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ABSTRACT
Motivation: There are many different forms of genomic structural
variation that can be broadly classified as copy number variation
(CNV) and balanced rearrangements. Although many algorithms
are now available in the literature that aim to characterize CNVs,
discovery of balanced rearrangements (inversions and translocations)
remains an open problem. This is mainly because the breakpoints of
such events typically lie within segmental duplications and common
repeats, which reduce the mappability of short reads. The 1000
Genomes Project spearheaded the development of several methods
to identify inversions, however, they are limited to relatively short
inversions, and there are currently no available algorithms to discover
large inversions using high throughput sequencing technologies
(HTS).
Results: Here we propose to use a sequencing method (Kitzman
et al., 2011) originally developed to improve haplotype resolution
to characterize large genomic inversions. This method, called
pooled clone sequencing, merges the advantages of clone based
sequencing approach with the speed and cost efficiency of HTS
technologies. Using data generated with pooled clone sequencing
method, we developed a novel algorithm, dipSeq, to discover large
inversions (>500 Kbp). We show the power of dipSeq first on
simulated data, and then apply it to the genome of a HapMap
individual (NA12878). We were able to accurately discover all
previously known and experimentally validated large inversions in the
same genome. We also identified a novel inversion, and confirmed
using fluorescent in situ hybridization.
Availability: Implementation of the dipSeq algorithm is available at
https://github.com/BilkentCompGen/dipseq
Contact: calkan@cs.bilkent.edu.tr, francesca.antonacci@uniba.it

1 INTRODUCTION
Genomic structural variants are defined as alterations in the DNA
that affect >50bp that may delete, insert, duplicate, invert, or
move genomic sequence (Alkan et al., 2011). Structural variation
(SV) are shown to be common in human genomes (Iafrate et al.,
2004; Sebat et al., 2004), which caused increased interest in the
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characterization of both normal (Tuzun et al., 2005; Kidd et al.,
2008; Mills et al., 2011), and disease-causing large variants (Sharp
et al., 2006; Antonacci et al., 2010). Furthermore, SVs are known to
be one of the driving forces of creation of new haplotypes (Steinberg
et al., 2012), and evolution (Ventura et al., 2011).

SVs were initially identified using bacterial artificial chromosome
(BAC) arrays (Iafrate et al., 2004; Sebat et al., 2004; Redon et al.,
2006), then SNP arrays (Redon et al., 2006; McCarroll et al., 2006)
and array comparative genomic hybridization (Conrad et al., 2010).
A more detailed map of structural variation was made possible using
fosmid end sequencing (Tuzun et al., 2005; Kidd et al., 2008),
however this method was not cost effective due to the use of the
Sanger method. Introduction of high throughput sequencing (HTS)
finally made it possible to screen the genomes of many (Korbel
et al., 2007; Alkan et al., 2009; Hormozdiari et al., 2009; Yoon et al.,
2009) to thousands (Mills et al., 2011) of individuals.

Although there are now many algorithms to discover and
genotype SV using HTS data (Medvedev et al., 2009; Alkan
et al., 2011), they mainly focus on copy number variation (CNV),
which change the amount of DNA, such as deletions, duplications,
insertions, and transpositions. Other types of SV, namely balanced
rearrangements such as inversions and translocations are harder
to detect due to the fact that their breakpoints usually lie within
complex repeats, reducing mappability. Balanced rearrangements
also do not alter the read depth, which makes the use of read depth
signature (Medvedev et al., 2009; Yoon et al., 2009; Alkan et al.,
2009) irrelevant for their detection. Therefore, very few attempts to
characterize inversions are reliable only for small inversions (∼10-
50 Kb) (Hormozdiari et al., 2009; Rausch et al., 2012; Layer et al.,
2014; Chaisson et al., 2014), and exhibit high false discovery rates
in translocation call sets (Talkowski et al., 2011). Characterization
of large genomic inversions using HTS remains an open problem.

