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Abstract: 

 

Background: 

 

Genome-scale “-omics” measurements are challenging to benchmark due to the enormous variety 

of unique biological molecules involved.  Mixtures of previously-characterized samples can be 

used to benchmark repeatability and reproducibility using component proportions as truth for the 

measurement.  We describe and evaluate experiments characterizing the performance of RNA-

sequencing (RNA-Seq) measurements, and discuss cases where mixtures can serve as effective 

process controls. 

 

Results: 

 

We apply a linear model to total RNA mixture samples in RNA-seq experiments.  This model 

provides a context for performance benchmarking.  The parameters of the model fit to 

experimental results can be evaluated to assess bias and variability of the measurement of a 

mixture.  A linear model describes the behavior of mixture expression measures and provides a 

context for performance benchmarking.  Residuals from fitting the model to experimental data can 

be used as a metric for evaluating the effect that an individual step in an experimental process has 

on the linear response function and precision of the underlying measurement while identifying 
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signals affected by interference from other sources.  Effective benchmarking requires well-defined 

mixtures, which for RNA-Seq requires knowledge of the messenger RNA (mRNA) content of the 

individual total RNA components. We demonstrate and evaluate an experimental method suitable 

for use in genome-scale process control and lay out a method utilizing spike-in controls to 

determine mRNA content of total RNA in samples.  

 

Conclusions: 

 

Genome-scale process controls can be derived from mixtures.  These controls relate prior 

knowledge of individual components to a complex mixture, allowing assessment of measurement 

performance.  The mRNA fraction accounts for differential enrichment of mRNA from varying total 

RNA samples.  Spike-in controls can be utilized to measure this relationship between mRNA 

content and input total RNA.  Our mixture analysis method also enables estimation of the 

proportions of an unknown mixture, even when component-specific markers are not previously 

known, whenever pure components are measured alongside the mixture. 

 

Keywords: 

 

RNA sequencing, RNA-seq, Gene expression, mixture deconvolution, expression deconvolution, 

process control, spike-in control, ERCC 

 

Background: 

 

Measurement assurance for genome-scale measurements is challenged by the impracticality of 

creating a sample containing known quantities of tens of thousands of components, such as the 

RNA transcripts measured in an RNA-seq experiment.  Deep sequencing of cellular RNA can 

generate vast quantities of gene expression information, yet measurement biases have been 

identified at nearly every step of the library preparation process [1-4]. 

 

As RNA-sequencing expression data expands from discovery into clinical applications, the sources 

and magnitudes of bias and variability must be carefully understood and quantified.  The basic 

units of expression in sequencing, such as transcripts per million reads (TPM) or fragments per 

kilobase per million reads (FPKM), are still undergoing revision [5,6].  Even when using 
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comparable units, it is rarely possible to directly compare gene expression values reported by 

different labs, on different instruments, or frequently just on different days [6-8], unless special care 

is taken to use uniform samples and protocols.  Identifying the presence and variation of biases in 

a measurement process over time requires a standard to be used for process control.  The regular 

use of a process control can help determine the most-appropriate protocol and analysis methods, 

demonstrating that they accurately represent the true changes in the underlying sample. 

 

Ideally, a measurement process is linear and possesses a known precision.  A linear measurement 

process shows an increase in signal proportional to an increase in the object being measured.  It is 

also helpful if measured signal is additive, arising only from a single source.  Precision consists of 

repeatability and reproducibility, defined as the degree of closeness in multiple measurements 

made by a single user and the closeness between multiple labs, respectively.  We show that 

mixtures can demonstrate that a measurement’s response function is linear and of high specificity 

(free of interference or cross talk) while measuring its variability and precision.  Properly 

constructed mixture samples can be used to correct for systematic measurement errors, provide 

ongoing monitoring of performance, serve as a tool for interlaboratory comparison, and create a 

context for evaluating batch effects, protocols, and informatic analyses.   

 

There are two approaches to creating useful genome-scale standards. One is the creation of a 

limited number of external spike-in controls, such as those designed by the External RNA Controls 

Consortium (ERCC), which were created for microarrays and have been applied to next-gen 

sequencing [9-11].  A second approach utilizes mixtures of previously characterized samples in 

defined ratios, and has also been applied to microarrays [12-14] but has not been utilized in other 

genome-scale measurements.  Using these types of standards provides confidence in the ability of 

a test to detect both positive and negative results, determining the limits of that detection.  

