RPPA data. We observe that no 
single method has the best performance in all tumor types, but a group of six methods, including 
diverse techniques such as correlation, mutual information, and regression, consistently rank highly 
among the tested methods. A consensus network from this high-performing group reveals that signal 
transduction events involving receptor tyrosine kinases (RTKs), the RAS/MAPK pathway, and the 
PI3K/AKT/mTOR pathway, as well as innate and adaptive immunity signaling, are the most significant 
PPIs shared across all tumor types. Our results illustrate the utility of the RPPA platform as a tool to 
study proteomic networks in cancer. 
 
 
 
Availability: PPI networks from the TCGA or user-provided data can be visualized with the ProtNet 
web application at URL.	  
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INTRODUCTION 
 
The utility of high-throughput proteomic datasets for probing cancer-related pathways 
 
The Cancer Genome Atlas (TCGA) Research Network has recently profiled and analyzed large 
numbers of human tumors both within and across tumor lineages to elucidate the landscape of 
cancer associated alterations at the DNA, RNA, protein, and epigenetic levels 1. Integrated analyses 
of the resulting rich genetic and epigenetic data types have already started to shed light on 
commonalities, differences and emergent themes across tumor lineages 2, 3. Analysis of TCGA 
samples from 11 tumor types indicated that total protein and phosphoprotein levels in these tumors, 
as measured by antibodies on reverse phase protein arrays (RPPA), capture information not 
available through analysis of DNA and RNA 4. The RPPA platform used in the Akbani et al. analysis 
included 181 high quality antibodies targeting 130 proteins and 51 phosphoproteins, i.e. 
phosphorylated states of proteins. These antibodies were selected with a focus on cancer-related 
pathway and signaling events and analyzed with the intent to discover new therapeutic opportunities. 
The dataset of protein and phosphoprotein levels was subsequently expanded to include levels 
detected by six more antibodies bringing the total number to 187 protein levels. This dataset is 
available for download from The Cancer Proteome Atlas 5, and referred to as PANCAN11 from here 
on. 
 
Analysis of function requires knowledge of interactions  
 
The goal in analyzing protein expression levels is to get information about the function of the proteins. 
However, the analysis of function requires knowledge of interactions. For instance, in the protein- 
folding domain, the function of a single residue during folding can be determined only by having 
knowledge about the residues it is interacting with. Similarly, the functions of a protein in the cell can 
only be understood by determining the interaction partners. Therefore, the units of analysis are not 
the individual protein expression levels, but the interactions of proteins with other cellular entities.    
 
Statistical tools such as correlation can be used to study the interactions of proteins. However, 
correlation between two proteins does not imply that they directly interact, because correlation may 
also be induced by chaining of correlation between a set of intervening, directly interacting proteins. 
Such indirect correlations are called transitive interactions. It was previously shown that the 
dominant correlations in a system can be the result of parallel transitive interactions 6. 
 
There are three main network motifs that lead to transitive interactions: fan-in, fan-out and cascade. A 
fan-in is a case where there are direct interactions from proteins A and B to a third protein C but 
there is no interaction between A and B. A fan-out is the situation where there is a direct interaction 
from protein C to both A and B but there is no interaction between A and B. A cascade, on the other 
hand, is a chain event where there are direct interactions from A to B, and from B to C, but not from A 
to C. In all these three cases, if the two direct interactions are in the same direction (both positive or 
both negative), there is a transitive influence observed between the proteins that do not have a direct 
interaction. Since biological pathways and signaling events contain many fan-in, fan-out and cascade 
network motifs, transitive effects occur widely across the network and have previously been shown to 
be a systematic source of false positive errors for many computational network inference methods 7. 
Thus, it is crucial to minimize the effect of transitive interactions in building network models from high-
throughput datasets.  
 
A diverse array of computational network inference methods  
 
A wide array of computational methods has been proposed in the literature for the identification of 
direct interactions in networks. The common objective of many of these methods is to call a direct 
interaction between two entities if they are ‘not conditionally independent’ of each other given a set of 
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other entities. One simple example is the regression-based partial correlation approach. Consider a 
three-variable system consisting of A, B, and C. When testing the existence of a direct interaction 
between A and B in this approach, measurements on A and B would first separately be regressed on 
the measurements on C, the residual vectors would be computed, and then the correlation between 
the residual vectors would be found. If this ‘partial’ correlation is significantly different from zero, a 
direct interaction is called between A and B. 
 
Despite the similarity in the objective, these methods employ diverse inference procedures such as 
mutual information 8-11, regression 12-14, Gaussian graphical models 15, 16, and entropy 
maximization 17, 18.The diversity of algorithms for inferring direct interactions, coupled with the 
absence of a robust off-the-shelf method, creates challenges for users that aim to generate 
hypotheses and eventually discover novel functional interactions among proteins. We address this 
challenge by testing different families of network inference methods towards the goal of deriving 
guidance for the better-performing methods. 
 
Evaluating the performance of network inference methods on a pan-cancer proteomic dataset 
 
The RPPA platform, first introduced in Paweletz et al. 19 stands a good chance of becoming a widely 
used proteomics platform as greater numbers of reliable antibodies are being developed. Here, we 
present a rigorous comparison of the performance of 13 commonly used network inference 
algorithms based on PANCAN11, a pan-cancer RPPA dataset, which contains levels of many 
(phospho)proteins in a large number of samples, such that reasonably meaningful protein-protein 
correlations can be computed. The goal of this comparison is two-fold: To investigate 1) if the signal-
to-noise ratio of the RPPA technology allows the discovery of known and novel PPIs, 2) to what 
extent algorithms that were originally developed for gene regulatory network inference accomplish the 
inference of PPIs.  
 