The common method to discover inversions is to analyze the read
pair signature (Medvedev et al., 2009; Alkan et al., 2011), where the
mapping strand of the read pairs spanning the inversion breakpoints
will be different from what is expected (Figure 1). For example,
the Illumina platform generates read pairs from opposing strands,
however, if the DNA fragment spans an inversion breakpoint, they
will both be mapped to the same strand. They will also be separated
from each other by a distance approximately same with the inversion
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size. When the inversion is large, the real mapping distance between
pairs also increases, therefore increasing the chance of incorrect
mapping due to the common repeats that lie in between. Many
algorithms were developed using this read pair signature, such as
VariationHunter (Hormozdiari et al., 2009), inGap (Qi and Zhao,
2011), and HYDRA (Quinlan et al., 2010). Another algorithm,
INVY (Rausch et al., 2012) also uses split read signature to
better identify inversions. Most recently, LUMPY (Layer et al.,
2014) was developed that integrates multiple sequence signatures,
including read alignments, and prior knowledge into a probabilistic
framework. However, all the aforementioned tools have limitations
on the inversion size due to the challenges explained above.

Inverted Haplotype

paired-end reads

BAC clones

split clone signature

read-pair signature

sample

reference

inversion
breakpoint #1

inversion
breakpoint #2

Fig. 1. Sequence signatures used by the dipSeq algorithm. In the presence
of an inverted haplotype in the sequenced genome, we look for both read
pair and split clone signatures. Paired end reads that span the inversion
breakpoints will be mapped to the same strand with a large distance
between them, instead of the concordant read pairs that map to opposing
strands (Medvedev et al., 2009; Alkan et al., 2011). Large insert clones will
show mapping properties similar to the split read sequence signature (Ye
et al., 2009), but since we do not have the full clone sequence, or sufficient
coverage to assemble clones, we interrogate lengths of contiguous read
mapping (Methods).

The HTS platforms generate data at very high rates with
minimal cost. However, since both the HTS reads (100-150 bp
for Illumina), and the DNA fragments are very short (350-500
bp), the mappability of the HTS data is dramatically reduced in
repeat-rich regions that harbor most of the inversion breakpoints. On
the contrary, the now-largely-abandoned method of clone-by-clone
sequencing (International Human Genome Sequencing Consortium,
2001) enables data observation from much larger genomic intervals
(40-to-200 Kb), but the associated costs are substantially higher.
A sequencing method, called pooled clone sequencing (PCS) aims
to combine the advantages of clone-by-clone sequencing, with the
cost and time efficiency offered by the HTS platforms (Kitzman
et al., 2011) (see Methods). Although pooled clone sequencing was
developed to improve haplotype phasing and to characterize large
haplotype blocks, we propose a new algorithm, dipSeq, that utilizes
PCS to discover large genomic inversions (>500 Kb). dipSeq proves
its potential when tested on simulated data, and it is able to discover
previously characterized large inversions (2-5 Mb) in the genome of
a human individual (NA12878), using pooled BAC sequence data.
dipSeq is theoretically compatible with all similarly constructed
pooled sequence data, such as the TruSeq Synthetic Long-Reads
(Moleculo) (Kuleshov et al., 2014), or the Complete Genomics LFR

Technology (Peters et al., 2012), provided that the pooled large
DNA fragment sizes follow a Gaussian distribution.

2 OBSERVATION AND APPROACH
Kitzman et al. (2011) developed the pooled clone sequencing (PCS)
method to improve haplotype phasing. Basically, genomic DNA
is cloned into cloning vectors (fosmids, or BACs), which are
then diluted to approximately 3% coverage of the diploid genome,
and randomly placed into several number of pools (Methods).
Next, the pools are barcoded, and sequenced using the Illumina
platform. Note that, due to dilution and random generation of
pools, it is expected that pools will not harbor overlapping clones
within themselves (Kitzman et al., 2011). We provide a method
to approximately calculate the probability of having overlapping
clones within a pool in the Supplementary Note.