 

Mixtures can serve as a test that applies to each of the tens of thousands of transcripts in a 

sample’s transcriptome.  Linearity of the measurement response can be demonstrated based on 

the fundamental understanding that a mixture is a linear combination of its components.  Previous 

work with mixtures in microarrays[12-14] utilized an arbitrary 10-fold “selectivity” cutoff to evaluate 

the linear dynamic range of microarray measurements and understand the variability of these 

measurements.  The arbitrary selectivity cutoff in previous work prevents the identification of 
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interference, as any genes affected by interference would be filtered by the stringent selectivity 

cutoff.  

 

Using known mixture compositions, predicted values can be calculated based on the assumption 

that the measurement response is linear.  Deviation of the observed values from the model-

predicted value is an indication of bias in the measurement.  Systematic biases could be 

introduced by sample preparation, signal processing, interference from related or mis-annotated 

genes, or sampling variation.  Signal arising from off-target molecules, such as a closely related 

transcript, can cause false positive results and result in a lowered specificity.  Mixture samples can 

provide information about the measurement sensitivity, specificity, repeatability, reproducibility, 

dynamic range, and limit of detection. 

 

Determining the relative contributions to gene expression of individual components within mixtures 

of biological states has received some attention in clinical research, where biopsies and other 

patient samples are often mixtures.  The process of resolving gene expression signals introduced 

by each individual component of a mixture [13-23] has been used to account for tumor 

heterogeneity and to separate whole blood samples into individual cell types.  These procedures 

often separate mixture components based on a subset of genes forming a signature that varies 

uniquely between components. These deconvolution methods have been used [27-30] to develop 

high-resolution tumor expression signatures from imperfect biological samples [31,32] and 

differentiate between cell-type-frequency changes and per-cell gene expression changes 

[33,17].  Many of these methods can determine mixture component types by using a linear model 

where mixture expression is treated as a combination of expression signatures.  

 

One parameter notably absent from these methods is RNA content.  Different cell types express 

different total amounts of RNA per cell, confounding estimates of cell type proportion made based 

on the quantification of total RNA [24].  Others have introduced the concept of a biological scaling 

factor [25,26] to compensate for variation in the RNA content of cells, including the use of spike-in 

controls to determine this factor.  The enrichment of mRNA from total RNA adds a bias to the 

experiment due to the different abundance of mRNA between cell types. 
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We assess linear response, specificity, and accuracy of genome-scale measurements using 

mixtures.  In the process, we demonstrate that linear models can be used to separate these 

mixtures into the proper components.  We were mindful that while our mixtures were of total RNA, 

the sequencing process filters for mRNA, and that the relationship between these two values is an 

important factor when interpreting results.  We anticipate that a mixture-based approach to 

measurement assurance is highly generalizable to many types of mixtures and can be extended to 

the wide variety of genome-scale measurements, including but not limited to proteomic and 

metabolomic measurements.   

 

Results: 

 

To assess measurement parameters of genome-scale transcriptome data, we analyzed two RNA-

seq experiments measuring synthetic mixtures of commercially available human total RNA 

samples (Figure 1)[13,14,34].  One experiment included a mixture of two reference total RNA 

samples, sequenced by 9 laboratories as a part of the Sequencing Quality Control Consortium 

(SEQC) [34-35].  In this study, the 9 laboratories sequenced the following samples: Universal 

Human Reference RNA spiked with ERCC ExFold RNA Spike-in Mix 1 (SEQC-A), Human Brain 

Reference RNA spiked with ERCC ExFold RNA Spike-in Mix 2 (SEQC-B) and two mixtures of 

SEQC-A and SEQC-B (SEQC-C and SEQC-D) with mixture compositions C=3A+1B and 

D=1A+3B.  These four samples were sequenced by 9 labs using either Illumina or Life 

Technologies sequencing instruments. 

 

The second sample, BLM, contains two mixtures (BLM-1 and BLM-2) composed of total RNA 

isolated from human brain (B, the same RNA as SEQC-B), liver (L), and muscle (M) tissue.  These 

two mixtures were made with component proportions of 1B:1L:2M and 1B:2L:1M.  The total RNA of 

each individual tissue were also sequenced as single component samples to provide an 

expression signature for each tissue. ERCC spike-in control RNAs[12] prepared by NIST were 

added to the BLM mixtures and individual components.  Two spike-in control pools were designed 

with ratiometric differences in the concentration of individual ERCC spike-ins.  As expected based 

on the mixture designs, ERCCs spiked-in equally yielded equal expression signal, while signal 

from ERCCs spiked differentially into multiple subpools was at ratios corresponding to the 

designed fold changes.  Poisson sampling at the lower expression levels results in increased 

dispersion about the expected ratio [49].  
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These mixtures were designed to have a defined expression signal ratio between them.  For 

example, if the measurement response were linear and unbiased, the signal in the SEQC-C 

sample would be exactly 1/4 the signal of SEQC-B plus 3/4 the signal from SEQC-A due to the 

design of the mixture.  However, these total RNA mixtures went through RNA-seq library 

preparation, which purposely removes ribosomal RNA from the sample.  The resulting sequence 

data reflects this filtration, which can be different from sample to sample. A correction for this 

differential enrichment, including upper-quartile normalization[36], must be applied to accurately 

reflect the experimental process and allow the model to return the designed ratios of expression 

between mixtures (Supp.Figure 1).   

