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Abstract

Most proteins show changes in level across growth conditions. Many of
these changes seem to be coordinated with the specific growth rate rather
than the growth environment or the protein function. Although cellular
growth rates, gene expression levels and gene regulation have been at the
center of biological research for decades, there are only a few models giving
a base line prediction of the dependence of the proteome fraction occupied
by a gene with the specific growth rate.

‘We present a simple model that predicts a widely coordinated increase
in the fraction of many proteins out of the proteome, proportionally with
the growth rate. The model reveals how passive redistribution of re-
sources, due to active regulation of only a few proteins, can have proteome
wide effects that are quantitatively predictable. Our model provides a po-
tential explanation for why and how such a coordinated response of a large
fraction of the proteome to the specific growth rate arises under different
environmental conditions. The simplicity of our model can also be useful
by serving as a baseline null hypothesis in the search for active regula-
tion. We exemplify the usage of the model by analyzing the relationship
between growth rate and proteome composition for the model microor-
ganism FE.coli as reflected in two recent proteomics data sets spanning
various growth conditions. We find that the fraction out of the proteome
of a large number of proteins, and from different cellular processes, in-
creases proportionally with the growth rate. Notably, ribosomal proteins,
which have been previously reported to increase in fraction with growth
rate, are only a small part of this group of proteins. We suggest that, al-
though the fractions of many proteins change with the growth rate, such
changes could be part of a global effect, not requiring specific cellular
control mechanisms.
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1 Introduction

Many aspects of the physiology of microorganisms change as a function of the
growth environment they face. A fundamental system biology challenge is to
predict and understand such changes, specifically, modifications in gene expres-
sion as a function of the growth environment.

Early on it was found that the expression of some genes is coordinated with
growth rate, rather than with the specific environment. Classic experiments
in bacteria have shown that ribosome concentration increases in proportion to
the specific growth rate [34]. The observed increase in concentration has been
interpreted as an increased need for ribosomes at faster growth rates [25, 9, 43,
23]. The search for underlying mechanisms in E.coli yielded several candidates
such as the pools of ppGpp and iNTP [24, 2], and the tRNA pools through the
stringent response [7, 3]. For a more thorough review see [26].

In the last two decades, with the ability to measure genome-wide expression
levels, it was found that changes in gene expression as a function of growth
rate are not limited to ribosomal genes. In FE.coli, the expression of catabolic
and anabolic genes is coordinated with growth rate, and suggested to be me-
diated by cAMP [32, 42, 30]. In S.cerevisiae, it was shown that most of the
genome changes its expression levels in response to environmental conditions in
a manner strongly correlated with growth rate [16, 4, 6, 11]. Studies examining
the interplay between global and specific modes of regulation, suggested that
global factors play a major role in determining the expression levels of genes
[10, 19, 18, 37, 1, 16, 11, 40, 12]. In E.coli, this was mechanistically attributed
to changes in the pool of RNA polymerase core and sigma factors [17]. In
S.cerevisiae, it was suggested that differences in histone modifications around
the replication origins [31] or translation rates [4] across conditions may un-
derlie the same phenomenon. Important advancements in F.coli were achieved
by analyzing measurements of fluorescent reporters through a simplified model
of gene expression built upon the empirical scaling with growth rate of differ-
ent cell parameters (such as gene dosage, transcription rate and cell size)[19].
Taken together, these studies suggest that the expression of all genes changes
with growth rate, with different factors and architectures of regulatory networks
yielding differences in the direction and magnitude of these changes [19, 18].

Despite these advancements, many gaps remain in our understanding of the
connection between gene expression and growth rate, primarily regarding the
underlying mechanisms. Are there unique factors controlling specific groups of
genes, as is suggested by [42, 30, 12, 2] and others, or is there a more global
phenomenon shared across most genes in the genome? What fraction of the vari-
ability observed in gene expression patterns across different growth conditions
results from active adaptation to the specific condition? To what extent are
large clusters of genes regulated by "master regulator” factors such as cAMP,
and how much by global, gene and condition-independent, response? Genome-
wide proteomic data sets, which take a census of the proteome composition at
different growth rates, offer potential insights into these questions and can serve
as a basis to explore and compare different models of regulation [40, 35, 12, 30].
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In this work we present a parsimonious model that quantitatively predicts
the relationship between protein abundance and specific growth rate in the
absence of gene-specific changes in regulation. Our model provides a base-
line for the behavior of endogenous genes in conditions between which they
are not differentially regulated, without the need for condition-specific parame-
ters. The model predicts an increase in protein expression with specific growth
rate as an emerging property that is the result of passive redistribution of re-
sources, without need for specific regulation mechanisms. On top of this baseline
model, different regulatory aspects can be added. We tested the model against
two recently published proteomic data sets of E.coli spanning different growth
conditions[30, 35]. We find a coordinated, positive correlation between the spe-
cific growth rate and the fraction of many proteins, from diverse functional
groups, out of the proteome. Although this response accounts for a relatively
small part of the total variability of the proteome it is highly relevant for under-
standing proteome wide studies, as it describes the behavior of over 50% of the
proteome genes. The well-studied ribosomal proteins are found to be a small
subset of this group of proteins that increase their fraction with the specific
growth rate. Our analysis suggests that, even if changes in the proteome com-
position are complex, for a large number of proteins and under many conditions
such changes take the form of a linear, coordinated, increase with growth rate.
An increase that can result from cellular resources being freed by down-regulated
proteins. The well studied scaling of ribosome concentration with growth rate
can be considered one manifestation of this more general phenomena.

2 Results

2.1 Simple considerations predict passively driven increase
in the fraction of proteins as a function of the specific
growth rate

What is the simplest way to model the differences in the proteome composi-
tion of two populations of cells, one growing in a permissive environment, and
the other facing a more challenging growth condition? In an attempt to parsi-
moniously analyze such differences, we have constructed a minimalistic model
that predicts the behavior of non-differentially regulated genes across different
growth conditions. Before presenting the model mathematically, we give a brief
intuitive depiction.

