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Abstract: 11 

 12 

Background: 13 

 14 

Genome-scale “-omics” measurements are challenging to benchmark due to the enormous variety 15 

of unique biological molecules involved.  Mixtures of previously-characterized samples can be 16 

used to benchmark repeatability and reproducibility using component proportions as truth for the 17 

measurement.  We describe and evaluate experiments characterizing the performance of RNA-18 

sequencing (RNA-Seq) measurements. 19 

 20 

Results: 21 

 22 

The parameters of a model fit to a measured -omic profile can be evaluated to assess bias and 23 

variability of the genome-scale measurement of a mixture.  A linear model describes the behavior 24 

of expression measures of mixtures and provides a context for performance 25 

benchmarking.  Residuals from fitting the model to experimental data can be used as a metric for 26 

evaluating the effect an individual step in an experimental process has on the linear response 27 

function and precision of the underlying measurement while identifying signals affected by 28 

interference from other sources.  Effective benchmarking requires well-defined mixtures, which for 29 

RNA-Seq requires knowledge of the messenger RNA (mRNA) content of the individual 30 

components. We demonstrate and evaluate an experimental method suitable for use in genome-31 

scale process control and lay out a method utilizing spike-in controls to determine mRNA content.  32 

 33 

Conclusions: 34 
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 35 

Genome-scale process controls can be derived from mixtures.  These controls relate prior 36 

knowledge of individual components to a complex mixture, allowing assessment of measurement 37 

performance.  The mRNA fraction accounts for differential enrichment of mRNA from varying total 38 

RNA samples.  Spike-in controls can be utilized to measure this relationship between mRNA 39 

content and input total RNA.  Analysis of mixtures can also be employed to determine the 40 

composition and proportions of an unknown sample, even when component-specific markers are 41 

not previously known, so long as pure components can be measured alongside the mixture. 42 

 43 

Keywords: 44 

 45 

RNA sequencing, Gene expression, mixture deconvolution, expression deconvolution, process 46 

control, spike-in control, ERCC 47 

 48 

Background: 49 

 50 

Measurement assurance for genome-scale measurements is challenged by the impracticality of 51 

creating a sample containing known quantities of tens of thousands of components, such as the 52 

RNA transcripts measured in an RNA-seq experiment.  Deep sequencing of cellular RNA can 53 

generate vast quantities of gene expression information, yet measurement biases have been 54 

identified at nearly every step of the library preparation process [1-4]. 55 

 56 

As RNA-sequencing expression data expands from discovery into clinical applications, the sources 57 

and magnitudes of bias and variability must be carefully understood and quantified.  Even the basic 58 

units of expression in sequencing, such as transcripts per million (TPM) or fragments per kilobase 59 

per million reads (FPKM), are undergoing revision [5,6].  Even when using comparable units, it is 60 

rarely possible to directly compare gene expression values reported by different labs, on different 61 

instruments, or frequently just on different days [6-8], unless special care is taken to use uniform 62 

samples and protocols.  Identifying the presence and variation of biases in a measurement process 63 

over time requires a standard to be used for process control. 64 

 65 

Ideally, a measurement process is linear and possesses a known precision.  A linear measurement 66 

process shows an increase in signal proportional to an increase in the object being measured.  It is 67 
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also helpful if measured signal arises only from the single source, and not from interference from 68 

non-targets.  Precision consists of repeatability and reproducibility, defined as the degree of 69 

closeness in multiple measurements made by a single user and the closeness between multiple 70 

labs, respectively.  We show that mixtures can demonstrate that a measurement’s response 71 

function is linear and of high specificity (free of interference) while measuring its variability and 72 

precision.  Properly constructed mixture samples can be used to correct for systematic 73 

measurement errors, provide ongoing monitoring of performance, serve as a tool for interlaboratory 74 

comparison, and create a context for evaluating batch effects.   75 

 76 

Two approaches to creating useful genome-scale standards include the creation of a limited 77 

number of external spike-in controls, such as the External RNA Control Consortium (ERCC) 78 

controls, which were created for microarrays and have been applied to next-gen sequencing [9-79 