Our approach to discover large (>500 Kbp) genomic inversion
using PCS follows from the observation that, clones (BAC or
fosmid) that span the inversion breakpoint will be split into two
sections when mapped to the reference genome, also separated by
a distance approximately the size of the inversion. We call this
sequence signature as split clones (Figure 1, which is similar to
the split read sequence signature used by several SV discovery
tools such as DELLY (Rausch et al., 2012) and Pindel (Ye
et al., 2009). Based on these observations, we developed a
novel combinatorial algorithm and statistical heuristics called
dipSeq (discover inversions using pooled Sequencing). Briefly,
dipSeq searches for both read pair and split clone sequence
signatures using the mapping locations of pooled clone sequencing
reads, and requires split clones from different pools to cluster
at the same putative inversion breakpoints (Methods). Ambiguity
due to multiple possible pairings of split clones are resolved
using an approximation algorithm for the maximal quasi clique
problem (Brunato et al., 2008), and paired-end read support further
assigns confidence score for the predicted inversion calls.

Assuming that read and mapping errors are negligible, the
probability of discovering an inversion using dipSeq can also be
estimated (Supplementary Note) given physical depth of coverage
by the clones.

3 METHODS
3.1 Building pooled clone libraries
We first generated a single whole-genome BAC library with long
inserts (∼140 kbp). This procedure is a modification of the
original haplotyping method previously described by Kitzman et
al. (2011), that generates fosmid libraries with ∼40 kbp inserts.
Here we used BAC clones, since long inserts are required to span
the large duplication blocks where inversion breakpoints typically
map (Kidd et al., 2008). The library was then randomly partitioned
into pools such that each pool is essentially a haploid mixture
of clones derived from either the maternal or paternal DNA at
each genomic location. High-throughput sequencing of each pool
provided haplotype information for each clone in that pool.

We used genomic DNA from a HapMap Project individual
(NA12878) to construct the BAC library. High molecular weight
DNA was isolated, partially EcoRI digested, and subcloned into
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pCC1BAC vector (Epicentre) to create a ∼140 kbp insert library
using previously described protocols (Smith et al., 2010). We then
split a portion of this library to 3 sets of 96 pools each, with
230 clones per pool for set 1, 389 clones per pool for set 2 and
153 clones per pool for set 3. Each pool was expanded by direct
liquid outgrowth after infection. We next constructed 96 barcoded
sequencing libraries per each set, for a total of 288 sequencing
libraries (Adey et al., 2010). Libraries from each set were indexed
with barcodes, combined and sequenced using the Illumina HiSeq
platform (101bp paired-end reads). Upon sequencing a total of
74,112 clones (22,080 in set1, 37,344 in set 2 and 14,688 in set
3) we obtained 3.38× expected physical depth of coverage. After
read mapping and reconstructing clones (Section 3.3), 87.58% of
the genome was covered by one or more clones.

Inverted Haplotype
sample

distance
pooli

pooli

poolj

gap overlap

(A) split-clone

(B) paired split-clone

(C) split-clone cluster

Fig. 2. Clustering split clones to detect inversions. (A) We first identify
clone locations that are shorter than the expected clone size, but when
paired with another short clone found in the same pool, the total length
sums up to a full clone length. We call such clones as split clones. (B)
We then cluster pairs of split clones that are mapped to approximately the
same breakpoints. Note that due to read mapping errors and our clone
reconstruction heuristics, a split clone may be identified as spanning a
breakpoint. (C) Finally we cluster multiples of split clones from different
pools if they agree on breakpoint location and the size of the inversion. gap:
size of the region between the start and end locations of split clones from
different pools. overlap: size of the overlapping region of split clones from
different pools.

3.2 Read mapping
We first map the paired-end reads generated for each pool separately
to the human reference genome assembly (GRCh37). Our dipSeq
algorithm does not depend on any specific aligner, but in this study
we used both BWA (Li and Durbin, 2009), and mrFAST (Xin
et al., 2013). We then separate the read pairs that map in the same
orientation (i.e. read pair signature for inversions using Illumina),
and those that map concordantly (within 4 standard deviations of
the average fragment span size) into separate files to facilitate easier
clone reconstruction (Section 3.3), and calculating read pair support
(Section 3.4).