 

Linear model-based analysis of genome-scale gene expression 

 

We observed that mixture expression is a linear combination of the component samples and the 

mixture proportions of each component.  Equation 1 describes the relationship between signal in 

the mixtures and signal in the constituent samples.  A mixture M (two per dataset in this study) is 

composed of a number of named components C (“B”,”L”, and ”M” in the Brain/Liver/Muscle mixture 

or “A” and “B” in the SEQC dataset), with each component comprising a proportion of the mixture 

ΦC.  𝜒i,M  is the expression signal arising from a particular gene/transcript i in mixture M. 

 

Equation 1: 𝜒i,M=   𝜒𝑁
𝐶=1 i,C×ΦC,M  

This study uses four mixtures of the same general form: 

𝜒i,BLM1=𝜒i,B×ΦB,1 +𝜒i,L×ΦL,1+ 𝜒i,M×ΦM,1 

𝜒i,BLM2=𝜒i,B×ΦB,2 +𝜒i,L×ΦL,2+ 𝜒i,M×ΦM,2 

𝜒i,SEQC-C=𝜒i,SEQC-A×ΦA,C + 𝜒i,SEQC-B×ΦB,C 

𝜒i,SEQC-D=𝜒i,SEQC-A×ΦA,D + 𝜒i,SEQC-B×ΦB,D 

 

These mixtures were made from total RNA, while the expression signal (sequencing reads) arises 

only from the mRNA.  As the fraction of the total RNA mass that is mRNA varies between cell 

types, the filtering of total RNA into mRNA introduces a bias. Supplemental Figure 1 shows the 

offset from the expected ratios of tissue-specific and ERCC RNA caused by this bias.  We correct 

the specific equations for the mRNA fraction by multiplying each component by a factor ρ.  This 
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factor corresponds to the measured mRNA compared to the mass of total RNA in each mixture.  ρC 

is defined as the amount of measured RNA per unit total RNA in component C.   

 

Including this factor, the BLM1 mixture equation becomes Equation 2:  

𝜒i,BLM1=𝜒i,B×ΦB,1×ρB +  𝜒i,L×ΦL,1×ρL + 𝜒i,M×ΦM,1×ρM 

 

There are a few approaches that have been described to measure ρ.  One study directly measured 

the mRNA content between SEQC-A and SEQC-B samples [36].  Another described the use of 

trimmed mean of log expression ratios (TMM)[25] to measure mRNA content from RNA-seq 

data.  TMM-derived factors have been shown to be an appropriate measure in cases where there 

is no global expression level change (such as the SEQC mixtures), but introduce bias if there are 

global expression changes (such as in the BLM mixtures)[26].    

 

The ρ factor can be determined using spiked-in RNA[26] as sample reads per microgram of total 

RNA divided by spike-in reads per microgram of spike-in RNA.  This calculation emphasizes that 

the mRNA fraction is a correction for the differential enrichment between polyadenylated spike-in 

RNA and total RNA, which is only partly composed of mRNA. 

 

Figure 2 compares the distributions of spike-in estimated rho factor ratios across the SEQC 

samples compared to the direct measurement of mRNA quantities in total RNA made previously 

[36].   While the ρ factors do not permit direct mRNA content measurement, the ratiometric 

measurements of pairs of samples have distributions that are similar to that of a normal distribution 

with parameters based on the previous mRNA content measurements of SEQC-A and SEQC-B. 

Additionally, the expected equalities of ρC= ρA*.75+ ρB*.25 and ρD= ρA*.25+ ρB*.75 hold true to 

within 5% of ρA, indicating that the mRNA content of a mixture is a linear combination of the mRNA 

content of its components.  Additionally, solving the system of BLM equations only for the mRNA 

fractions (inputting the known proportion values) yields very similar mRNA fractions to those 

calculated from spiked-in RNA, leading us to be confident in these measurements. 

 

The mRNA fraction ρ is a property of an individual RNA sample and is affected by any RNA 

manipulation - particularly the mRNA enrichment step in sample preparation.  For replicates within 

a single polyA-selected SEQC experimental run, the ρ of a mix varies slightly, likely due to 
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fluctuations in efficiency of mRNA enrichment. (S.Table 1) It is also important to note that FPKM 

units should not be used to calculate mRNA fraction (Supp.Figure 2), as the FPKM derivation [6] 

includes a term coupling sample abundance to spike abundance. 