The model assumes that under a favorable growth condition, the cell actively
down-regulates some proteins that are only needed in harsher conditions, as
illustrated in Figure 1. The down regulation of the lac operon in the presence
of glucose is a prominent example for this phenomenon. As a result of only that
specific change, the fraction of all other proteins out of the proteome is increased
compared to the harsher (e.g. growth on lactose) condition. In our baseline
model, all the other proteins increase their levels and are expected to show the
same relative ratios between each other in all conditions. Specifically, the levels
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of the proteins forming the bio-synthetic machinery increase, increasing the ratio
of the bio-synthetic machinery to the proteome. The growth rate is dependent
on the amount of protein bio-synthesis a cell performs. The increase in ratio of
bio-synthetic machinery to proteome thus results in an expected increase in the
growth rate, as depicted in Figure 1. In our example of the lac operon, in the
presence of glucose, the down regulation of lactose metabolism genes leads to
faster growth as more bio-synthetic genes are expressed instead.

restrictive environment

few bio-synthetic
proteins

other proteins

many condition-
dependent proteins

permissive environment

l few condition- many bio-synthetic
dependent proteins proteins
. s,
~CD « O

other proteins

Figure 1: A minimalistic model predicts that low expression of condition-
dependent genes under permissive growth environment, compared with a re-
strictive environment, implies larger fraction of all other proteins out of the
proteome. With this, the ratio of bio-synthesis genes to the rest of the pro-
teome is higher in permissive environments, resulting in faster growth.

2.1.1 The expression level of a protein can be decomposed into gene
specific control and global expression machinery availability

The composition of the proteome can in principle be determined by a large num-
ber of parameters. For example, given that an organism expresses 1000 genes
across 10 different growth conditions, one could imagine that controlling the
expression pattern of all genes across all conditions will require 10,000 param-
eters (setting the level of every gene in every condition). Our model proposes
an underlying architecture that drastically reduces this amount of parameters,
implying that cells control most of the composition of their proteome through
fewer degrees of freedom than might be naively expected.

The model separately considers the resulting fraction of every protein out
of the proteome as the product of two control mechanisms: (A) Protein/gene
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specific controls which only affect the individual protein under a given condition.
These include the gene associated promoter affinity, 5’-UTRs, ribosomal binding
site sequence, as well as the presence of specific transcription/translation factors
that react with the relevant gene. We note that while a given transcription factor
may affect many genes, the presence or absence of its relevant binding sequence
is gene specific, making this control mechanism gene specific in the context of our
analysis. While some of these controls (such as the ribosomal binding sites) are
static, and therefore condition independent, others are dynamic and will differ
across different environmental conditions (such as transcription factors state, for
genes that are affected by them). (B) Global expression control based on the
availability of bio-synthetic resources, including RNA polymerase, co-factors,
ribosomes, amino-acids etc. All of these factors can potentially differ across
different environmental conditions and no gene can avoid the consequences of
changes in them.

In the model, every gene is given an ’affinity-for-expression’ (or ’intrinsic-
affinity’) score that encapsulates its tendency to attract the bio-synthetic ma-
chinery, as was first suggested in [21]. This gene-specific value can in principle
change across conditions but a key feature is that the gene intrinsic affinity
tends to have the same value across many conditions. Often two values are
enough across all conditions, an ”off” and "on” value. We denote the affinity of
gene i under growth condition ¢ by w;(c). To determine the resulting fraction
of every protein, our model assumes that the bio-synthetic resources are dis-
tributed among the genes according to those affinities, as is stated in Equation
1. Intuitively, one can think of a competition between the genes and transcripts
over the bio-synthetic resources, where each gene/transcript attracts resources
according to its intrinsic affinity.

The notion of intrinsic affinities represents the expression pattern under a
given condition by the intrinsic affinities of all genes under that condition. As-
suming each gene has only a finite set of affinities, possibly only one or two (for
example, on and off states of the lac operon), describing the expression pattern
is therefore reduced to selecting which, out of the total gene-specific small set
of possible affinities, each gene gets under the relevant condition. Given that
the selection of expression level for a given gene is driven by some specific envi-
ronmental cues (translated to, for example, activation of specific transcription
factors), the description can be further reduced to determining what cues are
present at each condition.

The fraction of a specific protein out of the proteome is equal to the specific
affinity of the corresponding gene under the condition, divided by the sum of
the affinities of all genes under that same condition. To illustrate: if two genes
have the same affinity under some condition, their corresponding proteins will
occupy identical fractions out of the proteome. If gene A has twice the affinity
of gene B under a given condition, then the fraction protein A occupies will be
twice as large as the fraction occupied by protein B under that condition, etc.
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This relationship can be simply formulated as follows:

(o = Bl _wile)
HO= P T @ W

where p;(c) denotes the fraction out of the proteome of protein ¢ under condition
¢, P;(c) denotes the mass of protein ¢ under condition ¢ per cell, P(c) denotes
the total mass of proteins per cell under condition ¢, and the sum, ;Wj (c), is
taken over the intrinsic affinities of all the genes the cell has.

This equation emphasizes that the observed fraction of a protein is deter-
mined by the two factors mentioned above: the specific affinity of the pro-
tein/gene, that is present in the numerator, and also, though less intuitive, the
affinity of all other genes under the growth condition (affecting the availability
of bio-synthetic resources), as reflected by the denominator.

For simplicity, the model refers to the fraction of each specific protein in the
proteome and not to the protein concentration. The corresponding concentra-
tion in the biomass can be calculated using the concentration of total protein
in the biomass. In F.coli, this concentration, is known to slightly decrease in
a linear manner with the specific growth rate [5, 40, 38] (for further discussion
see 4.1.2).

2.1.2 A change in growth condition triggers changes in expression
of specific proteins that indirectly affect the whole proteome

Different environmental conditions require the expression of different genes. For
example, the expression of amino-acids synthesizing enzymes is required only
in culture media lacking amino-acids [20, 39]. Therefore, the cell can infer
the presence or absence of amino-acids in the growth media and, regulate the
affinities of the synthesizing genes accordingly. If we consider a gene i, whose
specific affinity is not dependent on the presence of amino-acids, we suggest that
its fraction will still change between the two conditions as the affinities of other
condition specific genes change, thereby redirecting the bio-synthetic capacity.
In mathematical terms this will change the denominator in equation 1 and thus
affect the distribution of resources between all of the expressed genes.

Generalizing this notion, we can divide the proteins into those whose intrinsic
affinity remains constant across all of the considered conditions, and those whose
intrinsic affinity changes between at least some of the conditions (Figure 1). An
interesting consequence is that proteins whose intrinsic affinities remain constant
also maintain their relative ratios across these conditions with respect to each
other, as observed experimentally in S.cerevisae in [16].

2.1.3 Growth rate is the combined outcome of proteome composition
and environmental conditions

While it is sometimes implied that different cellular components are regulated
by the growth rate, our model considers the growth rate as an outcome of the
environmental conditions that affect the proteome composition. Specifically, we
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assume that the doubling time is proportional to the ratio of the total amount
of proteins per cell and the proteins involved in bio-synthesis in that cell. The
larger the ratio of total proteins to bio-synthesis proteins is, the longer these
bio-synthesis proteins will need to duplicate the proteome, resulting in a longer
doubling time.