3.3 Reconstructing clones
We use only the concordantly mapped read pairs to infer the
locations of clones. However, due to the low depth and breadth
of coverage, it is not always possible to observe a continuous

mapping of read pairs that collectively span genomic intervals
within expected size of BAC clones. To overcome this issue, we
apply several heuristics to identify clone locations. We use a sliding
window approach, where we first look for regions to be covered by
at least 50%. We use such regions that are ≥6.5Kbp as seeds. We
then extend these seed windows using any read pairs that map to
its flanking regions with a distance of at most 1.5 Kbp. Although
the parameters we used here may seem arbitrary, in fact were
obtained by applying an optimization grid on simulated BAC data
(Section 4.1, and Supplementary Note) where we required >80%
of the BACs to be recovered. This algorithm runs in O(n logn)
time for sorting the reads, and amortized run time of O(n) for
reconstructing the clones, where n is the number of reads.

3.4 Inversion Discovery
After the identification of read pairs with inversion signature (i.e.
mapping to same strand), and the predicted clone locations, we
then look for potential split clones in each pool. We first extract
the locations of inferred clones that are smaller than expected clone
length, and look for those pairs of small clones (Figure 2) where the
summation of their lengths is within an expected size range (µ±3σ).
We also require the distance between the split clones to be within the
inversion size limits we are trying to discover. In this study we set
this parameter to 500 Kbp - 10 Mbp. Therefore, two regions rk and
rl are predicted to be a split clone, denoted as SCrk,rl if:

|rk| < µclone, |rl| < µclone

µ− 3σ ≤ |rk|+ |rl| ≤ µ+ 3σ

min inv size ≤ |rk.start− rl.start| ≤ max inv size

Assuming the inferred clone locations are sorted by mapping
locations, our algorithm can detect split clones in O(n) amortized
run time, where n is the number of inferred clones. However,
the constant coefficient increases rapidly with the average read
coverage.

We build inversion clusters by identifying two split clone pairs
from different pools that are compatible (i.e. same breakpoint
locations and inversion size). Due to both mapping errors and
biases caused by our sliding window approach we permit a gap or
overlap between the split clones to be paired (Figure 2b). We expect
the inversion breakpoints lie between these gaps. Two split clones
SCrk,rl and SCrk′ ,rl′ are compatible to be in the same paired split
clone (PSC) set, assuming rk/rk′ are located upstream of rl/rl′ , if:

−max overlap < rk′ .start−rk.start < max gap; or vice versa

−max overlap < rl′ .start−rl.start < max gap; or vice versa

Here we set max overlap = 2 × (µfragment + 4σfragment),
where µfragment is the average fragment length, and σfragment

is the standard deviation of the paired-end sequencing data
(max overlap=2 Kbp for our data set). We also set max gap
to maximum expected clone length (∼200 Kbp for BACs). Note
that adding more split clones to the same cluster will narrow down
the gap size in breakpoint estimate. However, not all of the split
clones we identify signal an inversion event. In an ideal case, where
there are no mapping errors, other forms of structural variation, or
areas with low mappability may also show themselves as split clone
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Fig. 3. The dipSeq algorithm. We start with mapping paired end reads for each pool. We then separate read pairs that map to the same strand, and generate
two files for the two strands. We use the concordantly mapping reads to reconstruct clone locations, and calculate depth and breadth of coverage for the clones.
Next, we remove clones with low coverage values, which result in the inferred clone locations. We identify the split clones from this list, and then find pairs of
split clones (PSC), then we remove those with insufficient read pair support. Remaining PSCs are used to construct a graph, which we then use to find maximal
quasi cliques that signal possible inversion locations. The clone and read pair support are then recalculated for the merged PSCs, those with low support and
those that intersect with reference assembly gaps, or intersect with segmental duplications in both breakpoints are discarded.

signature for inversions. To ensure only split clones that signal a
true inversion are detected, we also require read pair support for
inversions (Medvedev et al., 2009; Alkan et al., 2011), and we
discard any split clones that are not supported by read pairs. This
step of the algorithm runs in O(m + n), where m is the number
of read pairs with inversion signature, and n is the number of split
clones given than m� n.

Each pair of split clones gives a hint about the existence of an
inverted haplotype. There may be many incorrectly identified split
clone inversion signatures, or a short clone may have multiple

potential “mate”s with similar properties. Therefore, clustering
multiple split clone pairs that share inversion breakpoint locations
and inversion lengths can help resolve the inversion breakpoints
more accurately (Figure 2c). To both resolve ambiguities from
multiple possible split clone pairings, and unambiguously identify
inversions, we construct an undirected graph, where each PSC is a
node, and an edge between two nodes indicates that share predicted
breakpoints.