 

Mixture analysis models recapitulate known mixture proportions 

 

To demonstrate the accuracy of this analytical framework of mixtures, the mixture proportions ΦBLM 

were recalculated for the BLM mixtures BLM-1 and BLM-2.  The ρ values and the sequencing 

expression data Xi were used to solve for the mixture proportions ΦBLM by linear regression to the 

mixture equation.  Figure 3 shows that the experimentally observed counts are highly correlated 

(R^2=0.996) to the equation-solved counts Xi for each transcript.  Figure 4 shows the ΦBLM values 

at which residuals were minimized for the two mixtures for each replicate sample in each 

laboratory.  Estimates of the three component proportions in the two mixtures are consistent with 

the designed 25:25:50 and 25:50:25 proportions in the two BLM mixtures.  Figure 5 shows that the 

designed proportions of SEQC mixtures across each of nine labs can also be calculated by this 

equation, returning the 75:25 and 25:75 proportions for mixes C and D, with some variability 

between labs.  Equation 1, which lacks correction for mRNA fraction, does not return the designed 

ratios (Supp. Figure 3).   

  

Linear model-predicted mixture counts are equivalent to replicate measures 

 

In studies by the SEQC [34], differential expression between replicate samples was utilized to 

evaluate measurement performance based on the hypothesis that the control samples used in the 

study had no true differences between replicates.  We created pseudo-replicate predicted count 

values from the single component samples for use in benchmarking.  These simulated mixtures 

were built based on the measured mixture expression and the true mixture proportions.  

 

Figure 6 shows a dendrogram of the distance between actual mixture expression and predicted 

expression counts of SEQC samples.  The four base samples A, B, C, and D are most distant from 

one another, reflecting the biological differences between the samples.  Samples A and C are 

more closely related, as C consists of 75% A and 25% B.  Modeled pseudo-replicate samples Cm 

and Dm across each of the six SEQC sites are no more different than cross-lab replicates of the C 

and D data, indicating that building the model for mixture C from components A and B does not 
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introduce significant variability.  This supports the treatment of modeled mixtures as replicate 

measurements expected to have no true differential expression from the mixture samples.  Any 

detected differential expression between a mixture and its predicted expression values is indicative 

of a bias in the measurement process.  In the BLM or SEQC datasets, differential expression was 

detected only in the ribosomal RNA genes (NR_003286.2, NR_003287.2, NR_023363.1).  This 

detected differential expression reflects the sample to sample variance in rRNA depletion. 

 

Discussion: 

 

Mixtures of biological samples can be useful as process controls for measurements with linear 

response functions. A mixture can be treated as linear combination of its components.  Two 

experimental datasets with known mixture parameters were used to test the linearity of RNA-seq 

measurements.  In RNA-seq, the mRNA fraction of the total RNA mixture components must be 

accounted for in order to reflect the fact that mixtures of RNA are calculated based on mass 

fractions of total RNA and the sequencing experiments measures only mRNA.   

 

Mixtures with either known or unknown proportions can be analyzed.  If mixture proportion 

information is known a priori, genome-scale data can be used as a process control to test the 

repeatability and sensitivity of measurements by comparing observed and expected 

measures.  Alternatively, if the mixture proportions are an unknown and desired parameter, 

expression measures from the mixture in combination with the single components can be used to 

experimentally determine the mixture proportions.  This application can be valuable to un-mixing 

biological mixtures, including clinical mixtures, cell cultures, and xenografts[27-32].  While the 

mRNA fraction correction is required for RNA-sequencing measurements, the general mixture 

model is theoretically applicable to any measurement with a linear response function.  

 

Mixtures can provide measurement process assurance to a sequencing experiment.  Using mixture 

samples alongside pure samples, one can demonstrate the reproducibility and sensitivity of 

genome-scale RNA, protein, as well as metabolite measurements. The main goal of this type of 

mixture analysis is to create a known ratio value by which the measurement characteristics of an 

experiment can be assessed.  While an experiment’s measurement of this known ratio is not 

sufficient to prove the validity of the measurement, it is a necessary condition, and any deviations 

are indicative of bias.   
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We demonstrate process control usage of mixtures by comparing the nine SEQC sites. Figure 5 

shows a summary plot of the estimated component fractions for each sample.  The dispersion and 

bias of the points from the target value give an indication of the overall process accuracy. Within 

this set of labs there are easily discernable changes, which could indicate process errors.  Site 1 

looks strong – there is no bias, and a modest and regular level of dispersion. In site 2 the 

dispersion of component C is exaggerated, suggestive of an issue in the handling of that particular 

sample.  Site 4 has less dispersion than site 1, but has introduced a bias.  Site 7 is from a 

completely different sequencing instrument, and shows that there is similar dispersion to the 

previous instrument, but a bit of a bias.  However, site 8 shows that this bias does not occur in 

every run.  This comparison of SEQC sites, shows that even these summary plots can detect 

differences between runs.  It is for this reason that we suggest the use of mixtures as process 

controls for RNA-seq experiments.  Comparing the dispersion and bias as you make changes to 

your experimental process allows you to evaluate the effect of these changes on the measurement 

quality.  Text box 1 describes several types of changes that can be evaluated in this way. 