To illustrate this assumption concretely, one could think about the synthesis
of polypeptides. If a cell has R actively translating ribosomes, each of which
synthesizing polypeptides at a rate of n &~ 20 amino acids per second, the bio-
synthetic capacity of the cell will be limited to ~ nR amino acids per second.
If the total amount of protein in that same cell is P (measured in amino acids
count), it follows that the time it will take the actively translating ribosomes to
synthesize the proteins for an identical daughter cell is 7 = n% (up to a In(2)
factor resulting from the fact that the ribosomes also synthesize more ribosomes
during the replication process and that these new ribosomes will increase the
total rate of polypeptides synthesis).

The theoretical lower limit of the doubling time, Tz, will be achieved when
all of the proteome of the cell is the bio-synthetic machinery. If the bio-synthetic
machinery is only half of the proteome, the doubling time will be 27 etc.

To integrate the notion of total protein to bio-synthetic protein ratio into our
model, we make the following simplifying assumption: There is a group of bio-
synthetic genes (e.g. genes of the transcriptional and translational machineries)
the affinities of which remain constant across different growth conditions, that
is, these genes are not actively differentially regulated across different condi-
tions. Furthermore, we assume that the machineries these genes are involved
in, operate at relatively constant rates and active to non-active ratios across
conditions, as has been shown for ribosomes [5].

Formally, we define the group of bio-synthesis genes, G g, such that, for every
gene that belongs to this group, k € Gp, its affinity, wy(c) is constant regardless
of the condition, c.

wi(c) = wy (2)

To keep our notations short, we will define the condition independent sum
over all of these bio-synthesis genes as the constant:

WB: Zwk

keGgp

The doubling time under a given condition, 7(¢), will be proportional to the
ratio of total protein to bio-synthesis protein under that condition, with the
proportionality constant Tg:

PO g T

T =T R0 W

(3)

Therefore, the model reproduces an increase in the doubling time for conditions
requiring larger amounts of non-bio-synthetic proteins (i.e. higher values in the
SUI across w ).
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2.1.4 The fraction of a non-differentially regulated protein is ex-
pected to increase with the growth rate

Recalling that the connection between the growth rate and the doubling time
is: g(c) = lf((f_)), we now combine Equation 1 with Equation 3 to get a prediction
for the single protein fractions p;:
w;(c) wi(c) Wg wi(c) Tp
pile) = i = O BB B g (@
Zj wj(c) B Zj wj(c) 5 In(2)
By incorporating all the condition-independent constants (Wg, Tg, In(2))
into one term, A, we can simplify to:

pi(c) = Awi(c)g(c) (5)

Hence, for every two conditions between which gene ¢ maintains its affinity,
(w;i(c1) = wi(eg)), the fraction p;(c) protein ¢ occupies in the proteome scales
in the same way as the growth rate (g(c)) between these two conditions.

To summarize, the simplified model we have constructed predicts that, under
no specific regulation, the fraction a non-regulated protein occupies out of the
proteome should scale with the growth rate. A group of such proteins should
therefore maintain their relative ratios across conditions.

2.1.5 Protein degradation differentiates between measured growth
rate and biomass synthesis rate

In the following two sections we analyze the effects of expanding our model to
account for two biological effects: protein degradation and changes in the rates
at which molecular machines operate.

The model we developed predicts that when the growth rate approaches
zero, the fraction of every protein with constant affinity also approaches zero.
This approach to zero applies specifically to the bio-synthesis genes, that have
constant affinities according to our assumptions. However, it is known that the
fractions of these proteins, and specifically of ribosomal proteins does not drop
to zero when the growth rate approaches zero [14, 29]. We can account for this
phenomenon by including protein degradation in our model.

We assume the degradation rate to be constant for all genes and conditions.
The observed growth rate, g, is the amount of proteins produced minus the
amount of proteins degraded. To illustrate, at zero growth rate, the implication
is not that no proteins are produced, but rather that proteins are produced at
exactly the same rate as they are degraded.

Integrating this notion into the model means that the bio-synthesis capacity
needs to suffice to re-synthesize all the degraded proteins. Hence, where the
equations previously referred to the cellular growth rate, g, as the indicator of
protein synthesis rate, they should in fact refer to the cellular growth rate plus
the degradation rate, as that is the actual rate of protein synthesis. If we denote
by «a the degradation rate, Equation 5 should thus be rewritten as:

pi(c) = Aw;(c)(g(c) + ) (6)
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This equation predicts linear dependence of the fraction of unregulated proteins
on the growth rate, with an intercept with the horizontal axis occurring at
minus the degradation rate (Figure S1). Thus, at zero growth rate, the fraction
of non-differentially regulated proteins out of the proteome is positive, equalling
Aw;(c)a.

2.1.6 Slower biological processes rates at slower growth affect the
relation between proteome composition and growth rate

The simplified model assumes that the doubling time is proportional to the
ratio of total protein to bio-synthetic protein. This assumption fails if the
rate at which each bio-synthetic machine operates changes across conditions.
Replacing this assumption by an interdependence of bio-synthesis rate with
growth rate (such that, the faster the growth, the faster the synthesis rates,
per machine)[5, 40], will affect the resulting predictions as well. This effect
is formally analyzed in section 6.1. Slower bio-synthesis rates under slower
growth rates imply that, compared with the model prediction, higher fraction
of bio-synthesis proteins is needed to achieve a given growth rate. Thus, lower
synthesis rates under slower growth rates will be reflected by a lower slope and
higher interception point for non-regulated proteins than those predicted by the
constant-rate version of the model, as is depicted in Figure S1.

To summarize, our theoretical model predicts that the default behavior of
non-differentially regulated proteins between two conditions is to maintain a
fraction that is proportional to the growth rate. The faster the growth rate, the
higher the fraction. Such proteins should maintain their relative concentrations
w.r.t. each other. Degradation and changes in rates of molecular machineries at
slow growth result in predicting non-zero fraction for such proteins even when
the growth rate is zero, resulting in a more moderate response of the fraction
to the growth rate.