Performance evaluation of PPI network inference for different cancers requires a ‘gold-standard’ for 
each cancer type. However, a true gold-standard for human PPIs does not exist, let alone a separate 
one for each tumor type. Most protein interactions in in vivo systems remain unknown or unproven 
and/or depend on physiological context. Yet public knowledgebases that store collections of curated 
pathway and/or interaction data contain useful information. For instance, Pathway Commons (PC) is 
a collection of publicly available and curated physical interactions and pathway data including 
biochemical reactions, complex assembly, transport and catalysis events 20, aggregated from primary 
sources such as Reactome, KEGG and HPRD and conveniently represented in the BioPAX pathway 
knowledge representation framework	  21-24. 
 
In this study, we adopted PC as a benchmark, and evaluated the performance of 13 network 
inference methods in their capacity to retrieve ‘true’ protein-protein interactions from RPPA datasets 
of 11 cancer types. We then used a group of high-performing methods to investigate the similarities 
and differences among the 11 cancer types in our dataset. The workflow of this study (Figure 1), 
involves the parallel generation of two PPI network models, one from computational inference and 
one from the pathway knowledgebase. On the inference side, multiple antibodies are assayed on an 
RPPA platform (Step 1) and the resulting dataset is normalized to generate a proteomic profile of the 
cohort such as PANCAN11. Computational network inference methods are then employed to create a 
network model with the inferred PPIs (Step 2). On the knowledgebase side, various wet-lab 
experiments are performed to generate data, and the resulting information is stored in the scientific 
literature (Step 3). Curators sift through the literature to distill multiple-layered information on PPIs 
(Step 4), and then this information is catalogued in knowledgebases such as PC (Step 5). A 
comparison of the PPI network models from the two sides reveals the level of fidelity at which the 
‘true’ network is constructed by the computational methods (Step 6).  
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Figure 1: Workflow for the performance evaluation of network inference methods on a 
proteomic dataset. The workflow is comprised of a computational inference component and a 
pathway knowledgebase component that are used to generate separate PPI network models.  
Caveats involved in Steps 1-6 are discussed in Discussion and Text S1. 

Ascertainment bias in Pathway Commons 
 
The workflow of performance evaluation as described above involve certain caveats. These are 
discussed in detail in the Discussion section and in Text S1. Here we discuss one of the caveats, 
the ascertainment bias in pathway knowledgebases (Step 5 in Figure 1). Wet-lab experiments for PPI 
plausibly have over-representation of certain proteins due to the perceived interest in the field and 
ease of study. In a recent paper, a Pearson correlation of 0.77 was reported for the correlation 
between the number of publications in which a protein was mentioned and the number of interactions 
reported for that protein in literature-curated data 25. This implies the potential existence of an 
ascertainment bias in pathway knowledgebases. There will exist more documented interactions of a 
certain protein if that protein is studied more intensively by the community. The ascertainment bias in 
PC precludes our benchmark network from being a true gold standard. However, in the absence of a 
true gold standard, we adopted this network as a working gold standard. This and other caveats 
challenge the comparability of pathway models from a knowledgebase and network models from a 
computational algorithm. Thus, it is necessary to be mindful of these caveats when interpreting the 
performance evaluation results in this study. 
 
RESULTS 
 
In this study, we evaluated the performance of 13 different network inference methods on the 
PANCAN11 RPPA dataset by using PC as a benchmark. The PANCAN11 dataset is comprised of 
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3467 samples and 187 proteins. The total number of possible non-self interactions with 187 proteins 
is 17,391. However, the number of interactions in PC (version 2) involving any two proteins from this 
set of 187 is 1,212 as determined by PERA 26. This PC benchmark subnetwork of 1,212 interactions 
forms the working gold-standard for this study, and has only 162 of the 187 proteins as interaction 
partners (meaning PC does not have any interactions between the remaining 25 proteins and any 
one of the full set of 187 proteins). As 162 proteins can form a total of 13,041 non-self interactions, 
the gold standard network has a density of 9.29%.  
 
Limited-recall versus full-recall for the optimization of precision-recall curves (ALT: for the 
optimization of parameter values) 
 
We obtained network predictions for 11 tumor types listed in Table 1 by using the 13 network 
inference methods listed in Table 2. We employed the precision – recall curves to first find the 
optimal parameter values for each method, and then to compare the performance of methods using 
their optimal values. The precision-recall (PR) curves were constructed by first ranking an edge list 
based on significance, and then plotting precision and recall on the y and x axis respectively for 
cumulatively increasing numbers of the top (the most significant) edges from the list. The trade-off 
between precision and recall at different cutoffs gives a reliable idea about the performance of a 
method, and this performance can be quantified with the area under the precision-recall curve 
(AUPR). 
 
Table 1: PANCAN11 tumor types, the abbreviations used in the study, and the number of samples in 
each tumor type 

Tumor type Abbreviation Number of samples 
Bladder urothelial carcinoma BLCA 127 
Breast invasive carcinoma BRCA 747 
Colon adenocarcinoma COAD 334 
Glioblastoma multiforme GBM 215 
Head and neck squamous cell carcinoma HNSC 212 
Kidney renal clear cell carcinoma KIRC 454 
Lung adenocarcinoma LUAD 237 
Lung squamous cell carcinoma LUSC 195 
Ovarian serous cystadenocarcinoma OVCA 412 
Rectum adenocarcinoma READ 130 
Uterine corpus endometrioid carcinoma UCEC 404 

Total  3467 
 
The performance comparison for 13 methods was done separately for each tumor type. For a given 
tumor type, our procedure involved two steps. In the first step, we aimed to put all methods on an 
equal footing by finding each method’s optimal parameter values. This was achieved by running each 
method multiple times with different parameter values obtained from a one- or two-dimensional grid, 
computing the AUPRs for the resulting gene lists, and then finding the parameter or parameter 
combination with the highest AUPR. The parameters of each method and the design of the grid 
search are listed in Table S1. In the second step, the highest AUPR values from all methods were 
compared to determine the method with the best performance. This procedure was repeated for each 
one of the 11 tumor types. Therefore the best-performing method may be different for each one of the 
tumor types.  
 