 

While we demonstrate mixture analysis with two specific samples, the analysis is fully 

generalizable to any number or type of mixture components. Any mixture split into known individual 

components can be measured in this way. For example, a clinical researcher may have three 

samples of interest from healthy, chronically diseased and acutely diseased sources.  A mixture of 

these three cell types would provide confidence in the measurements made on the three samples 

individually by verifying the repeatability of that measurement.  It can also provide a benchmark 

sample to assess comparability over space and time.  These mixtures can detect biases 

introduced by batch effects, operator effects, sample mislabeling, and technical artifacts while 

evaluating the variability of the measurement.  Mixture samples with known proportions can help 

determine experimental reproducibility and discover technical artifacts introduced by the 

measurement process by comparison of the expected to observed proportions.   

 

With this analytical model, end users and core facilities can use known mixtures as a process 

control to track changes in measurement quality whenever changes to the experimental process 

are made. By including a predefined mixture, cross-sample comparisons can be made to 

demonstrate the internal consistency of measurements made using any new experimental 

technique, kit, or downstream analysis tool. In this way, there is some assurance that changes in 
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experimental protocol have not affected measurement reproducibility.  Residuals from modeled 

counts can be used as a metric to evaluate the magnitude of effect an experimental process has 

on the linearity and precision of underlying measurements.   

 

In addition to gaining an understanding of the measurement process using the benchmarking 

workflow, unknown samples can be collected and studied to determine the relative proportion of 

known components.  Proportions of components can be determined even in the absence of any 

type-specific markers, given measurable differences in expression between the cell types. 

 

Resolving the composition of mixtures has proven useful in determining the purity of cell lines or 

proportions of heterogeneous cells, in identifying interesting cellular contaminants such as partially 

differentiated cells, and understanding clinical samples containing mixed cell types.  In contrast to 

approaches using transgene expression [41], the mixture model described here can evaluate tissue 

sample purity without focusing on a handful of tissue-specific genes, marker genes, or transgenes. 

We expect mixed-sample RNA to be useful in regulatory applications, where a demonstration that 

a therapeutic stem-cell mixture has a specific composition may be key to ensuring safety and 

efficacy [48]. 

 

Spike-in controls measure mRNA content of samples 

 

In addition to providing limit of detection and cross-experiment comparison characterizations of a 

dataset, spike-in controls can be used in mixture samples to determine the mRNA fraction of cells.  

mRNA fraction is a critical parameter for comparing samples that do not have identical total RNA 

content.  This is most relevant to cells with variable global expression [24], including comparisons 

across and within cell cycle, tissues, and developmental states [40].  mRNA fraction is also critical 

in single cell gene expression studies, where lysis efficiency and total RNA content can vary 

greatly from cell to cell. 

 

We demonstrate that the ERCC controls can be used as an estimator of mRNA content within 

samples.  Of note, the SEQC study[34] results showed a large degree of variation in sample 

sequencing library preparation even at the same site, but that the sequencing library replicates 

prepared at a single site and then sequenced at multiple laboratories resulted in very consistent 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2015. ; https://doi.org/10.1101/015107doi: bioRxiv preprint 

https://doi.org/10.1101/015107
http://creativecommons.org/licenses/by/4.0/


measurements between sites.  Variation in library prep is primarily due to variability in mRNA 

enrichment, and is the primary source of variability in spike-in controls[39, 49].   

 

There are many methods used to determine component gene expression profiles from mixture 

samples.  To the best of our knowledge, our method is the only one that accounts for mRNA 

fraction.  In RNA-seq experiments, mRNA fraction can be calculated with information obtained via 

spike-in controls.  When comparing samples with variable mRNA content, bias arises when that 

variability is not accounted for.  We describe a straightforward method for measuring the 

enrichment of mRNA in RNA-seq samples using spike-in RNA.  We show that mRNA-corrected 

deconvolution of two mixture datasets returns the best approximation of known mixture proportions 

(Figure 4+5), demonstrating suitability for solving unknown mixtures of known components. 