2.2 Analysis of proteomic data sets

Our theoretical model predicts that the fraction of many proteins proportionally
and coordinately scales up with the specific growth rate across different growth
conditions. To assess the extent to which this prediction is reflected in actual
proteome compositions, we present analysis of two published proteomics data
sets of E.coli, [30] and [35]. These data sets use mass spectrometry to evaluate
the proteomic composition of FE.coli under 23 different growth rates using an
accelerostat [28], and 20 different growth conditions, spanning both different
carbon sources and chemostat-controlled growth rates, respectively. The data
set from [35] contains more conditions than those analyzed below, see section
4.1.3 for further details.
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2.2.1 A large fraction of the proteome is positively correlated with
growth rate

Our model predicts that a large portion of the proteins should increase in frac-
tion with the growth rate, as that is the expected change for proteins that are
not specifically regulated between conditions. To test this prediction, we cal-
culated the Pearson correlation of every protein with the growth rate (Figure
2, upper panels). We find that about a third of the proteins (473 out of 1442
measured in the data set from [35], and 305 out of 1142 in the data set from
[30]) have a strong positive (> 0.5, see also 6.2) correlation with the growth rate.
These values are much higher than those obtained for randomized data sets (12
and 5 strongly positively correlated proteins for the two data sets, respectively,
as is further discussed in section 2.2.4 and is seen in Figure 2 lower panels).
Strong negative correlation with growth rate is much less common in the data
set from [35]. It is common in the data set from [30], where we speculate that
it results from the specific way by which growth rate was controlled, namely by
implicitly controlling nutrient concentration via an accelero-stat. The control of
growth rate by gradual changes to nutrient concentration may naturally lead to
gradual changes in protein levels, both increasing and decreasing, an effect that
is expected under any regulatory scheme and is thus irrelevant for our analysis.
Notably, in both data sets, the proteins that have a high correlation with the
growth rate are involved in many and varied cellular functions and span different
functional groups (See tables S1 and S2).

Previous studies already found that ribosomal proteins are strongly posi-
tively correlated with growth rate [29, 14, 17]. Our analysis agrees with these
findings as we find the fraction of the vast majority of the ribosomal proteins to
be strongly positively correlated with growth rate (47 out of 53 in the data set
from [35] and 52 out of 53 in the data set from [30]). However, we also find that
the group of proteins strongly positively correlated with growth rate reach far
beyond the previously discussed group of ribosomal proteins (tables S1 and S2).
Importantly, the proteins that we find to be strongly positively correlated with
growth rate are not generally expected to be co-regulated, and their behavior
does not seem to be the result of any known transcription factor or regulation
cluster response [33].
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Figure 2: A strong positive Pearson correlation between the fraction out of
the proteome and the growth rate is observed for a large number of proteins
in two data sets (upper panels). Functional protein groups are denoted by
different colors. Thresholds defining high correlation are marked in dashed lines
and further discussed in 6.2. Shuffling the amounts of every protein across
conditions reveals the bias towards positive correlation with growth rate is non-
trivial (lower panels).

2.2.2 Proteins positively correlated with growth rate share a similar
response

Our model predicts that non-differentially regulated proteins should preserve
their relative ratios across conditions. We refer to such proteins as being co-
ordinated or coordinately regulated. We have shown above that many proteins
are positively correlated with growth rate. However, we note that having simi-
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lar correlation with growth rate for different proteins does not imply that such
proteins are coordinated, i.e. that they share the same scaling with growth
rate. Theoretically, proteins with identical correlation with growth rate may
have very different slopes or fold changes with increasing growth rate.

In order to examine how similar the behavior with growth rate is for the
group of strongly positively correlated proteins, we normalized each of them to
its mean abundance (see 4.1.1) and calculated the slope of a linear regression
line for the normalized fraction vs. the growth rate (Figure 3). The slopes of
R % of the proteins lie in the range (0.5,2) with the highest slopes being = 5.
A slope of 0.5 means that the fraction of the protein changes by +£12% around
its average fraction in the range of growth rates measured, whereas a slope of
2 indicates a change of +50%. Hence, the relative amounts of proteins with
slopes in the range of (0.5,2) change by at most just over 2-fold over the range
of growth rates measured.

To understand whether the observed distribution is coordinated, and can
result from the noise levels present in the data, we calculated, for every protein,
the standard error with respect to the regression line that best fits its fractions.
Given these standard errors we generated the expected distribution of slopes
that would result by conducting our analysis on proteins that share a single,
identical slope, but with the calculated noise in measurement. The expected
distribution is shown in gray line in Figure 3 (Further details on the calculation
as well as the deviation in maxima between the expected and observed distribu-
tions are discussed in the SI). The two data sets show different characteristics
of the expected distribution. While the expected distribution corresponding
to the data set from [35] coincides with the observed variability in calculated
slopes, supporting the notion of a coordinated response, for the data from [30]
the expected distribution is much narrower, suggesting a bi-modal distribution.
Future studies may uncover the factors underlying the difference between the
distributions of the two data sets.

Next we examined how the response of the strongly correlated proteins re-
lates to the well-studied response of ribosomes concentration. To that end, we
performed the same analysis of slopes, restricting it to ribosomal proteins alone,
as is shown by the stacked green bars in Figure 3. We find that strongly corre-
lated proteins and ribosomal proteins scale in similar ways (slope of 1.37 with
R? = 0.89 for the sum of ribosomal proteins vs. 1.24 and R? = 0.91 for the
sum of all strongly correlated proteins, in the data from [35], and slope of 1.49
with R? = 0.97 for ribosomal proteins vs. 1.0 and R? = 0.97 for all strongly
correlated proteins, in the data from [30]. See also Figure S5), implying that
the observed response of ribosomal proteins to growth rate is not unique and
is coordinated with a much larger fraction of the proteome, thus encompassing
many more cellular components.

Our results, showing that a large number of proteins maintain their relative
concentrations across different growth conditions thus extend the scope of sim-
ilar results obtained for S.cerevisiae in [16] and for expression levels in E.coli
under stress conditions [15]. In contrast to other approaches, our model sug-
gests a mechanism for this coordinated expression changes that is not based on
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shared transcription factors but rather is a result of passive redistribution of

resources.
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Figure 3: Histogram of the slopes of regression lines for the highly correlated
with growth proteins (473 and 305 proteins in the left and right panels respec-
tively). Ribosomal proteins are stacked in green on top of the non ribosomal
proteins, marked in blue. Proteins fractions were normalized to account for dif-
ferences in slopes resulting from differing average fractions (Section 4.1.1). The
expected distribution of slopes given the individual deviations of every protein
from a linear regression line, assuming all proteins are coordinated, is plotted in
gray. Dashed vertical lines at 0.5 and 2 represent the range at which the slopes
of ~ 2 of the proteins lie. Left panel - data from [35], right panel - data from
[30]. High correlation proteins share similar normalized slopes, implying they
are coordinated, maintaining their relative ratios across conditions (see text for
further details). Ribosomal proteins, shown in green, scale with growth rate in
a manner similar to the rest of the high correlation proteins (see text and Figure
S5).