11].  A second approach utilizes mixtures of previously characterized samples as well as prior 80 

knowledge of the ratio of the mixtures, and has also been applied to microarrays [12-14] but has 81 

not been utilized in other genome-scale measurements.  Using standards in these measurements 82 

provides confidence in the ability of a test to detect both positive and negative results, including the 83 

limits of that detection.  84 

 85 

Mixtures can serve as a test that applies to each of the tens of thousands of transcripts in a 86 

mixture’s -omics profile.  Linearity of the measurement response can be demonstrated using prior 87 

knowledge of the ratio of previously characterized mixtures, based on the fundamental 88 

understanding that a mixture is a linear combination of its components.  Previous work with 89 

mixtures in microarrays[12-14] utilized an arbitrary 10-fold “selectivity” cutoff to evaluate the linear 90 

dynamic range of microarray measurements and understand the variability of these 91 

measurements.  The arbitrary selectivity cutoff in previous work prevents the identification of 92 

interference, as any genes affected by interference would be filtered by the stringent selectivity 93 

cutoff.  94 

 95 

Using known mixture compositions, predicted values can be calculated based on the assumption 96 

that the measurement response is linear.  Deviation of the observed values from the model-97 

predicted value is an indication of bias in the measurement.  Systematic biases could be 98 

introduced by sample preparation, signal processing, interference from other genes, or sampling 99 
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variation.  Signal arising from off-target molecules, such as a closely related transcript, can cause 100 

false positive results and result in a lowered specificity.  Mixture samples can provide information 101 

about the measurement sensitivity, specificity, repeatability, reproducibility, dynamic range, and 102 

limit of detection. 103 

 104 

Determining the relative contributions to gene expression of individual components within mixtures 105 

of biological states has received some attention in the clinical realm, where biopsies and other 106 

patient samples are often mixtures containing desired and undesired components.  The process of 107 

resolving gene expression signals introduced by each individual component of a mixture [13-23] 108 

has been used to account for tumor heterogeneity and to separate whole blood samples into 109 

individual cell types.  These procedures often separate mixture components based on a subset of 110 

“signature” genes that vary uniquely between components. These ‘deconvolution’ methods have 111 

been used [27-30] to develop high-resolution tumor expression signatures from imperfect biological 112 

samples [31,32] and differentiate between cell-type-frequency changes and per-cell gene 113 

expression changes [33,17].  Many of these methods can determine mixture component types by 114 

using a linear model where mixture expression is treated as a combination of expression 115 

signatures.  116 

 117 

One parameter notably absent from these methods is RNA content.  Different cell types express 118 

different total amounts of RNA per cell, confounding estimates of cell type proportion made based 119 

on the quantification of total RNA [24].  Others have introduced the concept of a biological scaling 120 

factor [25,26] to compensate for variation in the RNA content of cells, including the use of spike-in 121 

controls to calculate this factor.  The filtering of mRNA out from total RNA adds a bias to the 122 

experiment due to the different abundance of mRNA between cell types. 123 

 124 

We aimed to demonstrate the assessment of linear response, specificity, and accuracy of genome-125 

scale measurements using mixtures.  In the process, we demonstrate that linear models can be 126 

used to separate these mixtures into the proper component signatures.  We were mindful that 127 

while our mixtures were of total RNA, the measurement filters for mRNA, and that the relationship 128 

between these two values is an important factor when interpreting results.  We anticipate that a 129 

mixture-based approach to measurement assurance is highly generalizable to many types of 130 

mixtures and can be extended to the wide variety of genome-scale measurements, including but 131 

not limited to proteomic, metabolomic, and transcriptomic systems.   132 
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 133 

Results: 134 

 135 

To assess measurement parameters of genome-scale transcriptome data, we analyzed two RNA-136 

seq experiments measuring synthetic mixtures of commercially available human total RNA 137 

samples (Figure 1)[13,14,34].  One experiment included a mixture of two reference total RNA 138 

samples, sequenced by 9 labs as a part of the Sequencing Quality Control Consortium (SEQC) 139 

[34-35].  This study sequenced “Universal Human Reference RNA” (SEQC-A), “Human Brain 140 

Reference RNA” (SEQC-B) and two mixtures of the above (SEQC-C and SEQC-D) with mixture 141 

compositions C=3A+1B and D=1A+3B.  These four samples were sequenced by 9 labs using 142 

either Illumina or Life Technologies sequencing instruments. 143 

 144 

The second sample, called BLM, contains two mixtures (BLM-1 and BLM-2) composed of total 145 