 

Previous methods used to determine the composition of RNA-seq mixtures make inaccurate 

estimates of mixture proportion in the BLM sample where the mRNA fractions vary substantially 

between mixture components.  These methods are nearer to true values in the SEQC sample, 

where the mRNA fraction difference is less significant, but all estimates are improved by 

incorporating mRNA content (Supp. Figure 3).   

 
Recommendations for use: 
 

Control mixtures most easily demonstrate that an experimental process is linear and internally 

consistent, and can track the changes in variability over time.  A first experiment with a new 

process should utilize these controls to demonstrate the reproducibility of measurements between 

single component and mixture samples.  Subsequently, changes to the process can be evaluated 

by comparing the model residuals before and after the change.  For example, a lab interested in 

changing from a total RNA measurement to a messenger RNA measurement may wish to evaluate 

if this change had any effect on sequencing output.  The change in the sum of residuals between 

these two different experiments would allow a global comparison, while the change in residuals of 

individual genes may highlight a set of genes, which become inconsistently biased between 

experiments.  Text box 1 shows three potential use cases for mixtures used as process control.   

User  Sample Design Time to use Benefit 
Technology and 
Experimental 
Protocol 

Mix 2-3 
components of 
biological interest 

When validating 
experimental 
protocols and/or 

Demonstrate the 
ability of a protocol 
and/or technology 
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Developers appropriate for use 
to evaluate the 
experimental 
protocol/technology  

technology 
platforms 

platform to 
consistently 
measure 
transcripts of 
interest 

Core Labs Repeated 
measures of 
highly-available 
samples 

After changes in 
technician, prototol, 
reagents, or 
technology 
platform, etc. 

Show internal 
consistency of 
output and linearity 
of measurements 
Identify biases 
Understand 
dispersion 
 

Informaticians Relevant samples, 
public data (eg: 
SEQC, this study) 

When comparing 
informatics 
analysis tools or 
developing new 
tools 

Use non-simulated 
benchmark 
datasets to 
determine how 
accurate results 
are.  

 

Limitations 

 

Although mean mixture proportion values returned from a linear combination of mixture 

components approximate the nominal mixture proportion in both measured samples, the increased 

variability of the muscle estimate in the BLM mixture (error bars, Figure 4) suggests that there is a 

lower limit to being able to determine low-abundance mixture components.  Due to mRNA fraction, 

the muscle component of the BLM mix was as low as 10 percent of sequenced RNA in BLM-2.  It 

may be possible to determine lower-proportion mixture components with confidence, but this study 

did not generate the required data to do so.  

 

Our estimation of mRNA fraction is imperfect; an assumption of the model we built is that the 

mRNA fraction is constant between replicates of the same sample.  Supplemental Table 1 shows 

that the mRNA fraction varies by as much as 5 percent from library to library.  This variability is a 

source of error in our model.  The variability in mRNA fraction is likely due to batch effects in the 

mRNA enrichment process.  This hypothesis is reinforced by the prevalence of non-mRNA 

transcripts incorrectly called as differentially expressed between mixture replicates.  The 
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sequencing technology and library preparation methods used in these experiments also added 

limitations to the experiments.  These are described in supplemental note 1. 
 

Conclusions 

 

We demonstrate the linear response function and specificity of RNA-sequencing measurements 

using mixtures of biological samples.  We recommend the use of such mixtures as benchmarks to 

characterize the repeatability and reproducibility of experiments.  Spike-in controls can be used to 

calculate the mRNA content of total RNA mixtures, compensating for biases introduced by mRNA 

enrichment.  Our method creates a framework for using mixtures in measurement process control 

and corrects for biases introduced by ribosomal depletion.  Using an mRNA fraction correction 

improves the accuracy of mixture proportion determination in RNA-seq experiments. 
 

Benchmarking genome-scale measurements using mixed samples will remain useful even after the 

era of short-read sequencing is over.  Answering the biological question of “what types of cells are 

in the mixture I’m sequencing?” requires more information than even a perfect transcriptome 

reconstruction could provide.  The biological and measurement value added by mixed samples are 

demonstrated here to be platform-independent.  We anticipate that mixtures can provide the same 

measurement assurance to protein and metabolite measurements.  Confidence in the 

reproducibility of measurement and understanding the components in complex biological samples 

will always be a staple of quality science. 
 

Methods: 
 
Library Preparation: 
For the BLM experiment, Human Brain Reference RNA, Human Liver Total RNA, and Human 
Skeletal Muscle Total RNA were purchased from Ambion.  This purified RNA was quantified by 
absorbance on a NanoDrop 1000, mixed in the specified proportions, then spiked with ERCC RNA 
transcribed from NIST SRM 2374.  For Illumina sequencing, the Illumina TruSeq protocol was 
followed.  HiSeq runs generated 100+100bp paired-end reads.  Solid 5500 sequencing followed 
the Life Technologies Whole Transcriptome protocol, yielding 75+35 bp paired-end reads.  Spike-
in composition and amounts are included in the data submission to ENA. 
 