There is, however, a caveat concerning the computation of AUPRs from the entire span of the PR 
curves. We observe in PR curves that (1) there is no significant difference among methods beyond a 
10% recall level, and (2) the precision level of network predictions is very low when recall is 10% or 
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higher, suggesting that network predictions are more likely to be affected by noise. The PR curves for 
BRCA and GBM are shown in Figure 2a as representative examples of these two phenomena. The 
PR curves comparing parameter configurations within each method also exhibited the same pattern 
(data not shown). Therefore, we chose to use AUPR only from the 0-10% recall range (i.e. limited-
recall), and not from the entire recall range (i.e. full-recall) for the comparison of parameter 
configurations or the comparison of methods. As the parameter configuration optimizing AUPR in the 
limited-recall span can be different from that in the full-recall span, some methods were observed to 
have different PR curves for the limited-recall case (Figure 2b). The subsequent analysis is carried 
out with network predictions from the limited-recall case. The optimal parameter values and the 
number of edges in the limited-recall case for each method and tumor type are shown in Table S2 
and Table S3 respectively.  
	  
Table 2: Network inference methods tested in this study (abbreviations in parentheses). Methods can 
be grouped according to the algorithm family or the regularization type. Algorithm families include 
correlation, partial correlation with inverse covariance, partial covariance with regression, and mutual 
information. Regularization types employed by methods can be shrinkage, sparsity, or a combination 
of shrinkage and sparsity as in ELASTICNET. 

Family Method Regularization Running 
time* (sec) 

Correlation 
Pearson correlation (PEARSONCOR) None 0.022 

Spearman correlation (SPEARMANCOR) None 0.053 

Partial correlation 
with inverse 
covariance 

Simple partial correlation 
(SIMPLEPARCOR) None 0.060 

GeneNet shrunken covariance matrix 
(GENENET) Shrinkage 0.184 

Graphical lasso (GLASSO) Sparsity 0.857 

Partial correlation 
with regression 

Partial least squares regression (PLSNET) Shrinkage 109.370 

Ridge regression (RIDGENET) Shrinkage 146.456 

Lasso regression (LASSONET) Sparsity 2.99 

Elastic net regression (ELASTICNET) Sparsity + 
shrinkage 6256.607 

Mutual information 

Algorithm for 
reconstruction of gene 
regulatory networks 
(ARACNE) 

additive 
penalty None 3.966 

multiplicative 
penalty None 3.971 

Context-likelihood of relatedness (CLR) None 3.995 

Network inference with maximum 
relevance / minimum redundancy feature 
selection (MRNET) 

None 4.139 

* Running time is for the optimal-parameter runs at limited recall, averaged over 11 tumor types. 

Performance comparison of network inference methods 
 
After identifying the PR curves to compare the methods, we asked whether any particular method is a 
clear winner by being the best in all of the 11 tumor types. The AUPR values in Figure 3a indicate 
that there is no single method that performs the best for all investigated tumor types. The tumor types 
in this figure are ordered from left to right according to increasing coefficient of variation. The 
differences in the tumor-wise AUPR means and variances indicate that the 11 tumor types are not 
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equally amenable to network inference with RPPA data. These differences could partially be 
explained by the different statistics of predicted networks such as average-node-degree and network 
density, which we found to be negatively correlated with AUPR (Spearman r = –0.626 and –0.453 
respectively) (Text S2, Figure S1).  
 

 
Figure 2: Precision-recall (PR) curves optimized for full versus limited range of recall values. (a) Top 
panel: PR curves for the 13 methods in the BRCA and GBM cohorts. PR curves are constructed by 
cumulatively increasing the number of edges from a ranked edge list. For each method, the relevant 
curve is computed with a choice of parameters that maximize AUPR in the recall range [0,1] (i.e. full-
recall). Bottom panel: A zoomed-in version for recall in [0,0.1] and precision in [0,0.5].  (b) PR curves 
when the parameters are chosen to optimize AUPR specifically in the [0,0.1] recall range (i.e. limited-
recall). We choose the limited-recall case for subsequent analysis because of two reasons. Beyond 
the 10% recall level, (1) the difference among methods become indiscernible, and (2) the precision 
level is very low suggesting network predictions are more likely to be affected by noise. 

Given the absence of a clear winner among the methods, we next asked what the overall best-
performing methods were. To achieve an overall comparison of the methods, we ranked them across 
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all tumor types based on (1) overall AUPR and (2) overall AUPR-rank. For these two criteria, we 
computed respectively the sum of a method’s AUPR values in the investigated tumor types (Figure 
3b, left panel), and the sum of its AUPR ranks in the same tumor types (Figure 3b, right panel). The 
different-colored segments in horizontal bars correspond to tumor types as shown in the legend. The 
numbers next to the horizontal bars indicate the rank of the method for the relevant criterion. The best 
rank of 1 is given to the highest overall AUPR but the lowest overall AUPR-rank because higher 
AUPR values but lower AUPR-ranks indicate better performance. 
 

 
Figure 3: Performance comparison and unsupervised clustering for 13 network inference methods. 
(a) AUPR for each method in individual tumor types. Tumors are ordered according to increasing 
coefficient of variation. (b) Ranking of methods according to (left panel) overall AUPR and (right 
panel) overall AUPR-rank in 11 tumor types. (c) Unsupervised hierarchical clustering of the 
Spearman correlations between methods. (d) Principal component analysis of edge weights from the 
methods by stacking edge lists from the investigated tumor types.   