We initially formulated the inversion detection using split clones
as a SET-COVER problem similar to VariationHunter, however, we
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Table 1. Inversions implanted on chromosome 1 for the simulation experiments.

ID Start (bp) End (bp) Length (bp) Genotype SC1L SC1R Findable1 SC2L SC2R Findable2
Inv1 4,676,940 6,950,520 2,273,580 Het (P) 4 2 Y 0 3 N
Inv2 69,598,860 72,079,080 2,480,220 Het (M) 2 3 Y 10 6 Y
Inv3 76,232,700 82,398,900 6,166,200 Hom 7 6 Y 5+4 5+3 Y
Inv4 94,844,700 98,902,620 4,057,920 Hom 8 5 Y 3+4 5+2 Y
Inv5 107,694,120 109,006,800 1,312,680 Het (P) 1 4 Y 1 4 Y
Inv6 171,527,460 176,658000 5,130,540 Het (M) 2 7 Y 1 1 Y
Inv7 185,266,200 187,919,700 2,653,500 Hom 11 5 Y 2+3 3+2 Y
Inv8 190,600,560 198,012,420 7,411,860 Hom 6 7 Y 2+4 5+4 Y

SC1L: number of split clones on the left breakpoint of the first simulation, SC2L for the second simulation (complex rearrangements). The two split clone
numbers for left/right breakpoints in the second simulation are separately shown for maternal and paternal homologs, as the deletions and duplications are
simulated as heterozygous. Findable1 shows if there are sufficient number of split clones spanning the inversion breakpoint in the first simulation. Implanted
inversions may be on one of the homologs (genotype=Het), or both (genotype=Hom). P: paternal, M: maternal copy.

observed in both simulation and real data sets that due to segmental
duplications and deletions around the breakpoints, SET-COVER

approximation selected only one of the inversion breakpoints
correctly (Supplementary Note). We therefore formulate the
problem as finding maximal quasi cliques in the inversion cluster
graph. This formulation allows some incomplete clusters, and
tolerates some false split clones to be included in a true cluster, and
as a result, increases flexibility and avoids getting stuck in a local
optimum.

We construct a graph G = (V,E) as follows. Each node in
the graph denotes a pair of split clones (PSC) that are compatible
with each other, as explained above, and each PSC will therefore
represent a potential pair of inversion breakpoints. We put an edge
between nodes if two different PSCs agree with breakpoint locations
through simple intersection. Formally,

V = {v1, v2, . . . , vm, ∀i, vi denotes a paired split clone}

E = {(vm, vn) | breakpoints(vm) intersect with breakpoints(vn)}

To find an approximate solution for the maximal quasi clique
problem, we use an approximation algorithm previously suggested
by Brunato et al. (2008), and we set the tabu, γ, and λ parameters
to 10 rounds, 50%, and 60%, respectively. We obtained the values
for these parameters by another grid optimization on experimental
graphs depicting worst case scenarios (Supplementary Note).

When a quasi clique is found, the nodes within the clique denote
a set of PSCs that are clustered together to mark an inversion.
The breakpoint of this cluster is obtained by intersecting its split
clones using a heuristic based on read pair support and the gap size.
Next, the read pair support for the breakpoints within a distance is
recalculated using the discordant read pairs. All clusters are then
checked for any overlap on one side of the breakpoints and only
the one with larger read support to split clone support ratio is kept
and the rest are discarded. We propose to use this ratio to ensure
fairness for less covered regions due to either random mapping or
repeated regions. We report the final clusters after removing those
that intersect with duplications and assembly gaps (>40%).

In addition, when we use mrFAST to map the paired-end reads,
we can also make use of the multiple possible mapping locations
of the read pairs. The alternative map locations with the inversion
signature then can be given to the dipSeq algorithm. However this

file is not precise and applying a cutoff for the edit distance is
recommended.

3.5 Experimental validation
The presence of an inversion was tested in the cell line of the
NA12878 individual predicted to carry an inverted haplotype.
Metaphase fluorescent in situ hybridization (FISH) validation was
used for inversions larger than 2 Mbp using two probes located
inside of the inversion. Interphase triple-color FISH was used to
validate inversions smaller than 2 Mbp and larger than 500 Kbp
using two probes inside and one outside the inversion.