RNA isolated from human brain (the same RNA as SEQC-B), liver, and muscle tissue.  These two 146 

mixtures were made with component proportions of 1B:1L:2M and 1B:2L:1M.  The total RNA of 147 

each individual tissue was also sequenced “neat” to provide an expression signature for each 148 

tissue. 149 

 150 

These mixtures were designed to have a defined expression signal ratio between them.  If the 151 

measurement response were linear and unbiased, the signal in the SEQC-C sample would be 152 

exactly 1/4 the signal of SEQC-B plus 3/4 the signal from SEQC-A due to the design of the 153 

mixture.  However, these total RNA mixtures went through RNA-seq library preparation, which 154 

purposely filters ribosomal RNA out of the pool.  The resulting sequence data reflects this filtration, 155 

which can be different between samples. A correction for this differential filtration and an upper-156 

quartile normalization [36] must be applied to accurately reflect the experimental process and allow 157 

the model to return the designed ratios of expression between mixtures (Supp.Figure 1).   158 

 159 

ERCC spike-in control RNAs were added to the components of these mixtures.  ERCC controls 160 

[12] were designed as exogenous RNA sequences to function as control RNA.  Two spike-in 161 

control pools were designed with ratiometric differences in the concentration of individual ERCC 162 

spike-ins.  As expected based on the mixture designs, ERCCs spiked-in equally yielded equal 163 

expression signal, while signal from ERCCs spiked differentially into multiple subpools was at 164 
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ratios corresponding to the designed fold changes.  Poisson sampling at the lower expression 165 

levels results in increased dispersion about the expected ratio [49].  166 

 167 

Linear model-based analysis of genome-scale gene expression 168 

 169 

We posit that mixture expression is a linear combination of the component samples and the 170 

mixture proportions of each component.  Equation 1 describes the relationship between signal in 171 

the mixtures and signal in the constituent samples.  A mixture M – 2 per dataset in this study - is 172 

composed of a number of named components “C” (“B”,”L”, and ”M” in the Brain/Liver/Muscle 173 

mixture or “A” and “B” in the SEQC dataset), with each component comprising a proportion of the 174 

mixture ΦC.  �i,M  is the expression signal arising from a particular gene/transcript i in mixture M. 175 

 176 

Equation 1: �i,M=∑ 	��
��1 i,C×ΦC,M  177 

This study uses four mixtures of the same general form: 178 

�i,BLM1=�i,B×ΦB,1 +�i,L×ΦL,1+ �i,M×ΦM,1 179 

�i,BLM2=�i,B×ΦB,2 +�i,L×ΦL,2+ �i,M×ΦM,2 180 

�i,SEQC-C=�i,SEQC-A×ΦA,C + �i,SEQC-B×ΦB,C 181 

�i,SEQC-D=�i,SEQC-A×ΦA,D + �i,SEQC-B×ΦB,D 182 

 183 

These mixtures were made from total RNA, while the expression signal (sequencing reads) arises 184 

only from the mRNA.  As the fraction of the total RNA mass that is mRNA varies between cells, the 185 

filtering of total RNA into mRNA introduces a bias. Supplemental Figure 1 shows the offset from 186 

the expected ratios of tissue-specific and ERCC RNA caused by this bias.  We correct the specific 187 

equations for the mRNA fraction by multiplying each component by a factor ρ.  This factor 188 

corresponds to the measured mRNA compared to the mass of total RNA in each mixture.  ρC is 189 

defined as the amount of measured RNA per unit total RNA in component C.   190 

 191 

After adding this factor, the BLM1 mixture equation becomes   192 

�i,BLM1=�i,B×ΦB,1×ρB +	�i,L×ΦL,1×ρL + �i,M×ΦM,1×ρM 193 

 194 

There are a few approaches that have been described to measure ρ.  One study directly measured 195 

the mRNA content between SEQC-A and SEQC-B samples [36] using qRT-PCR.  Another 196 

described the use of trimmed mean of log expression ratios (TMM)[25] to measure mRNA content 197 
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from RNA-seq data.  TMM-derived factors have been shown to be an appropriate measure in 198 

cases where there is no global expression level change (such as the SEQC mixtures), but 199 

introduce bias if there are global expression changes (such as in the BLM 200 

mixtures)[26].  Supp.Figure 2 demonstrates this.  201 

 202 

The ρ factor can be determined using spiked-in RNA[26] as sample reads per microgram of total 203 