Quantitation and Data Normalization:   
BLM gene counts were based on raw count data quantified using HTSeqCounts [40] based on a 
variety of genome and transcriptome references [42-45] after mapping reads to the genome with 
Topha t[46].  Raw counts were then normalized using the upper quartile method implemented in 
EdgeR [36]. Supplemental Figure 3 utilizes RSEM [47].  HTSeq-counts version 0.5.4 was run with 
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options to deal with non-stranded reads in the intersection-nonempty mode.  The SEQC data used 
are available as count tables from GEO GSE47774. 
 
Calculating Unknown Mixture Estimates:  
The relative abundance of components in unknown mixtures were calculated by first observing the 
mean mRNA fraction for the neat components across replicates.  The count data in the mixture 
was set as the response, predicted by the count data from the individual components modified by 
the mRNA fraction, as based on the mixture equations.  An example R script ‘generalmixturesolver’ 
is provided at http://github.com/usnistgov/mixtureprocesscontrol as a supplemental file to clarify 
this procedure.   
 

Availability of supporting data: 
The SEQC data is available from GEO GSE47774. 
[http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47774] 
The BLM data is available from the European Nucleotide Archive, PRJEB8231. 
[http://www.ebi.ac.uk/ena/data/view/PRJEB8231] 
Figure code, count tables, and example scripts available on 
https://github.com/usnistgov/mixtureprocesscontrol 
List of Abbreviations: ERCC - External RNA Control Consortium, TPM – Transcripts per Million, 
FPKM – Fragments per Kilobase per million mapped reads, mRNA – messenger RNA  
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Figure	
  Legends:	
  	
  	
  
	
  
Figure 1:  RNA samples used in this study.  RNA isolated from pure tissues is used to generate 
pairs of mixtures used in two separate experiments.  (a):  Two SEQC mixtures (SEQC-C and 
SEQC-D) are built from two components (SEQC-A and SEQC-B).  (b):  Two BLM mixtures (BLM-1 
and BLM-2) are built from three components.  The SEQC-B component (HBRR) is from the same 
source as the Brain BLM component.  Per-sample target ratios of tissue proportion between 
mixtures are shown.  

Figure2:  Distributions of empirical (light) and ERCC-estimated (dark) mRNA content ratios 
between SEQC samples A:B, A:C, and A:D.  The empirical distribution was simulated from a 
normal distribution with means of 2.87 and 2.003 and standard deviations of 0.095 and 0.124 for 
samples A and B, as reported previously [37].  The ERCC-estimated values were calculated from 
Equation 3.  Individual labs’ mRNA enrichment varied inside a narrow range, yielding discrete 
peaks in the distribution for some outlying labs. 
 
Figure3:  Comparison of observed and predicted counts.  Observed BLM mix 1 counts (x) are 
plotted against predicted BLM mix 1 counts (y).  Predicted counts are calculated using equation 2.  
Counts are on the log2 scale.   
 
Figure 4:  Accuracy of model-derived BLM mix estimates.  The grey center point is the nominal 
‘truth’ ratio in which the samples were mixed.  Concentric circles with radius at multiples of 0.025 
are added to visually clarify distance from the center point.  Colored points depict mixture 
proportion (Φ) estimates generated from measurements of 4 replicate libraries.  Black points are 
the mean of the replicates.  Error bars show one standard deviation of the four replicate measures 
 
Figure 5: Mixture proportion (Φ) estimates for samples A in SEQC-C and SEQC-D.  The mean 
(black hollow circle) and standard deviation (error bars) of four individual replicates (colored) of the 
Φ estimate for each sample are shown.  The nominal mixture proportions are grey points at the 
center of the target.  Circles centered at that nominal ratio with radii in multiples of .025 are 
included to more easily identify magnitude of total error.  LT and ILM tags indicate the 
manufacturer of the sequencer used at each lab (Life Technologies and Illumina, respectively). 
Deviations from the target indicate process variability, instrument bias, or errors brought about in 
these labs.   
 
Figure 6:  Clustering of Expression measures in 4 SEQC samples and 2 in-silico replicate samples 
across participating sites:  The close agreement between modeled (Cm, Dm) counts and actual 
counts (A,B,C,D) at sites numbered 1-6 supports the validity of assumptions used to model Cm 
and Dm counts.  Euclidian distance measures between samples show that the various samples are 
of greater distance from one another, while the in-silico modeled samples are most similar to the 
correct corresponding sample.  
 