4 RESULTS
We applied our algorithm to discover large inversions using two
simulated and one real data set. The first simulation aims to both
estimate the minimum read coverage requirements for accurate
reconstruction of clones, and the effectiveness of our algorithms
in large inversion discovery. We designed the second simulation to
understand how dipSeq behaves in the presence of other structural
variants that may have similar split clone signatures. We finally
used dipSeq to discover large inversions in the genome of an
individual of Northern European descent (NA12878). For the real
data, we compared our results with the InvFEST database of known
inversions (Martı́nez-Fundichely et al., 2014), and we applied
experimental validation for the novel inversion calls.

Table 2. Deletions implanted on chromosome 1.

No. Locus (Mbp) Length (Mbp) Genotype Site
1 4.5-4.67 0.17 Hom Inv1
2 4.68-4.7 0.02 Hom Inv1
3 6.5-6.9 0.4 Het (P) Inv1
4 7.0-7.6 0.6 Het (P) Inv1
5 65-69.5 4.5 Het (M) Inv2
6 72-73 1 Het (P) Inv2

Deletions are simulated as either heterozygous or homozygous (genotype, P:
paternal, M: maternal copy for heterozygous simulations). Site: the ID of the
closest implanted inversion (Table 1).
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4.1 Simulation Experiments
We designed two simulation experiments to test and demonstrate the
power of dipSeq for inversion discovery.

Simulation 1. First, we randomly implanted 8 large inversions
(500 Kbp to 10 Mbp) to the human reference genome (GRCh37)
chromosome 1. Half of the simulated inversions were homozygous,
and the remaining were heterozygous (Table 1). We then randomly
selected BAC-sized intervals (µ = 150 Kbp, σ = 40 Kbp) from both
chromosome 1 homologs at 4× physical coverage, which we then
randomly placed into 288 pools.

We then simulated paired end reads of length 100 bp (fragment
size µ = 600 bp, σ = 60 bp) using wgsim. We generated three
different data sets at 3×, 5×, and 10× depth of coverage to
investigate the effect of read depth in our inversion calls. We
mapped the reads to the reference genome using both BWA and
mrFAST aligners and applied our clone reconstruction method. We
were able to correctly infer 87.18% and 86.40% of the clones that
were not located on the breakpoints using the BWA and mrFAST
alignments, respectively (Supplementary Note). Using the inferred
clones, dipSeq could find all 8 inversions. It performed similarly in
terms of sensitivity at all levels of depth of coverage, and returned
no false positives.

Simulation 2. As a second simulation test, we explored dipSeq’s
performance when there are other forms of structural variation close
to or intersecting the inversion breakpoints, therefore simulating
complex rearrangements. We used the same simulated inversions
(Table 1), and we additionally implanted deletions (Table 2) and
duplications (Table 3). We also inserted two additional inverted
duplications to test whether dipSeq would predict them as normal
inversions. We then repeated our clone and paired end read
simulation as explained above. However, due to random simulation,
one of the inversion breakpoints were not “findable”. i.e. no
clones spanned the breakpoint (Table 1). After clone reconstruction,
dipSeq was able to find all remaining 7 inversions correctly even
at 3× sequence coverage. It is, however, interesting that when we
increased the read depth to 15× and 20×, the predicted breakpoints
for one of the inversions shifted a few basepairs from the real ones.
This may be due to an increase in spurious mapping within repeat
regions, thus increasing the chance of observing reads that falsely
map in close proximity. In addition, dipSeq did not incorrectly
identify inverted duplications as bona fide inversions. We provide
our algorithm to prevent such incorrect calls in the Supplementary
Note.