2.2.3 Changes in the proteome across environmental conditions are
dominated by proteins that are positively correlated with growth
rate

To assess the significance of the positive correlation of proteins with growth
rate, out of the total change in proteome composition across conditions, we
summed the fractions of all of the proteins that are strongly correlated with
growth rate across the conditions measured and plotted their total fraction
against the growth rate in Figure 4. Both data sets show that the fraction of
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these proteins change =~ 2 fold across a =~ 5 fold change in the growth rate under
the different growth conditions. This change is smaller than the 1 : 1 change
predicted by our basic model and the deviations may result from the effects
of degradation and varying bio-synthesis rates, as is discussed in sections 2.1.5
and 2.1.6. Most of the variability of the total fraction of these proteins can be
explained by the growth rate (R? of 0.91 in the data set from [35] and 0.97 in
the data set from [30]). Importantly, the strongly correlated proteins form a
large fraction of the proteome, exceeding 50% of the proteome by weight, at the
higher growth rates. This is a much higher fraction than the one obtained for
randomized data sets (< 4%, as is further discussed in section 2.2.4) Thus, when
considering the changes in proteome composition across conditions, we find that,
at higher growth rates, more than 50% of the proteome composition is affected
by the coordinated response of the same group of proteins with growth rate.

Despite the magnitude of this phenomena, the fraction of the total variability
in the proteome that is accounted for by this linear response is only ~ 8% in the
data set from [35] and even lower in [30] (Figure S2). While this fraction is low,
it is still much higher than the equivalent 2% obtained for a randomized data set
based on the data from [35], as is described in section 2.2.4. This relatively low
explained variability fraction is primarily the result of two factors: the linear
response applies only to < 0.4 of the proteins, leaving the rest of the proteins
with no prediction, and experimental noise in whole proteome measurement
techniques, estimated at ~ 20%. Further discussion of the fraction of variability
explained can be found in 6.2.
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Figure 4: Fraction of the proteome occupied by proteins that are strongly pos-
itively correlated with growth rate. The accumulated sum of the proteins that
are strongly positively correlated with growth rate (defined as having a corre-
lation above 0.5), as a fraction out of the proteome, with linear regression lines
is shown. These proteins form a large fraction (> 50%) out of the proteome at
higher growth rates. The accumulated fraction of the strongly correlated pro-
teins doubles as the growth rate changes by about 5-fold. Assuming constant
degradation rates, the trend lines correspond to protein half life times of ~ 1.7
hours. Randomized data sets result in much fewer strongly positively corre-
lated with growth rate proteins, implying a much smaller accumulated fraction
(hollow circles) as is further discussed in section 2.2.4

2.2.4 The statistical features we find do not naturally rise in ran-
domized data sets

We performed two tests to verify that the trends we find, namely, the large
fraction of proteins with a strong correlation with growth rate, the coordination
among these proteins, their large accumulated fraction out of the proteome, and
the fraction of variability explained by a single linear regression approximation
of their fractions, are all non-trivial characteristics of the data set that do not
naturally rise in randomly generated data but that do arise if our model is
correct. To this extent we repeated our analysis on two simulated data sets:

e A data set at which the amount of every protein was shuffled across the
different conditions.

e A synthetic, simulated, data set, based on the conditions and growth rates
of the data set from [35], assuming half the proteins being perfectly coor-
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dinated and linearly dependent on growth rate, with parameters similar
to those found in our analysis, and the other half having no correlation
with growth rate, and with a simulated normally distributed measurement
noise of 25%.

We find that in the shuffled sets the number of proteins being significantly
positively correlated with growth rate is much smaller than found in the real
data sets (12 vs. 473 in the data set from [35] and 5 vs. 305 in the data set from
[30]) as is shown in Figure 2, lower panels. As a consequence, these proteins
now occupy a much smaller fraction out of the proteome mass-wise (< 4% on
average across conditions vs. &~ 40% in the real data sets) as is shown in Figure
4. Finally, the fraction of variability in the proteome that can be explained by
a single linear regression to these proteins is smaller for the shuffled data sets
than that obtained for the real data set (2% vs. 8% for a threshold of R > 0.5
for the data from [35] and 1% vs. 3.5% for the data set from [30]), as is seen in
Figure S6.

We find that the simulated (second) set does display similar characteristics
to those we find in the real data, confirming that if, indeed, our model is valid,
experimental measurements would overlap with those that we obtained as is
seen in Figure S7.

3 Discussion

We presented a parsimonious model connecting the fraction of proteins out of
the proteome and the growth rate as an outcome of the limited bio-synthesis re-
sources of cells. The notion of intrinsic affinity for expression, first presented in
[21], and rarely used ever since, was re-introduced as a key determinant for the
differences in expression of different proteins under a given growth condition.
The integration of the notion of intrinsic affinity for expression with the lim-
ited bio-synthesis capacity of cells was shown to result in a simple mechanism
predicting increased fraction of many proteins with the growth rate, without
assuming regulation by specific transcription factors for these proteins.

The framework we present emphasizes the importance of accounting for
global factors, that are reflected in the growth rate, when analyzing gene expres-
sion and proteomics data, as was noted before [21, 4, 19, 18, 37, 1, 16, 11, 40,
12, 30, 41]. Specifically, we suggest that the default response of a protein (that
is, the change in the observed expression of a protein, given that no specific
regulation was applied to it) is to linearly increase with growth rate. We point
out that, as non-differentially regulated proteins maintain their relative abun-
dances, one can deduce the parameters of the linear increase with growth rate
of any non-differentially regulated protein by observing the scaling of other such
proteins and fixing the ratio between the protein of interest and the reference
proteins.

We analyze two recent whole proteome data sets to explore the scope and
validity of our model. We characterize a coordinated response in F.coli between
many proteins and the specific growth rate. This response spans proteins from
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various functional groups and is not related to the specific medium of growth. A
similar phenomena is observed for S.cerevisiae as was reported in [16] and may
thus be conserved across various organisms and domains of life. Our analysis
suggests that, while changes in the proteome composition may seem complex,
for a large number of proteins and under many conditions, they can be at-
tributed to a linear, coordinated, increase with growth rate, at the expense
of other, down-regulated proteins. The well studied scaling of ribosomes con-
centration with growth rate can be considered one manifestation of the more
general phenomena we describe here. We find that this response is not unique
to ribosomal proteins but is, in fact, shared with many other proteins spanning
different functional groups. Furthermore, the linear dependence slope and ex-
plained variability of fraction levels of proteins explained by linear correlation
with growth rate is similar among the ribosomal proteins versus all the proteins
with high correlation with the growth rate.

Many studies monitored the ribosome concentration in cells and its interde-
pendence with growth rate [34, 5, 43, 37, 40, 30, 12](many of them indirectly).
While in all of these studies a linear dependence of ribosome concentration with
growth rate was observed, in some cases different slopes and interception points
were found to describe this linear dependence, compared with the observations
in our study. A discussion of various reasons that may underlie these differences
is given in section 6.4.