We observe in Figure 3b that the overall AUPR values (left) did not show as wide a variability across 
methods as the overall AUPR-ranks (right). This might be due to the overfitting of the methods to the 
benchmark network as each method was run with parameters that optimize performance (AUPR) 
against the same benchmark. The small differences in overall AUPR values suggest that these 
methods may have a general capacity to achieve similar performance in other contexts as long as 
their respective parameter space is sufficiently explored. However, such similarity in performance 
does not preclude the possibility that some methods consistently outperform others even if by small 
margins. To investigate this possibility, we ordered the methods from top to bottom according to 
increasing overall AUPR-rank. This choice in the ordering shows that RIDGENET is the best-
performing method overall. Broken down by tumor type, RIDGENET is the best for BRCA, OV, 
UCEC, BLCA and KIRC; but is not as good as ARACNE variants for HNSC, LUSC, LUAD, GBM, 
COAD, and READ. On the poor performance side, SIMPLEPARCOR has the worst rank according to 
both the overall AUPR and the overall AUPR-rank (Figure 3b).  
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b.  Ranking of methods according to overall AUPR and overall AUPR-rank         

c.  Unsupervised clustering of Spearman correlations between methods    
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a.  AUPR values of methods in individual tumor types 
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d.  Principal component analysis of edge weights from methods      
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Network predictions cluster methods primarily based on algorithm family  
 
We next investigated the level of similarity among the network predictions of all 13 methods. One 
question here is whether the network predictions, as given by the inferred edge weights, would cluster 
the methods according to shared properties such as the regularization technique or the algorithm 
family listed in Table 2. To this end, we created one vector for each method by stacking the relevant 
edge weights from all 11 tumor types. We then computed the Spearman correlation between each 
pair of the methods, and also performed dimensionality reduction on the same vectors using principal 
component analysis (PCA). Unsupervised clustering on the Spearman correlation matrix 
(hieararchical clustering with complete linkage and Euclidean distance) and PCA on the edge weight 
matrix reveal concordant results in terms of the grouping of the methods (Figure 3c-3d). We observe 
three major groups of methods in Figure 3c: (1) Mutual-information-based methods ARACNE 
(variants), CLR, MRNET, (2) correlation-based methods SPEARMANCOR and PEARSONCOR, and 
(3) partial-correlation-based methods. SIMPLEPARCOR from the third group can be considered an 
outlier compared with the other partial-correlation methods. Therefore, if we remove it as a separate 
group, the remaining partial-correlation methods RIDGENET, LASSONET, ELASTICNET, PLSNET, 
GLASSO, GENENET can also be categorized as ‘regularized methods’.  
 
In the PCA plots, the 1st princial component (PC) primarily separates correlation-based methods 
SPEARMANCOR and PEARSONCOR from the others, accounting for 53% of the variance (Figure 
3d). Correlation methods are fundamentally different from other investigated methods because they 
do not attempt to eliminate transitive edges in any way. This defect could predict poor performance 
for both SPEARMANCOR and PEARSONCOR. However, the fact that the rank-based 
SPEARMANCOR achieves a superior overall performance compared to the value-based 
PEARSONCOR (Figure 3b) suggests that outliers in the data can bias the Pearson correlation 
strongly enough to substantially reduce the quality of the predicted network.  
 
The 2nd PC (23.4% variance) separates SIMPLEPARCOR, a method that is based on Gaussian 
graphical models and that employs the sub-optimal pseudo-inverse technique when the covariance 
matrix is singular. Even when the covariance matrix is non-singular, the inversion of the covariance 
matrix without any regularization is known to introduce defects into the inference procedure unless 
the number of samples is at least twice the number of features 16. As the cohort sizes in this study are 
less than twice the number of proteins (2*187=374) for 7 of the 11 tumor types (Table 1), it is not 
surprising that SIMPLEPARCOR has poor performance in these tumor types, hence the poorest 
overall performance by a margin (Figure 3b). Indeed, we can observe that the tumor types where 
SIMPLEPARCOR achieves relatively better ranks are BRCA, OVCA, KIRC, and UCEC, the 4 tumor 
types that have cohort size greater than 374 (Figure 3a-3b and Table 1). 
 
The 3rd PC (8.1 % variance) achieves the separation of mutual-information methods from regularized 
methods. Mutual-information-based methods have the capability to model nonlinear relationships, but 
are not able to infer the direction of the relationship. These two fundamental differences may account 
for the clear separation of these methods from the others. Principal components can achieve a 
separation of regularization-based methods only at the 5th and 6th PC, which account for as little as 
4% and 1.4% of the variance respectively (Figure 3d). 
 
TOP6: a group of high-performers instead of a “best” method 
 
The modest differences between overall AUPR values in the left panel of Figure 3b, and also the lack 
of a consistently best-performing method in all tumor types are reasons to refrain from recommending 
one method as the best off-the-shelf method for PPI inference. Therefore, we propose a set of high-
performers by taking into consideration both the overall AUPR and the overall AUPR-rank criteria. 
The methods that rank in the top six according to both of these criteria are the same six methods: 



RIDGENET, ARACNE-M, ARACNE-A, LASSONET, CLR, and SPEARMANCOR (Figure 3b). This 
set of high-performers, referred to as TOP6 from here on, includes representative methods from all 
algorithm families in Table 2 except for inverse-covariance-based partial-correlation methods. This 
may be indicative of inverse covariance being a poor framework to model PPIs in cancer if especially 
the cohort size is not several times as large as the number of proteins. In conrast, linear measures 
such as correlation and (ℓ𝓁!- or ℓ𝓁!- regularized) partial-correlation, and also nonlinear measures such 
as mutual-information are all represented in the set of high-performers.  
 
Determining the “consensus” edges for the unsupervised clustering of tumor types 
 
We next asked how the network predictions from the TOP6 methods cluster the 11 tumor types. 
However, similar to the reduction from 13 methods to the TOP6 methods, it was necessary to apply a 
significance threshold for edges before performing the clustering. P-values were not a viable option 
as significance scores, because several methods did not return p-values. Even if p-values were 
obtained from all methods, it would not be possible to combine the p-values in this study in a 
statistically sound way because all methods used the same data, hence violating the independence 
requirement. Therefore, we resorted to an alternative method to obtain consensus significance 
scores for edges. 
 