RNA divided by spike-in reads per microgram of spike-in RNA.  This calculation emphasizes that 204 

the mRNA fraction is a correction for the differential enrichment between polyadenylated spike-in 205 

RNA and total RNA, which is only partly composed of mRNA. 206 

 207 

The mRNA fraction ρ is a property of an individual RNA sample and is affected by any RNA 208 

manipulation - particularly ribosome elimination.  For replicates within a single polyA-selected 209 

SEQC experimental run, the ρ of a mix varies slightly, likely due to fluctuations in efficiency of 210 

mRNA enrichment. (S.Table 1) It is also important to note that FPKM units should not be used to 211 

calculate mRNA fraction (Supp.Figure 3), as the FPKM derivation [6] includes a term which 212 

couples sample abundance to spike abundance. 213 

 214 

Mixture analysis models recapitulate known mixture proportions 215 

 216 

To demonstrate the accuracy of this analytical framework of mixture sequencing, the mixture 217 

proportions ΦBLM were recalculated for the BLM mixtures BLM-1 and BLM-2.  The ρ values and the 218 

sequencing expression data were used to solve for the mixture proportions ΦBLM by linear 219 

regression to the mixture equation.  Figure 2 shows the ΦBLM values at which residuals were 220 

minimized for the two mixtures for each replicate sample in each laboratory.  Estimates of the three 221 

component proportions in the two mixtures are consistent with the designed 25:25:50 and 25:50:25 222 

proportions in the two BLM mixtures.  Supp. Figure 4 shows that the designed proportions of 223 

SEQC mixtures can also be calculated by this equation, returning the 75:25 and 25:75 proportions 224 

for mixes C and D, with some variability between labs.  Equation 1, which lacks correction for 225 

mRNA fraction, does not return the designed ratios (Supp. Figure 5).   226 

  227 

Linear model-predicted mixture counts are equivalent to replicate measures 228 

 229 
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In studies by the SEQC [34], differential expression between replicate samples was utilized to 230 

evaluate measurement performance based on the hypothesis that the control samples used in the 231 

study had no true differences between replicates.  We created pseudo-replicate predicted count 232 

values from the ‘neat’ samples for use in benchmarking.  These simulated mixtures were built 233 

based on the measured mixture expression and the true mixture proportions.  234 

 235 

Figure 3 shows a dendogram of the distance between actual mixture expression and simulated 236 

expression counts of SEQC samples.  The four base samples A, B, C and D are most different 237 

from one another, reflecting the biological differences between the samples.  A and C are more 238 

closely related, as C consists of 75% A and 25% B.  Modeled pseudo-replicate samples ‘Cm’ and 239 

‘Dm’ across each of the six SEQC sites are no more different than cross-lab replicates of the C and 240 

D data, indicating that building the model for mixture C from components A and B does not 241 

introduce significant variability.  This supports the treatment of modeled mixtures as replicate 242 

measurements expected to have no true differential expression from the mixture samples. 243 

 244 

Discussion: 245 

 246 

If the response function of a measurement is linear, mixtures of biological samples can be useful 247 

as genome-scale process controls for that measurement.  When this condition is met, a mixture 248 

can be modeled simply as linear combination of its components.  Two experimental datasets with 249 

known mixture parameters were used to verify these assertions.  In the case of RNA-seq, the 250 

mRNA fraction of the total RNA mixture components must be accounted for in order to reflect the 251 

true values, when mixtures of RNA are calculated based on mass fractions of total RNA and the 252 

sequencing experiments measures only mRNA.   253 

 254 

Mixtures with either known or unknown proportions can be analyzed.  If mixture proportion 255 

information is known a priori, genome-scale data can be used as a process control to test the 256 

repeatability and sensitivity of measurements by comparing observed and expected 257 

measures.  Alternatively, if the mixture proportions are an unknown and desired parameter, 258 

expression measures from the mixture in combination with the neat components can be used to 259 

experimentally determine the mixture proportions.  This application can be valuable to un-mixing 260 

biological mixtures, including clinical mixtures, cell cultures, and xenografts[27-32].  While the 261 
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mRNA fraction correction is applicable only to RNA-sequencing measurements, the general 262 

mixture model is theoretically applicable to any measurement with a linear response function.  263 