Interestingly, our model suggests that a linear correlation between ribosomal
proteins and the growth rate might be achieved without special control mecha-
nisms. Nonetheless, many such mechanisms have been shown to exist [26, 36].
We stress that the existence of such mechanisms does not contradict the model.
Mechanisms for ribosomal proteins expression control may still be needed to
achieve faster response under changing environmental conditions or a tighter
regulation to avoid unnecessary production and reduce translational noise. Fur-
thermore, such mechanisms may be crucial for synchronizing the amount of
rRNA with ribosomal proteins as the two go through different bio-synthesis
pathways. Nevertheless, the fact that many non-ribosomal proteins share the
same response as ribosomal proteins do, poses interesting questions regarding
the scope of such control mechanisms, their necessity and the trade-offs involved
in their deployment.

The findings in this study support and broaden the findings in other re-
cent studies. Specifically, for S.cerevisiae a few recent studies found that the
concentration of the majority of the proteins is coordinated across conditions
and increases with growth rate [16, 10, 3]. In principle, the model we suggest
here can be applied to any exponentially growing population of cells and may
thus also serve as a potential explanation for the phenomena observed in these
studies and others.

Other recently published studies in F.coli have suggested different models
and in some cases have results and predictions that do not coincide with those
presented in this study. Notably, in [19, 18] a decreased protein concentration
for unregulated genes is predicted. A few differences can explain this seeming
discrepancy. The modeling in [19] relies on data collected under higher growth
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rates than those available in the data sets analyzed here. The predictions of
the model are based on the deduced dependence of various bio-synthesis process
rates and physiological properties of the cells on the growth rate, properties that
are, in turn, used to calculate the expected protein concentration for unregulated
proteins under the different growth rates. The model in [19] refers to protein
concentration and not to protein fraction out of the proteome. These quantities
may differ due to changes in the ratio of total protein mass to cell dry weight, or
cell volume, as a function of the growth rate. Thus, this approach is markedly
different than the approach we take, which assumes relatively small changes
in bio-synthetic rates as a function of growth rate and focuses on the limited
bio-synthesis resources as the main driver of changes in the resulting fraction
of proteins out of the proteome. As the model in [19] was only tested against
a handful of proteins, further data collection is required to decide which of
the two models better describes the global effects of growth rate on proteome
composition.

The expected availability of increasing amounts of whole proteome data sets,
with higher accuracy levels, will enable further investigation of the details of cel-
lular resource distribution. With our model serving as a baseline, the analysis
of such future data sets will shed more light on the relative roles of carefully
tuned response mechanisms versus global, passive effects in shaping the pro-
teome composition under different growth environments.

4 Materials and Methods

4.1 Data analysis tools

All data analysis was performed using custom written software in the Python
programming language. The data analysis source code is available through
github at: http://github.com/uriba/proteome-analysis Analysis was done using
SciPy [27], NumPy [8] and the Pandas data analysis library [22]. Charts where
created using the MatPlotLib plotting library [13].

4.1.1 Normalizing protein fractions across conditions

Our analysis aims at identifying proteins that share similar expression patterns
across the different growth conditions. For example, consider two proteins, A
and B measured under two conditions, ¢; and ¢y. Assume that the measured
fractions out of the proteome of these two proteins under the two conditions
were 0.001 and 0.002 for A under ¢; and ¢y respectively, and 0.01 and 0.02 for
B under ¢; and ¢y respectively. These two proteins therefore share identical
responses across the two conditions, namely, they double their fraction in the
proteome in ¢y compared with cy.

The normalization procedure scales the data so as to reveal this identity
in response. Dividing the fraction of each protein out of the proteome by the
average fraction of that protein across conditions yields the normalized response.
It the example, the average fraction of A across the different conditions is 0.0015
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and the average fraction of B is 0.015. Thus, dividing the fraction of every
protein by the average fraction across conditions of that same protein yields:

p A 0001 2 001 B _
@« A4 00015 3 0015 B a

for ¢; and:
YU :Afz _ 0.002 :é:&:sz _p
2 A 0.0015 3 0.015 B 2
for ¢, showing A and B share identical responses across ¢; and cs.
The general normalization procedure thus divides the fraction of protein 4
under condition ¢, p;(c) by the average fraction of protein 4 across all of the

conditions in the data set, p;, to give the normalized fraction under condition
¢, pi(c) = ’“ﬁ—(")

This normalization procedure has been applied prior to calculating the slopes
of the regression lines best describing the change in fraction out of the proteome
of every protein as a function of the growth rate. Furthermore, when analyzing
the variability explained by linear regression on the sum of fractions of all pro-
teins presenting a high correlation with the growth rate, the same normalization
procedure was made in order to avoid domination by the high abundance of a
few proteins in that group.

4.1.2 Calculation of protein concentration

In this study, we use the mass ratio of a specific protein to the mass of the
entire proteome, per cell, as our basic measure for the bio-synthetic resources
a specific protein consumes out of the bio-synthetic capacity of the cell. We
find this measure to be the best representation of the meaning of a fraction a
protein occupies out of the proteome. However, we note that if initiation rates
are limiting (e.g. if RNA polymerase rather than ribosomes become limiting),
and not elongation rates, then using molecule counts ratios (the number of
molecules of a specific protein divided by the total number of protein molecules
in a cell) rather than mass ratios may be a better metric. We compared these
two metrics and, while they present some differences in the analysis, they do
not qualitatively alter the observed results.

There are different, alternative ways to assess the resources consumed by a
specific protein out of the resources available in the cell. On top of the measures
listed above, one could consider either the total mass or molecule count of a
specific protein out of the biomass, rather than the proteome, or out of the dry
weight of the cell, both of which vary with the ratio of total protein to biomass
or dry weight which was neglected in our analysis. Moreover, one can consider
specific protein mass or molecule count per cell, thus reflecting changes in cell
size across conditions. Our analysis focuses on the relations between different
proteins and resource distribution inside the proteome, and thus avoids such
metrics.
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4.1.3 Filtering out conditions from the Heinemann data set

The [35] data set contains proteomic data measurements under 22 different
environmental conditions. However, our model assumes exponential growth,
implying that measurements taken at stationary phase are expected to differ
from simple extrapolation of the model to zero growth rate. Therefore, the two
measurements of stationary phase proteomics were excluded from our analysis.