We computed, for a given tumor type, (1) consensus edge ranks by taking the average of ranks from 
the TOP6 methods, and (2) consensus edge weights by taking the average of weights again from the 
TOP6 methods. The consensus ranks formed the basis for our significance levels, while the 
consensus weights were used in the clustering steps. Comparing consensus-edge-ranks obtained 
from the TOP6 methods with those obtained from all 13 methods (ALL13) showed that the TOP6 
methods yielded slightly higher AUPR than ALL13 against the PC gold-standard (Figure S3b, Text 
S3). This finding confirmed the use of TOP6 as a superior choice over ALL13. 
 
The number of edges to use for the unsupervised clustering of tumor types was determined in the 
following way. For a certain threshold, we extracted all edges from a given tumor type that have a 
consensus-edge-rank smaller (more significant) than the threshold level. We then formed a matrix of 
edges by tumor types by combining extracted edges from all 11 tumor types. Next, we computed the 
principal components (PCs) constructed as a linear combination of the tumor-type-vectors, and 
inspected the percentage of variance explained by the first three PCs. By increasing the threshold 
from 1 to 2000, we observed that using a consensus-rank threshold of 425 allowed an optimal 
separation of tumor types along the first three PCs (Figure S4, Text S4). 
 
Unsupervised clustering of tumor types by edge weights recapitulate recently published gene- 
and protein-expression-based groups 
 
Using the consensus-rank threshold of 425, we investigated the natural groupings in the set of 11 
tumor types when each tumor type was represented with the consensus-edge-weights obtained from 
the TOP6 methods. The number of edges in each tumor type that pass the consensus-rank threshold 
is shown in Table S4. The union set of these significant edges from the tested tumor types has 1008 
edges. We refer to this union set as the discovery set, and use it to perform principal component 
(PC) analysis and hierarchical clustering of tumor types.  
 
We see in the PC analysis that PC1 and PC2 jointly separate the 11 tumor types into three groups, 
and also that PC3 further breaks down one group into two to result in a total of four groups: 1) 
COAD, READ; 2) LUSC, LUAD, HNSC; 3) GBM, KIRC; and 4) OV, BRCA, BLCA, and UCEC (Figure 
4a). These results are concordant with the clusters from hierarchical clustering (Figure 4b 
dendrogram) and also with the previously defined Pan-Cancer groups in the literature as we 
elaborate below.  



	  
Figure 4: Principal component analysis and unsupervised clustering of 11 tumor types using 
consensus-edge-weights from the TOP6 methods. (a) Four major groups of tumor types can be 
observed in the PC1 vs. PC2 (left) and PC2 vs. PC3 (right) plots: 1) COAD, READ; 2) LUAD, LUSC, 
HNSC; 3) GBM, KIRC; 4) OV, BRCA, UCEC, BLCA. (b) Hierarchical clustering (Ward linkage and 
Euclidean distance) on consensus-edge-weights places tumor types into the same four groups on the 
dendrogram (left). The heat-map on the right is constructed from the percentages of overlapping 
edges between tumor types. The order of tumor types in the heat-map is taken from the dendrogram 
on the left. 

As for the first group, COAD and READ have previously been shown to cluster together in the Pan-
Cancer subtypes defined both by RNA expression (k=13)27 and by protein expression (k=8)4. These 
tumors have also been shown to have common DNA-based drivers (mutations and somatic copy 
number alterations) , and hence been treated as one disease 2, 3, 28. Our finding that COAD and READ 
have the highest percentage of shared PPIs in this study (Figure 4b heat-map) is also in line with 
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a.   Principal component analysis of 11 tumor types using consensus-edge-weights 

PC1 vs. PC2 PC2 vs. PC3 

Unsupervised clustering of tumor types using consensus-edge-weights and 
the similarity matrix of overlapping-edge-percentages with the same tumor-
type order 

b.   



these observations. Note that the order of tumor types in the heat-map is taken from the dendrogram 
on the left, and that each cell represents the fraction of the intersection set over the union set of 
edges from two tumor types. 
 
The tumors in the second group (LUSC, LUAD, and HNSC) have also been previously assigned to a 
single Pan-Cancer subtype in terms of protein expression4. However, RNA expression and somatic 
copy-number alteration (SCNA) data types have divided these tumor types into two groups: (1) a 
squamous-like subtype including HNSC and LUSC, and (2) a separate LUAD-enriched group 3, 27. In 
contrast to this separation where cell histology plays a more important role, both protein expression 
levels and PPI weights primarily separate these three tumor types based on tissue of origin: (1) Lung-
derived tumors LUAD and LUSC,  and (2) a separate HNSC group (Figure 4b dendrogram and 4). 
	  
Tumors in the third and fourth groups (GBM, KIRC, OV, UCEC, BRCA, and BLCA) can be separated 
along a continuum in the PC3 dimension (Figure 4a). However, we can consider GBM and KIRC as a 
separate group as these two tumor types separate from the other four in the unsupervised clustering 
dendrogram in Figure 4b. GBM and KIRC also cluster most closely among this set of 11 tumor types 
according to somatic copy-number alterations and protein expression levels 3, 4. However, KIRC also 
shows an outlier behavior for PPI networks in that it exhibits the lowest fraction of shared PPIs with 
other tumor types (Figure 4b). GBM, on the other hand, has an outlier property by being on one 
extreme of the separation along the PC3 dimension. This may reflect the fact that GBM samples arise 
from glial cells in the brain, a histological origin that shows marked differences from epithelial cells. 
Indeed, GBM was previously shown to have a homogeneous cluster comprised of only GBM samples 
in terms of both RNA and protein expression levels	  4, 27. 
 