Whole genome sequencing based inversion calling We then
tested the efficacy of using whole genome sequencing (WGS)
based inversion discovery algorithms. For this purpose, we
simulated WGS data sets, again using wgsim, at 3×, 5×,
10×, 15×, and 20×. Next we mapped the simulated reads to
the reference human genome (GRCh37) with both BWA and
mrFAST, to test the detection performance of three algorithms:
INVY (Rausch et al., 2012), LUMPY (Layer et al., 2014), and
VariationHunter (Hormozdiari et al., 2009). We used the BWA
alignments for INVY and LUMPY, and mrFAST alignments for
VariationHunter, as per each tool’s usage recommendations. As
expected, INVY and LUMPY failed to discover any of the
implanted inversion events, as they are mainly designed for
finding shorter inversions. VariationHunter was able to identify

Inv5 (Table 1), which may be due to VariationHunter’s ability to
incorporate all map locations, and a higher maximum inversion size
threshold.

4.2 Real data set from NA12878
Next, we tested dipSeq using a real pooled clone sequencing data
set generated from the genome of NA12878. We mapped paired-
end reads from a total of 288 pools (Methods) using both BWA
and mrFAST to the reference genome. Average fragment length
of the paired end reads was ∼450bp, with a standard deviation of
98bp. Using our algorithms, we reconstructed the clone locations,
which showed an average clone length of ∼140 Kbp and a standard
deviation of 40 Kbp.

For inversion discovery, we set the minimum and maximum
inversion size thresholds as 500 Kbp and 10 Mbp, respectively.
Although it is theoretically possible to detect inversions as small
as a typical BAC size (150-200 Kbp), we chose the minimum size
as 500 Kbp due to the limitations of the FISH method we used for
validation (Methods). We permitted a gap between paired regions
up to 200 Kbp, and an overlap of 1Kbp (Figure 1b). After the initial
split clone clustering and maximal quasi clique approximation
(Methods), we filtered those regions without read pair signature
support. We generated two main callsets using BWA and mrFAST,
selected a total of 11 inversions with high support for experimental
validation (Table 4). We then compared our predictions with the
known inversions reported in the InvFEST database (Martı́nez-
Fundichely et al., 2014), and found that dipSeq could correctly
identify all 3 inversions that are previously validated in the genome
of the same individual; a 5 Mbp inversion in 8p23.1 (Antonacci
et al., 2009), a 1.5 Mbp inversion in 17q12 (Antonacci et al.,
2009), and a 2 Mbp inversion in 15q13.3 (Antonacci et al., 2014)
(Table 4). Out of the remaining 8 inversion predictions, 2 could not
be tested due to the segmental duplications around the breakpoints.
We tested the remaining using FISH experiments (Methods), and
validated a novel inversion in 15q25 locus (Figure 4a,b). We also
show the visualization of a previously characterized 15q13 inversion
(InvFEST ID: HsInv1049) using the SAVANT browser (Fiume et al.,
2012) in Figure 4c. We also used dipSeq with different parameters
and generated two more data sets, which are not extensively tested
(Supplementary Table 3).

5 DISCUSSION
In this paper, we presented a novel algorithm, dipSeq, to
characterize large genomic inversions using a new sequencing
method initially developed to improve haplotype phasing. Although
it suffers from high false positive rate using real data (Table 4),
dipSeq was able to identify all previously validated inversion events,
and also discover a novel variant. Furthermore, dipSeq performed
better with simulated data, suggesting that the relatively poor
performance with the NA12878 genome may be improved with
higher depth of coverage.

There are multiple directions that we can take to further improve
dipSeq. First, to reduce the false discovery rate, we may incorporate
split read sequence signature (Ye et al., 2009), and we may perform
local de novo assembly around the predicted breakpoint intervals
with an approach similar to TIGRA (Chen et al., 2014). However,
since both of these methods need high sequence coverage, they
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Fig. 4. Inversions discovered by dipSeq in the NA12878 genome. (A) Novel inversion found at chr15:30,433,406-32,898,559 (inner coordinates). We show
the locations of split clones and the supporting read pairs using the SAVANT browser (Fiume et al., 2012). (B) Experimental validation of the novel
inversion discovered using interphase FISH (green-red-blue: direct, green-blue-red:inverted). (C) SAVANT browser view of the previously known inversion at
chr15:83,089,659-84,865,500. SAVANT read pair colors are as follows. Light blue: concordant, red: discordant by length, dark blue: one end inverted, yellow:
everted (tandem duplication), gray: one end unmapped.

Table 3. Duplications implanted on chromosome 1.