Out of the conditions measured in the [35] data set, two conditions included
amino acids in the media and presented much faster growth rate than the rest
of the conditions (growth in LB media and in glycerol supplemented with AA,
with growth rates of 1.9[h~1] and 1.27[h 1] respectively, compared with a range
of 0.12 — 0.66 for the other conditions). This asymmetry in the distribution of
growth rates caused inclusion of these conditions to dominate the analysis due
to its effect on the skewness of the distribution of growth rates (y; = —0.5 for
the growth rates excluding LB and AA supplemented glycerol vs. v; = 2.3 with
LB and AA supplemented glycerol) reducing the statistical power of the other
conditions. While including the data on growth in these conditions does not
qualitatively change the observed results, such analysis is much less statistically
robust. We have therefore omitted growth in LB and in AA supplemented
glycerol in the main analysis. We present the analysis including these conditions
in section 6.3.
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6 Supplementary figures and data

6.1 Effects of degradation and varying synthesis rate on
model predictions

The predicted fraction of an unregulated protein as a function of the growth
rate is to follow a linear trend crossing at the origin (Figure S1, blue line).
Degradation can be interpreted as implying that the observed growth rate is
the combination of the bio-synthesis rate minus the degradation rate, implying
that the predicted fraction of an unregulated protein is linear increase with
growth rate, but with a horizontal intercept at minus the degradation rate as is
shown by the green line in Figure S1.

Non constant bio-synthesis rate can be modeled as a Michaelis-Menten ki-
netic like interdependence with growth rate following the formula:

"o = 3 g )

where g(c) is the growth rate, n(g(c)) is the bio-synthesis rate at growth rate
g(c), mo is the maximal bio-synthesis rate and g,, the growth rate at which
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the bio-synthesis rate is 1 the maximal rate (Figure S1, red line). Under this

2
assumption, the doubling time of the bio-synthesis machinery itself, T becomes:
n9(©) _ o gm
Tp =T =To(1+ 2= 8
B o B( g(C) ) ( )

where T is the minimal theoretical doubling time when all the proteins are
bio-synthesis proteins operating at maximal rate. Substituting equation 8 into
equation 4 results in a predicted fraction of:

(o) = W@ TBUH ) o wile) T
PR = @) YT W (2
Surprisingly, this equation also describes the fraction as being linearly dependent

on the growth rate, with the kinetic parameters implying a non-zero fraction at
zero growth rate as is shown by the red dots in Figure S1.
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Figure S1: The predictions of the model for the fraction of unregulated proteins
as a function of the growth rate. The effects of accounting for protein degra-
dation (green) and Michaelis-Menten like dependence of bio-synthesis rates on
growth rate (red) are shown. For non-constant bio-synthesis rate, a growth rate
of 0.2 was selected as the growth rate at which the bio-synthesis rate is half of
its maximal value.

6.2 Threshold selection for defining strong correlation with
growth rate

The data we use includes the fractions of proteins under different growth condi-
tions, and the growth rate for every condition. We select a threshold correlation
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with growth rate to define the group of highly positively correlated with growth
rate proteins.

We calculate the explained variability by the growth rate, given a threshold,
by taking the difference between the total variability of the group of proteins
with a correlation higher than the threshold, and the variability remaining, when
assuming these proteins scale with the growth rate according to the calculated
linear response. Dividing the explained variability by the total variability of the
entire data set quantifies what fraction of the total variability in the proteome
is explained by considering a coordinated linear scaling with growth rate for all
the proteins with a correlation with growth rate higher than the threshold.

The choice of threshold is thus influenced by two contradicting factors.
Choosing a low threshold results in defining many proteins as being highly
positively correlated with growth rate. In this case, the correlation with growth
rate of these proteins spans a large range. Therefore, applying a linear regres-
sion trend to the sum of these proteins only accounts for a small fraction of the
variability of them and, as a consequence, only accounts for a small fraction of
the total variability of the proteome.

On the other hand, choosing a high correlation threshold results in defining
only a small number of proteins as being highly positively correlated with growth
rate. A common linear regression line may thus explain a large fraction of the
variability for the chosen proteins but, as their number is small, will only account
for a small fraction of the total variability of the proteome.

For simplicity, we chose a threshold value of 0.5 for the two data sets analyzed
in this study. Figure S2 shows how the choice of threshold affects the fraction
of explained variability in the proteome by the linear dependence on growth
rate of the proteins that have a correlation with growth rate that is higher than
the threshold (blue line). The figure also shows the fraction of proteins that
have a correlation with growth rate that is higher than the threshold out of the
proteome (red line), and the fraction of explained variability by linear regression
for these proteins (green line).

The optimal threshold is defined as the threshold maximizing the fraction of
total variability explained (maximum of the blue line). As can be seen in Figure
S2, our choice of threshold of 0.5 is relatively close to the optimum value that
is 0.25 for the data set from [35], and 0.2 for the data set from [30]. Moreover,
as Figure S2 illustrates, the different plotted statistics do not change markedly
due to this sub-optimal choice of threshold and thus this choice does not affect
our results significantly.

As different proteins have very different average fractions, the aforemen-
tioned calculation may be biased towards proteins with higher average fractions.
To avoid this effect, the analysis presented was performed on the normalized
fractions as defined in 4.1.1.

The noise in current whole proteome measurement techniques makes it dif-
ficult to distinguish between proteins that scale coordinately, as is predicted
by our model, and proteins that scale differentially, but within measurement
uncertainty. Thus, it is unclear to what extent the effect we predict affects ac-
tual protein fractions versus their possible individual up regulation with growth
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rate. We expect future improvements in the accuracy of whole proteome mea-
surements to quantitatively reveal the importance of passive coordinated scaling
with growth rate in shaping the proteome composition. These coming improve-
ments in accuracy will enable better testing of the scope and validity of the
model presented here.

— Explained variability fraction of total data
— Explained variability fraction of global cluster
— Correlated proteins fraction of proteome
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Figure S2: Statistics on the explained variability in the normalized data set as a
function of the threshold used for defining strong correlation with growth rate.
An optimal threshold is a threshold that maximizes the fraction of explained
variability in the proteome by linear regression on proteins that have a corre-
lation with growth rate that exceeds the threshold (blue line). The maximal
explained variability in each data set is marked as a horizontal dashed line and
is 0.082% (obtained given a threshold of 0.25) for the data set from [35], and
0.035% (obtained given a threshold of 0.2) in the data from [30].

6.3 Analysis of the data set from [35] including fast growth
conditions

Due to the fast growth rate under LB and AA supplemented glycerol, compared
with the other conditions measured in the data set from [35] these conditions
were not included in our primary analysis as was noted in section 4.1.3. In-
cluding these conditions result in a much smaller set of proteins with a strong
positive correlation with growth, as many of the proteins in that group in the
slower conditions get down-regulated when AA are added to the media, sig-
nificantly reducing their Pearson correlation with growth rate. For example,
the Pearson correlation with growth rate of gapA, involved in glycolisys, drops
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from 0.73 to 0.35 when these conditions are included. Another such example is
glyA, involved in serine and threonine metabolism, that has a correlation with
growth rate of -0.12 when the faster conditions are included in the analysis vs.
a correlation of 0.7 when they are excluded.