The fourth group contains OV, UCEC, BRCA, and BLCA; the first three of which can be categorized 
as women’s cancers. The proximity of women’s cancers in clustering results may point to female 
hormones, such as estrogen and progesterone, causing a similar profile of PPI weights. BLCA is 
most similar to women’s cancers (Figure 4b), but it also is on one extreme of the separation along 
the PC3 dimension. This is concordant with the previously discovered Pan-Cancer subtypes because 
BLCA was shown to have the characteristic property of being one of the most diverse tumor types in 
the TCGA Pan-Cancer dataset. It had samples in 7 major RNA expression subtypes, and histologies 
in squamous, adenocarcinoma, and other variants in bladder carcinoma 27. Next, we performed 
unsupervised clustering on the 1008 edges in the discovery set to investigate edges that are specific 
for a certain tumor type and those that are shared between two or more tumor types. 
 
Unsupervised clustering of edges reveals two modules of positive interactions highly 
recurrent across the tested tumor types 
 
An unsupervised inspection of the 1008 PPIs in the discovery set shows that these edges form three 
main groups: (1) a large group of positive edges with low or no recurrence in tumor types (793 
edges), (2) a small group of positive edges with high recurrence (123 edges), and (3) a small group of 
negative edges with low or no recurrence (92 edges) (Figure 5). In this set of most significant edges, 
both the number and the overall weight of negative edges are smaller with respect to positive edges. 
This may indicate either the lower prevalence of mutual exclusivity relationships for in vivo protein-
protein interactions, or merely the difficulty of discovering negative PPIs from RPPA data. 
 
Next, we visualize the highly recurrent positive edges (group 2) on a network layout to investigate 
their biological significance (Figure 6). It is remarkable that the network of positive-higly-recurrent 
interactions can be separated into two distinct modules: one including signaling events (interactions 
that involve at least one phosphoprotein) and the other including only non-signaling interactions 
without any phosphoproteins. The existence of an exclusively signaling module in the set of highly 
recurrent positive interactions underlines the pan-cancer importance of signal transduction 
events, particularly the RAS/MAPK pathway and the PI3K/AKT/mTOR pathway (magenta and red 



nodes in Figure 6 respectively). The interaction partners for the group 1 and group 3 edges are given 
in Supplementary File XX. 
 

	  
Figure 5: Hierarchical clustering of the 1008 edges in the discovery set (Ward linkage and Euclidean 
distance). Consensus-edge-weights are plotted in the heat-map with blue denoting negative, and red 
denoting positive edges. Recurrence of edges in tumor types ranges from 1 to 11, and is denoted 
with shades of green. Three edge groups can be observed on the dendrogram: (1) positive edges 
with low or no recurrence in tumor types, (2) positive edges with high recurrence, and (3) negative 
edges with low or no recurrence. 

The information flow between these two communities can go through one of two major interactions; 
one between total mTOR and phospho-mTOR, and another one between phospho-NFkB and eIF4G. 
The interaction between HER2 and phospho-HER2 cannot be used for information flow because it 
does not connect the two main bodies of the signaling and non-signaling interactions. Moreover, the 
link between phospho-HER2 and phospho-EGFR is most likely an artifact due to antibody specificity 
problems. We also observe in Figure 6 that the strongest interactions inferred from the PANCAN11 
RPPA data are those between two different phosphorylation states, or between the phosphorylated 
and unphosphorylated states, of the same protein. The examples to the former are (1) phospho-S6, 
(2) phospho-Akt, and (3) phospho-GSK3 interactions. The example to the latter is the interaction 
between ACC1 and phospho-ACC. 
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Figure 6: A network view of the positive highly recurrent edges. Signaling interactions (interactions 
involving at least one phosphoprotein) and non-signaling interactions (interactions that do not involve 
any phosphoproteins) can be placed in two separate modules that are connected with only a few 
interactions involving the mTOR, HER2, and NFκB signaling activities. Node size denotes degree 
(number of edges incident on the node), and  node color denotes biological function as shown in the 
legend. The edge widths are drawn proportionally to the consensus edge weights.  

Over-representation of discovery set edges in REACTOME & KEGG gene lists as a means of 
interpretation 
 
The network visualization of the discovery set PPIs presents an opportunity to discover biologically 
interesting cancer-related interactions. However, when the number of edges is too large such as the 
group 1 low-or-no-recurrence positive edges, the high inter-connectedness of proteins makes it hard 
to interpret network results. Thus, in order to to facilitate the interpretation of the discovery set edges, 
we sought to identify the REACTOME21 and KEGG23 gene lists in which these edges are over-
represented via a PPI-enrichment analysis. 
 
Gene/protein set enrichment tools exist in abundance in the literature, however are not applicable for 
PPI enrichment because PPIs have to be compared with an interaction knowledgebase such as 
Pathway Commons. Therefore, we designed a custom PPI enrichment procedure that achieves the 
translation from a PPI-by-tumor-type matrix (such as the discovery set) to a gene-list-by-tumor-type 
matrix via an intermediary PPI-by-gene-list matrix (Online Methods and Figure S5). 
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Figure 7: PPI enrichment in REACTOME and KEGG gene lists recapitulates the pan-cancer 
importance of signal transduction events, and further underlines the centrality of innate and adaptive 
immunity related signaling in tumor biology. 
 
The PPI enrichment analysis shows both gene lists that are recurrent in multiple tumor types and also 
gene lists that are specific for one or two tumor types. Similar to the group 2 (highly recurrent positive) 
edges that showed an important signaling component in Figure 6, we observe in Figure 7 that gene 
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lists with the strongest enrichment results primarily contain signal transduction events such as 
receptor tyrosine kinase signaling (EGFR, ERBB2, ERBB4, FGFR, KIT, VEGFR, PDGFR), 
RAS/MAPK signaling, PI3K/AKT/mTOR, and HIF signaling. The other major group of gene lists with 
the strongest enrichment concerns innate and adaptive immunity related interactions. Some 
examples are signaling interactions involving DAP12, B-cell receptor, T-cell receptor, Toll-like 
receptor, and TNF. Several gene lists such as Hippo signaling and Wnt signaling had strong 
enrichment results for only a subset of the tumor types. 
 