No. Target Locus (Mbp) Genotype (target) Source Locus (Mbp) Genotype (source) Length (Mbp) Site Type
1 77 Hom 75-77 Hom 2 Inv3 Direct
2 81 Hom 83-84 Hom 2 Inv3 Direct
3 95 Het (P) 92-94 Het (M) 2 Inv4 Direct
4 97 Hom 98-99 Het (M) 1 Inv4 Direct
5 109 Hom 106.5-107.5 Het (M) 1 Inv5 Direct
6 174 Het (M) 175-177 Het (M) 2 Inv6 Direct
7 200 Hom Inv7.start-Inv7.end Hom 3 - Inverted
8 221 Het (M) 217.8-219 Het (M) 1.2 - Inverted
9* 223 Het (P) 217.8-219 Het (P) 1.2 - Inverted

After implanting inversions (Table 1), we copied genomic segments from the one or both of the homologs (source genotype and locus) to the target homolog
and loci. Duplications 1-6 were in direct orientation, and 7-9 were inverted. Duplication #7 shares the same breakpoints with Inv7. ∗The duplication was
inserted twice.

might not be suitable to directly apply to the low-coverage data set
we used. Instead, it will be better to simultaneously use WGS data
generated from the genome of the same individual. Since the PCS
method also requires WGS data for haplotype phasing, it can be
expected to generate matching PCS-WGS data sets from the same
genomes.

dipSeq can also be extended to characterize other forms of
large structural variation, including deletions, insertions, direct
and inverted duplications. Each of these types of SV present

themselves with different split clone signatures that we summarize
in Supplementary Figure 10. We also note that, determining the
location of a segmental duplication event is yet a largely unsolved
problem, even when long reads are used (Chaisson et al., 2014). It
may also be possible to discover translocations using split clones,
however, chance of finding incorrect split clones will also increase,
causing a reduction in the performance of maximal quasi clique
approximation.
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Table 4. Summary of inversions predicted in the genome of NA12878 using dipSeq.

InvFEST ID chrom start end size status dipSeqBWA dipSeqmrFAST

- chr2 87,588,105 90,486,279 2,898,174 not tested No Yes
- chr7 72,617,615 74,198,333 1,580,718 not confirmed No Yes
HsInv0501 chr8 6,922,489 12,573,597 4,695,489 confirmed (InvFEST) Yes Yes
- chr10 48,910,559 51,462,948 2,552,389 not tested Yes No
- chr15 23,564,857 28,612,825 5,047,968 not confirmed Yes Yes
HsInv1049 chr15 30,370,112 32,899,708 2,032,351 confirmed (InvFEST) Yes Yes
- chr15 83,089,462 84,865,500 1,776,038 confirmed (novel) Yes Yes
- chr16 21,931,735 30,233,983 8,302,248 not confirmed No Yes
HsInv1048 chr17 34,725,850 36,295,000 1,512,198 confirmed (InvFEST) Yes Yes
- chr22 18,766,919 21,560,727 2,793,808 not confirmed No Yes
- chr22 20,697,917 21,505,192 807,275 not confirmed Yes No

dipSeq returns four coordinates for each inversion for the two breakpoint estimations. The coordinates above are the inner breakpoint predictions, and are
from the GRCh37 reference genome. The InvFEST database reports inversions in NCBI build 36 coordinates, however, we converted the coordinates using the
liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). We note that the novel inversion we predicted and confirmed is listed in the InvFEST database
(ID: HsInv0547), as “unreliable prediction”. dipSeqBWA: predictions using BWA alignments, dipSeqmrFAST : predictions using mrFAST alignments (edit
distance ≤ 4) and all possible map locations for read pairs. We tested dipSeq using two other mapping parameters which returned slightly different results
(Supplementary Table 3).

In summary, dipSeq is the first algorithm that can discover large
genomic inversions using high throughput sequencing technologies.
Our understanding of the phenotypic effects of inversions is still
limited, and one of the reasons of this is the lack of reliable and
cost effective methods to characterize such events. This is also
true for other complex rearrangements such as duplications and
translocations. Improvements in characterization of large complex
rearrangements will help us better understand the biological
mechanisms that lead to phenotypic difference, disease, and
evolution.
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