 264 

Mixtures can provide measurement process assurance to a sequencing experiment.  Using mixture 265 

samples alongside pure samples, one can demonstrate the reproducibility and sensitivity of 266 

genome-scale RNA, protein, as well as metabolite measurements. The main goal of this type of 267 

mixture analysis is to create a known ratio value by which the measurement characteristics of an 268 

experiment can be assessed.  While an experiment’s measurement of this known ratio is not 269 

sufficient to prove the validity of the measurement, it is a necessary condition, and any deviations 270 

are indicative of bias.   271 

 272 

While we demonstrate mixture analysis with two specific samples, the analysis is fully 273 

generalizable to any number or type of mixture components. Any mixture split into known individual 274 

components can be measured in this way. For example, a clinical researcher may have three 275 

samples of interest from healthy, chronically diseased and acutely diseased sources.  A mixture of 276 

these three cell types would provide confidence in the measurements made on the three samples 277 

individually by verifying the repeatability of that measurement.  It can also provide a benchmark 278 

sample to assess comparability over space and time.  These mixtures can detect biases 279 

introduced by batch effects, operator effects, sample mislabeling, and technical artifacts while 280 

evaluating the variability of the measurement.  Mixture samples with known proportions can help 281 

determine experimental reproducibility and discover technical artifacts introduced by the 282 

measurement process by comparison of the expected to observed proportions.   283 

 284 

With this analytical model, end users and core facilities can use known mixtures as a process 285 

control to track changes in measurement quality whenever changes to the experimental process 286 

are made. By including a predefined mixture, cross-sample comparisons can be made to 287 

demonstrate the internal consistency of measurements made using any new experimental 288 

technique, kit, or downstream analysis tool. In this way, there is some assurance that changes in 289 

experimental protocol have not affected measurement reproducibility.  Residuals from modeled 290 

counts can be used as a metric to evaluate the magnitude of effect an experimental process has 291 

on the linearity and precision of sequence measurements.   292 

 293 
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In addition to gaining an understanding of the measurement process using the benchmarking 294 

workflow, unknown samples can be collected and studied to determine the relative proportion of 295 

known components.  Proportions of components can be determined even in the absence of any 296 

type-specific markers, given measurable differences in expression between the cell types. 297 

 298 

Resolving the composition of mixtures has proven useful in determining the purity of cell lines or 299 

proportions of heterogeneous cells, in identifying interesting cellular contaminants such as partially 300 

differentiated cells, and understanding clinical samples containing mixed cell types.  In contrast to 301 

approaches using transgene expression [41], the mixture model described here can evaluate tissue 302 

sample purity without focusing on a handful of “tissue-specific”, marker, or transgenes. We expect 303 

mixed-sample RNA to be useful in regulatory applications, where a demonstration that a 304 

therapeutic stem-cell mixture has a specific composition may be key to ensuring safety [48]. 305 

 306 

Spike-in controls correct for mRNA fraction-caused biases in linearity 307 

 308 

In addition to providing limit of detection and cross-experiment comparison characterizations of a 309 

dataset, spike-in controls can be used in mixture samples to determine the mRNA fraction of cells.  310 

mRNA fraction is a critical parameter for comparing samples that do not have identical total RNA 311 

content.  This is most relevant to cells with variable global expression [24], including comparisons 312 

across and within cell cycle, tissues, and developmental states [40].  mRNA fraction is also critical 313 

in single cell gene expression studies, where lysis efficiency and total RNA content can vary 314 

greatly from cell to cell. 315 

 316 

There are many methods used to determine component gene expression profiles from mixture 317 

samples.  At present, only the one we describe here explicitly accounts for mRNA fraction.  In 318 

RNA-seq experiments, mRNA fraction can be calculated with information obtained via spike-in 319 

controls.  When comparing samples with variable mRNA content, bias arises when that variability 320 

is not accounted for.  We describe a straightforward method for measuring the enrichment of 321 

mRNA in RNA-seq samples using spike-in RNA.  We show that mRNA-corrected unmixing of two 322 

mixture datasets returns the known mixture proportions (Figure 2, Supp Figure 4), demonstrating 323 

suitability for solving unknown mixtures of known components. 324 

 325 
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Previous methods used to determine the composition of RNA-seq mixtures make inaccurate 326 

estimates of mixture proportion in the BLM sample where the mRNA fractions vary substantially 327 

between mixture components.  These methods are nearer to true values in the SEQC sample, 328 

where the mRNA fraction difference is less significant, but all estimates are improved by 329 