DISCUSSION 
 
Discovering protein-protein interactions in cancerous cells is an important but challenging goal. In this 
study, we computationally inferred proteomic networks in 11 human cancers using 13 different 
methods, and presented a performance comparison of the methods accepting a simplified reference 
network from the Pathway Commons (PC) information resource, which is based on experiments and 
publication digests, as the standard of truth. PC is a collection of curated interactions from many 
different normal and disease conditions (a formal and computable representation of available 
pathways and interactions). We acknowledge that a complete standard of truth for pathways is not 
currently available and that our methodology is therefore subject to certain caveats as discussed 
below. Despite these caveats, computational inference of protein-protein interaction networks from 
measurements of protein levels across a set of conditions are attractive in that they can reduce the 
hypothesis space of interactions and inform researchers on the potentially active pathways in the 
experimental model. 
 
Our comparison of the performance of network inference methods indicates that no single method 
has the best performance in all tumor types, but a group of six methods, including diverse techniques 
such as correlation, mutual information, and regression, consistently rank highly among the tested 
methods. These six methods consist of RIDGENET and LASSONET, ridge and lasso regression 
based partial correlation methods employing an ℓ𝓁!  and ℓ𝓁!  penalty respectively; ARACNE-A, 
ARACNE-M, and CLR, mutual-information methods that differ based on their penalty type or the 
choice of standardization for mutual information; and SPEARMAN CORRELATION, which assesses 
the strength of the linear relationship between the ranks of the values in two same-length vectors. 
From a tumor type perspective, we find that not all tumor types are equally amenable to network 
discovery with RPPA data. Five tumor types (KIRC, OV, COAD, READ, and BLCA) consistently had 
lower-AUPR predictions by all network inference methods. 
 
A consensus network from the group of high-performing methods reveals that the strongest protein-
protein interactions that are shared across the tested tumor types are receptor tyrosine kinase (RTK)-
related and immunity-related signaling pathways. Other strong interactions that are shared across 
most tumor types include the RAS/MAPK, PI3K/AKT/mTOR, HIF signaling pathways as well as 
immunity-related pathways such as B-cell receptor, T-cell receptor, Toll-like receptor, and TNF 
signaling. 
 
The caveats in our workflow as shown in Figure 1 concern both the computational inference and the 
pathway knowledgebase arms of the analysis. In the computational inference arm (Steps 1 and 2), 
the caveats include questions around (1) the quality of RPPA experiments and whether the signal-to-
noise ratio in RPPA experiments is high enough to allow the inference of direct interactions, and (2) 
the reliability of results from computational network inference methods (Text S1). In the pathway 
knowledgebase arm (Steps 3-5), the fidelity of pathway models in knowledgebases is limited due to 
factors including (1) the quality of wet-lab experiments for PPIs such as yeast-2-hybrid 29, (2) missing 
or inaccurate information in the database due to poor curation, (3) the lack of context information for 
PPIs, such as cell or tissue type or physiological conditions, and (4) the ascertainment bias in the 
knowledgebase (primarily incomplete coverage) as discussed in the Introduction. More generally, 
pathways in knowledgebases such as Pathway Commons are only model descriptions of reality 



typically summarizing a set of experiments and do not represent an absolutely ‘true’ (and certainly not 
complete) set of interactions. 
 
In a recent multi-method comparison study for gene network inference, regression-based methods 
were represented mostly by modifications of the ℓ𝓁!-penalized lasso algorithm; however methods 
involving an ℓ𝓁! penalty, such as ridge regression or elastic net, were not included 30. Moreover, the 
ℓ𝓁!-penalized methods did not achieve the best-overall performance in gene network inference. We 
find in this study that ℓ𝓁!-penalized methods such as ridge regression can outperform the lasso in the 
inference of proteomic networks. Even though the concurrent execution of feature selection and 
model-fitting may appear to be an attractive property for lasso-regression, we recommend performing 
an unbiased test for both ℓ𝓁!and ℓ𝓁!-penalized models in the exploratory phase of a study. It is not 
guaranteed that the variables selected by the ℓ𝓁! penalty will be the most biologically important ones in 
the system.  
 
In future work, it will be important to assess the predictive power of the inferred PPI networks. For 
example, it would be useful to evaluate these networks in terms of how much they assist in the 
understanding of oncogenesis, response to therapy, and design of combination therapies that deal 
with feedback loops. It is also desirable to incorporate time-dependent readouts from perturbation 
experiments to be able to build causal models and enhance the predictive power of proteomic 
networks. An obstacle against building causal models, such as Bayesian networks, with the 
PANCAN11 RPPA data, was the relatively large size of the network (187 nodes) compared with the 
number of available samples in individual tumor types (between 127 and 747). Probabilistic models 
such as Bayesian networks require at least an order of magnitude larger number of samples for a 
sound estimation of model parameters.  
 
The significance of this work extends beyond cancer. Discovering direct, potentially causal 
interactions between proteins is an opportunity in all areas of molecular biology where proteins are 
measured in different conditions, and where correlations are informative. The methodology presented 
here can easily be adopted to study interactions in different molecular biology contexts. 
 
 
ONLINE METHODS 
 
Dataset 
The pan-cancer reverse phase protein array (RPPA) dataset was downloaded from The Cancer 
Proteome Atlas5 on April 12, 2013. This dataset is denoted as PanCan11 and contains protein 
expression data for 187 proteins and 3467 tumor samples. The 11 tumor types represented in this 
dataset are bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon 
adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma 
(HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), ovarian serous cystadenocarcinoma (OVCA), rectum adenocarcinoma (READ), 
and uterine corpus endometrioid carcinoma (UCEC). 
 