Figure S3 shows the implications of including the fast growth conditions in
the analysis. As can be seen, many proteins are now less correlated with growth
rate due to down regulation under the fast conditions. However, despite having
fewer proteins being strongly positively correlated with growth (352 vs. 473)
and despite the accumulated fraction of these proteins being lower under the
slower growth conditions (~ 30% vs. ~ 40%), these proteins do occupy > 50%
out of the proteome under fast growth in LB.
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Figure S3: Including growth in LB and AA supplemented glycerol media in
the analysis of the data set from [35]. Fewer proteins are strongly positively
correlated with growth but these proteins form more than 50% of the proteome
in fast growth.

6.4 Discussion of reasons for differing ribosome concen-
tration relation to growth rate

Differences in ribosome concentration across growth rates as reported in different
studies can result from a few factors:

1. Different growth rates and conditions monitored.
2. Inaccuracies and differences in the proteomic analysis procedures.

3. Usage of different strains.
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4. In many studies the amount of ribosomes is deduced by measuring the
RNA to protein ratio, assuming a relatively fixed portion of the RNA is
rRNA. In our study, in contrast, ribosomal proteins are used as a proxy for
estimating ribosomes concentration and, moreover, the RNA to Protein
ratio is assumed to be constant. Therefore, and as it is known that ribo-
somes can operate even in the absence of some ribosomal proteins, such
differences in manner of inference can account for some of the differences
encountered.
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Figure S4: A selection of random predictions of protein fractions from the highly
correlated with growth rate group, taken from the data set of [35]. Each panel
shows the average fraction of 10 random proteins that are highly correlated with
growth (blue dots), a regression line that best fits the data, and the fraction of
a different random protein (green dots). The R? value for the trend line and
the different protein is given.
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6.6 Breakdown by function of proteins strongly correlated
with growth rate

Function Number of proteins % of proteome  Correlated proteins Correlated % of proteome
NotMapped 533 24.55 163 10.99
Carbohydrate Metabolism 113 20.9 21 4.53
Translation 110 13.81 81 12.67
Amino Acid Metabolism 92 9.48 41 7.62
Membrane Transport 70 6.49 5 0.31
Folding, Sorting and Degradation 97 6.07 37 3
Energy Metabolism 41 3.71 13 0.63
Nucleotide Metabolism 57 3.58 29 1.62
Transcription 48 2.93 12 0.27
Other enzymes 64 2.87 22 0.31
Lipid Metabolism 30 1.11 4 0.15
DNA maintenance 45 1.01 11 0.13
Metabolism of Cofactors and Vitamins 53 0.81 16 0.33
Metabolism of Other Amino Acids 19 0.8 7 0.48
Signal Transduction 28 0.64 2 5.79-1073
Cell Motility 2 0.59 0 0
Cytoskeleton 5 0.3 2 0.13
Glycan Biosynthesis and Metabolism 13 0.22 3 3.59-1072
Metabolism of Terpenoids and Polyketides 13 8.75- 1072 1 1.36-1072
Not mapped 7 2.79- 1072 2 3.15-107%
Xenobiotics Biodegradation and Metabolism 2 1.96- 1072 1 1.79-1072

Table S1: Breakdown by function of strongly positively correlated with growth
rate proteins in the data set from [35]

Function Number of proteins % of proteome Correlated proteins ~ Correlated % of proteome
NotMapped 387 23.86 67 8.81
Carbohydrate Metabolism 104 20.58 19 4.11
Translation 97 17.65 79 17.05
Membrane Transport 65 8.89 5 0.24
Amino Acid Metabolism 81 6.27 20 1.23
Folding, Sorting and Degradation 82 5.01 23 1.86
Energy Metabolism 41 4.28 19 2.79
Nucleotide Metabolism 47 3.62 30 29
Transcription 33 2.58 7 1.36
Other enzymes 46 2.11 5 8.53-1072
Lipid Metabolism 18 1.29 5 0.59
DNA maintenance 33 1.14 5 0.17
Metabolism of Cofactors and Vitamins 39 0.72 8 0.25
Metabolism of Other Amino Acids 17 0.65 4 0.44
Cell Motility 5 0.43 1 4.98-1072
Signal Transduction 23 0.31 5 3.92.1072
Cytoskeleton 5 0.27 0 0
Glycan Biosynthesis and Metabolism 10 0.23 2 7.49-1072
Metabolism of Terpenoids and Polyketides 7 5.21-1072 1 1.51-1072
Xenobiotics Biodegradation and Metabolism 2 5.14-1072 0 0

Table S2: Breakdown by function of strongly positively correlated with growth
rate proteins in the data set from [30]

6.7 Ribosomal proteins scale similarly to non-ribosomal
proteins that are strongly positively correlated with
growth rate

Comparing the normalized sum of ribosomal proteins to the normalized sum

of the positively correlated with growth rate proteins that are non-ribosomal

shows that these two groups scale in the same way with the growth rate, as is
seen in Figure S5
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Figure S5: The scaling with growth rate of ribosomal proteins and non-
ribosomal, but highly correlated with growth rate proteins is shown. Trend
lines for the two groups of proteins are plotted. The scaling with growth rate is
similar between the two groups of proteins.

6.8 Additional figures of simulated and randomized data
sets

The maximal explained variability in data sets with shuffled protein abundances
is significantly smaller than in the real data sets as is seen in figure S6.

A simulated data set, assuming half of the proteins scale linearly with growth
rate with normalized intercept at 0.5, similar to the intercept found in the data
analysis, and with simulated normally distributed noise levels of 25%, result in
distributions similar to those found in the original data analysis (Figure S7)
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Figure S6: Fraction of explained variability by linear regression on the group
of strongly positively correlated with growth rate proteins for the shuffled data
sets.
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Figure S7: A simulated data set, assuming half of the proteins are perfectly
correlated with growth rate and half are fixed, with simulated noise level of 25%.
Average protein fractions, growth rates and normalized slope of the correlated
proteins are based on the data set from [35]. The normalized intercept of the
correlated proteins was set to 0.5 in accordance with the intercept found in
the original data analysis. The results are similar to those obtained for the
real data set, showing that, given the experimental noise, identical coordination
with growth rate of half of the proteins would result in similar outcomes to those
observed in the data sets we use.
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