incorporating mRNA content (Supp. Figure 5).   330 

 331 

Limitations 332 

 333 

Technical artifacts identified by mixture modeling are differentially expressed between replicates 334 

and should not be confused with the conventional usage of differentially expressed genes, which 335 

are compared between samples.  Truly differentially expressed genes, such as tissue-specific 336 

genes in BLM mixtures, fit well to the model.  Technical artifacts would not be identified as 337 

differentially expressed by modern differential gene expression methods due to their extreme 338 

variance between replicates as a result of crosstalk or nonlinear response. This means the 339 

measurement is not sensitive to these genes, and they could be false negatives. If transcripts are 340 

identified as artifacts in a process, alternative preparations need to be employed to achieve an 341 

unbiased quantification of affected transcripts. 342 

 343 

Although mean mixture proportion values returned from a linear combination of mixture 344 

components approximate the nominal mixture proportion in both measured samples, the increased 345 

variability of the muscle estimate in the BLM mixture (error bars, Figure 2) suggests that there is a 346 

lower limit to being able to determine low-abundance mixture components.  Due to mRNA fraction, 347 

the muscle component of the BLM mix was as low as 10 percent of sequenced RNA in BLM-2.  It 348 

may be possible to determine lower-proportion mixture components with confidence, but this study 349 

did not generate the required data to do so.  350 

 351 

Our estimation of mRNA fraction is imperfect; an assumption of the model we build is that the 352 

mRNA fraction is constant between replicates of the same sample.  Supplemental Table 1 shows 353 

that the mRNA fraction varies by as much as 5 percent from library to library.  This variability is a 354 

source of error in our model.  The variability in mRNA fraction is likely due to batch effects in the 355 

mRNA enrichment process.  This hypothesis is reinforced by the prevalence of non-mRNA 356 

transcripts incorrectly called as differentially expressed between mixture replicates.   357 

 358 
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The sequencing technology and library preparation methods used in these experiments added 359 

limitations to the experiments.  These are described in supplemental note 1. 360 

 361 

Conclusions 362 

 363 

We demonstrate the linear response function and specificity of RNA-sequencing measurements 364 

using mixtures of biological samples.  Such mixtures can be used as benchmarks to characterize 365 

the repeatability and reproducibility of experiments or separated to identify the relative proportion of 366 

their components.  Spike-in controls can be used to calculate the mRNA content of total RNA 367 

mixtures, compensating for biases introduced by mRNA enrichment.  Our method creates a 368 

framework for using mixtures in measurement process control and corrects for biases introduced 369 

by ribosomal depletion.  Using an mRNA fraction correction improves the accuracy of mixture 370 

proportion determination in RNA-seq experiments. 371 

 372 

Benchmarking genome-scale measurements using mixed samples will remain useful even after the 373 

era of short-read sequencing is over.  Answering the biological question of “what types of cells are 374 

in the mixture I’m sequencing?” requires more information than even a perfect transcriptome 375 

reconstruction could provide.  The biological and measurement value added by mixed samples are 376 

demonstrated here to be platform-independent.  We anticipate that mixtures can provide the same 377 

measurement assurance to protein and metabolite measurements.  Confidence in the 378 

reproducibility of measurement and understanding the components in complex biological samples 379 

will always be a staple of quality science. 380 

 381 

Methods: 382 

 383 

Library Preparation:  384 

For the BLM experiment, Human Brain Reference RNA, Human Liver Total RNA, and Human 385 

Skeletal Muscle Total RNA were purchased from Ambion.  This purified RNA was quantified by 386 

absorbance on a NanoDrop 1000, mixed in the specified proportions, then spiked with ERCC RNA 387 

transcribed from NIST SRM 2374.  For Illumina sequencing, the Illumina TruSeq protocol was 388 

followed.  HiSeq runs generated 100+100bp paired-end reads.  Solid 5500 sequencing followed 389 

the Life Technologies Whole Transcriptome protocol, yielding 75+35 bp paired-end reads.  Spike-390 

in composition and amounts are included in the data submission to GEO. 391 
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 392 

Quantitation and Data Normalization:   393 

BLM gene counts were based on raw count data quantified using HTSeqCounts [40] based on a 394 

variety of genome and transcriptome references [42-45] after mapping reads to the genome with 395 

Topha t[46].  Raw counts were then normalized using the upper quartile method implemented in 396 