Supplemental Figures: 

Supplemental Figure 1:  Bland-Altman log-ratio(M) - log average(A) plots comparing gene 
expression in BLM-1 to BLM-2, which were mixed with a designed ratio of 1:1 brain RNA, 2:1 
muscle RNA and 1:2 liver RNA.  Points representing gene expression values for genes expressed 
at 5-fold greater levels in a specific tissue are colored based on the tissue in which they are 
selectively expressed.   Non-tissue selective mRNAs are omitted for clarity.  Library size 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2015. ; https://doi.org/10.1101/015107doi: bioRxiv preprint 

https://doi.org/10.1101/015107
http://creativecommons.org/licenses/by/4.0/


normalization scales all libraries to a common total number of counts, while upper quartile 
normalization scales to the 75th percentile of the counts for each library.  None of these 
normalizations accurately reflects the designed ratio of transcripts between samples. 
 
 

BLM1-

a 

BLM1-

ad 

BLM1-

au 

BLM1-

b 

BLM1-

bd 

BLM1-

bu 

BLM2-

a 

BLM2-

b 

BLM2-

bd 

BLM2-

bu 

Count 

Ratio 

.0695 .0095 .6698 .0719 .0098 .6342 .0706 .0737 .0098 .6649 

Spike 

Added 

.08 .01 .64 .08 .01 .64 .08 .08 .01 .64 

message 

fraction ρ 

1.152 1.058 .955 1.112 1.017 1.009 1.132 1.085 1.025 .962 

 

Supplemental Table 1: Message RNA fraction (ρ) calculations as a function of spike 
amount.   Spike mass is accounted for in the mRNA fraction calculation. The spike-ins varied by 
amount (“u” or “d” samples) and content (pools ‘a’ or ‘b’) in both tissue mixtures (1 and. 
2).  Calculated mRNA fractions vary by +/- 6% across these 10 BLM mixtures, showing that the 
calculation is robust to spike-in mass and content.  mRNA fraction calculations for the ERCC pools 
must account for the 3-plex nature of the mixes.  The shown ratios are for the subset of spike-ins 
which are present at a 1:1 ratio in each sample.     
 
Supplemental Figure 2:  
The effect of using FPKM units.  Estimates of mRNA fraction (light points are calculated using 
count values, dark points using FPKM values) result in a relatively poor solution to the mixture 
proportion.  Both data types are taken from the same RSEM output.   
 
Supplemental Figure 3:  Mixture proportions returned by a simple model (Equation 1, blue 
circles), by an mRNA-corrected model(ρ-corrected mixture equations, green triangles) and by the 
DeconRNASeq package[36] (red diamonds) on SEQC data.  Lab # - LT and - ILM indicate the 
manufacturer of the sequencer used at each participating lab (Life Technologies and Illumina, 
respectively).DeconRNASeq implements the same general idea, but lacks mRNA fraction 
correction.  In the SEQC data, there is a relatively small mRNA fraction difference between 
samples, but significant improvements are achieved by correcting for the mRNA fraction.  The 
mean distance from true value across all labs is 0.052(Simple model), 0.033(mRNA-corrected), 
and 0.048(DeconRNASeq).  Error bars represent the SD of four independent libraries from the 
same RNA source. 
 
Supplemental Note 1: 
 
RNA-seq is capable of making transcript isoform-specific measurements.  However, long reads of 
high depth are required to adequately differentiate between isoforms.  Investigations of isoform-
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level measurements from the BLM dataset, (Table 2) which utilized 75x35bp paired-end reads on 
the 5500 and 100x100bp paired-end reads on the HiSeq, showed that while the model is 
extensible towards such measurements, the reduced mean read counts make transcript isoform-
level expression measurements less precise due to shorter read length and lower sequencing 
depth.  92 percent of genes were modeled to within 1 log2 unit of the measured value, while only 
85 percent of transcripts were. 
 

 Genes 

Measured 

Genes Modeled 

(+/- 1 log2) 

Percent Transcripts 

Measured 

Transcripts 

Modeled (+/- 1 

log2) 

Percent 

BLM 19036 17641 92.6 23182 19772 85.3 

SEQC 23947 22820 95.3 40333 38434 95.3 

 
The substantially increased read depth in the SEQC experiment led to 95% of both isoforms and 
genes being consistently modeled.  In the SEQC dataset, 95% of detected isoforms could be 
consistently modeled to within a factor of 2, and the same percentage of genes could be 
reasonably predicted.  After applying a variance-stabilizing transformation using DEseq[38], every 
gene and transcript (100%) in the SEQC dataset were correctly modeled by these criteria.  The 
BLM dataset does not contain sufficient replication for variance-stabilizing analysis. 
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