PanCan11 patient samples were profiled with RPPA in different batches, and normalized with 
replicate-based normalization (RBN). RBN uses replicate samples that are common between batches 
to adjust antibody means and standard deviations so that the means and standard deviations of the 
replicates become the same across batches.  
 
Pathway Commons query with PERA 
Pathway Commons (PC) stores pathway information in BioPAX22 models that contain formal 
computable representations of diverse events such as biochemical reactions, complex assembly, 
transport, catalysis, and physical interactions. We queried PC with the "prior extraction and reduction 
algorithm" (PERA)26 for the proteins and phosphoproteins in the PANCAN11 RPPA dataset.  



PERA is a software tool and a protocol that, given a set of observable (phospho- and/or total) 
proteins, extracts the direct and indirect relationships between these observables from BioPAX 
formatted pathway models26. PERA accepts a list of (phospho)proteins identified by their HGNC 
symbols, phosphorylation sites and their molecular status (active, inactive or concentration/total 
protein) as input and based on the pathway information provided by the Pathway Commons 
information resource20, it produces a binary and directed network. The biggest advantage of PERA 
over other similar tools, such as STRING31 or GeneMania32, is that it considers not only the 
name/symbol of a protein but also its phosphorylation states – enabling finer mapping of entities and 
pathways. 
 
Implementing network inference methods in R 
 
The analysis was performed using the R language33. The R functions used to implement the network 
inference methods are as follows: The cor function in the stats34 package for PEARSONCOR and 
SPEARMANCOR; the ggm.estimate.pcor and cor2pcor functions in the GeneNet35 package for 
GENENET and SIMPLEPARCOR; the ridge.net, pls.net, and adalasso.net functions in 
the parcor36 package for RIDGENET, PLSNET, and LASSONET; the glasso function in the 
glasso37 package for GLASSO; the aracne.a, aracne.m, clr, and mrnet functions in the 
parmigene package38 for ARACNE-A, ARACNE-M, CLR and MRNET. The ELASTICNET method 
was implemented as a modification of the adalasso.net function in the parcor package, and is 
available upon request. Mathematical descriptions of the algorithms used are provided in Text S6. 
 
Evaluating performance of network inference methods 
 
As all of the algorithms we studied in this work provided undirected network predictions, we converted 
the PERA output to undirected edges to arrive at the benchmark edge list (‘benchmark network’) used 
in this study. We then constructed a series of precision-recall (PR) curves for each algorithm 
interrogating their performance with a range of values for their respective parameters (Table S1). 
Precision, is the fraction of the number of correctly predicted edges (predicted edges that can be 
found in PC) to the number of all predicted edges. Recall, on the other hand, is the fraction of 
correctly predicted edges to the number of all edges in PC.  
 
The PR curve for a given parameter configuration was constructed by taking the edge list ranked from 
the most significant to the least, and then iterating over the edges so that we obtained, at each 
iteration, a cumulative edge set that included all the edges seen up to and including that iteration. For 
each iteration, we computed the precision-recall value pair for the edge set and placed this value pair 
on the PR plot. We plotted a separate PR curve for each parameter configuration for the nine 
methods that required specification of parameter values (all methods except PEARSONCOR, 
SPEARMANCOR, SIMPLEPARCOR, and GENENET). The PR curve that had the greatest area 
under the curve (AUPR) between the [0,0.1] recall range (i.e. limited-recall) was identified as the 
optimal PR curve for that particular method. The optimal parameter values for the limited-recall case 
are shown in Table S2. For methods that did not have user-specified parameters, there was only one 
PR curve and that was adopted as the optimal PR curve. In the subsequent step, the AUPRs from  
the optimal PR curves were compared to be able to rank the methods and evaluate their performance 
relative to the benchmark network. 
 
The steps involved in computational network prediction and performance evaluation are discussed in 
detail in Text S5. 
 
Rationale to prefer high precision over high recall 
 
We find that the inferred interactions in various tumor types are a relatively small subset of the 
benchmark network derived from PC (i.e. low recall). Low levels of recall are readily acceptable for 



satisfactory performance because it is expected that interactions inferred from a single disease 
(cancer) and a single cancer type will not retrieve all of the interactions in the PC benchmark. 
However, it is desirable that, when an algorithm calls an interaction, there is a high probability that 
this inference is correct, i.e. high levels of precision are essential for nominating a network inference 
method as competitive. 
 
PPI enrichment in REACTOME and KEGG gene lists 
 
The 187 antibodies in our RPPA dataset correspond to 151 unique genes. We outline the steps 
involved in PPI enrichment analysis here and also in Figure S5. (1) We provided this gene list as 
input to ClueGO39 to inspect enrichment of the genes in REACTOME21 and KEGG23 gene lists . The 
output gene lists function as a universal set of all possible gene lists in which PPIs of the same set of 
151 genes can be enriched in. We obtained a binary matrix of genes versus gene lists from this step. 
 
Next, (2) a filtering step was performed separately for each tumor type to convert the “gene by 
genelist” matrix to a PPI-by-gene list matrix. A PPI in the discovery set was declared to be enriched in 
a gene list if both interaction partners (genes as opposed to proteins) were found to be enriched in 
that gene list in the gene-by-gene list matrix. (3) The binary “PPI by gene list” matrix formed this way 
was then adjusted for the strength and sign of the PPIs to allow for a weighted voting scheme. (4) 
This weighted matrix then allowed the computation of tumor-specific gene list enrichment scores by 
simply taking the average of weights for each gene list across the interactions. (5) The gene list 
enrichment scores for each tumor were then combined in a separate matrix to form the “gene list by 
tumor type” matrix. To achieve better visualization in hierarchical clustering, we filter out the gene lists 
in this matrix that have weights less than 0.01 for all tumor types. 
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