EdgeR [36]. Supplemental Figure 3 utilizes RSEM [47].  HTSeq-counts version 0.5.4 was run with 397 

options to deal with non-stranded reads in the intersection-nonempty mode.  The SEQC data used 398 

are available as count tables from GEO GSE47774. 399 

 400 

 401 

Calculating Unknown Mixture Estimates:  402 

The relative abundance of components in unknown mixtures were calculated by first observing the 403 

mean mRNA fraction for the neat components across replicates.  The count data in the mixture 404 

was set as the response, predicted by the count data from the individual components modified by 405 

the mRNA fraction, as based on the mixture equations.  An example R script ‘generalmixturesolver’ 406 

is provided at http://github.com/jeparson/mixtureprocesscontrol as a supplemental file to clarify this 407 

procedure.   408 

 409 

Availability of supporting data: 410 

 411 

The SEQC data is available from GEO GSE47774. 412 

[http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47774] 413 

The BLM data is available from the European Nucleotide Archive, PRJEB8231. 414 

[http://www.ebi.ac.uk/ena/data/view/PRJEB8231] 415 

Figure code, count tables, and example scripts available on 416 

https://github.com/usnistgov/mixtureprocesscontrol 417 
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Figure Legends: 577 

 578 

 579 
Figure 1:  RNA samples used in this study.  RNA isolated from pure tissues is used to generate 580 
pairs of mixtures used in two separate experiments.  (a):  Two SEQC mixtures (SEQC-C and 581 
SEQC-D) are built from two components (SEQC-A and SEQC-B).  (b):  Two BLM mixtures (BLM-1 582 
and BLM-2) are built from three components.  The SEQC-B component (HBRR) is from the same 583 
source as the Brain BLM component.  Per-sample target ratios of tissue proportion between 584 
mixtures are shown.  585 

Figure 2:  Accuracy of model-derived BLM mix estimates.  The grey center point is the nominal 586 

‘truth’ ratio in which the samples were mixed.  Concentric circles with radius 0.025 and 0.05 are 587 

added to visually clarify distance from the center point.  Colored points depict mixture proportion 588 

(Φ) estimates generated from measurements of 4 replicate libraries.  Black points are the mean of 589 

the replicates.  Error bars show one standard deviation of the four replicate measures 590 

 591 
 592 

Figure 3:  Clustering of Expression measures in 4 SEQC samples and 2 in-silico replicate samples 593 

across participating sites:  The close agreement between modeled (Cm, Dm) counts and actual 594 

counts (A,B,C,D) at sites numbered 1-6 supports the validity of assumptions used to model Cm 595 

and Dm counts.  Euclidian distance measures between samples show that the various samples are 596 

of greater distance from one another, while the in-silico modeled samples are most similar to the 597 

correct corresponding sample.  598 

 599 
Supplemental Figures: 600 

 601 

Supplemental Figure 1: Mixture proportion (Φ) estimates for samples A in SEQC-C and SEQC-602 

D.  The mean (black hollow circle) and standard deviation (error bars) of four individual replicates 603 

(colored) of the Φ estimate for each sample are shown.  The nominal mixture proportions are grey 604 

points at the center of the target.  Circles centered at that nominal ratio with radii in multiples of 605 

.025 are included to more easily identify magnitude of total error.  LT and ILM tags indicate the 606 

manufacturer of the sequencer used at each lab (Life Technologies and Illumina, respectively).  607 

Especially given that the actual creation of the SEQC mixtures was done one time, independent 608 

from these laboratories, deviations from the target indicate process variability or errors brought 609 

about in these labs.  Lab 2 appears to have done something to seriously distort the repeatability of 610 

SEQC-C, for example.  This could be an indication of inconsistent polyA selection from (for 611 
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example) inconsistent recovery of RNA off of magnetic beads.  612 

 613 

Supplemental Figure 2:  Bland-Altman log-ratio(M) - log average(A) plots comparing gene 614 

expression in BLM-1 to BLM-2, which were mixed with a designed ratio of 1:1 brain RNA, 2:1 615 

muscle RNA and 1:2 liver RNA.  Points representing gene expression values for genes expressed 616 

at 5-fold greater levels in a specific tissue are colored based on the sample in which they are 617 

selectively expressed.  The left panel is Illumina HiSeq expression data, while the right panel is 618 

from a SOLiD 5500.  ERCC spike-ins in the SOLiD 5500 dataset were in three sub-pools added in 619 

the same ratios as the three tissues, while all 96 ERCC controls were spiked at a 1:1 ratio in the 620 

HiSeq dataset.  Non-tissue selective mRNAs are omitted for clarity. 621 

 622 

Supplemental Figure 3: 623 

MA plots of HiSeq counts obtained from BLM-1 vs. BLM-2 are presented here without mRNA 624 

fraction correction, using typical normalization methods.  Library size normalization scales all 625 

libraries to a common total number of counts, while upper quartile normalization scales to the 75th 626 

percentile of the counts for each library.  Supp. Figure 2 shows the data after correcting for mRNA 627 

fraction differences.  628 
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Count 
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.0695 .0095 .6698 .0719 .0098 .6342 .0706 .0737 .0098 .6649 

Spike 

Added 

.08 .01 .64 .08 .01 .64 .08 .08 .01 .64 

message 

fraction ρ 

1.152 1.058 .955 1.112 1.017 1.009 1.132 1.085 1.025 .962 

 629 

Supplemental Table 1: Message RNA fraction (ρ) calculations as a function of spike 630 

amount.   Spike mass is accounted for in the mRNA fraction calculation. The spike-ins varied by 631 

amount (“u” or “d” samples) and content (pools ‘a’ or ‘b’) in both tissue mixtures (1 and. 632 

2).  Calculated mRNA fractions vary by +/- 6% across these 10 BLM mixtures, showing that the 633 

calculation is robust to spike-in mass and content.  mRNA fraction calculations for the ERCC pools 634 

must account for the 3-plex nature of the mixes.  The shown ratios are for the subset of spike-ins 635 

which are present at a 1:1 ratio in each sample.     636 

 637 

Supplemental Figure 4:  638 

The effect of using FPKM units.  Estimates of mRNA fraction (light points are calculated using 639 

count values, dark points using FPKM values) result in a relatively poor solution to the mixture 640 

proportion.  Both data types are taken from the same RSEM output.   641 

 642 

Supplemental Figure 5:  Mixture proportions returned by a simple model (Equation 1, blue 643 

circles), by an mRNA-corrected model(ρ-corrected mixture equations, green triangles) and by the 644 

DeconRNASeq package[36] (red diamonds) on SEQC data.  Lab # - LT and - ILM indicate the 645 

manufacturer of the sequencer used at each participating lab (Life Technologies and Illumina, 646 

respectively).DeconRNASeq implements the same general idea, but lacks mRNA fraction 647 

correction.  In the SEQC data, there is a relatively small mRNA fraction difference between 648 

samples, but significant improvements are achieved by correcting for the mRNA fraction.  The 649 

mean distance from true value across all labs is 0.052(Simple model), 0.033(mRNA-corrected), 650 
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and 0.048(DeconRNASeq).  Error bars represent the SD of four independent libraries from the 651 

same RNA source. 652 

 653 

Supplemental Note 1: 654 

 655 

RNA-seq is capable of making transcript isoform-specific measurements.  However, long reads of 656 

high depth are required to adequately differentiate between isoforms.  Investigations of isoform-657 

level measurements from the BLM dataset, (Table 2) which utilized 75x35bp paired-end reads on 658 

the 5500 and 100x100bp paired-end reads on the HiSeq, showed that while the model is 659 

extensible towards such measurements, the reduced mean read counts make transcript isoform-660 

level expression measurements less precise due to shorter read length and lower sequencing 661 

depth.  92 percent of genes were modeled to within 1 log2 unit of the measured value, while only 662 

85 percent of transcripts were. 663 

 664 

 Genes 

Measured 

Genes Modeled 

(+/- 1 log2) 

Percent Transcripts 

Measured 

Transcripts 

Modeled (+/- 1 

log2) 

Percent 

BLM 19036 17641 92.6 23182 19772 85.3 

SEQC 23947 22820 95.3 40333 38434 95.3 

 665 

The substantially increased read depth in the SEQC experiment led to 95% of both isoforms and 666 

genes being consistently modeled.  In the SEQC dataset, 95% of detected isoforms could be 667 

consistently modeled to within a factor of 2, and the same percentage of genes could be 668 

reasonably predicted.  After applying a variance-stabilizing transformation using DEseq[38], every 669 

gene and transcript (100%) in the SEQC dataset were correctly modeled by these criteria.  The 670 

BLM dataset does not contain sufficient replication for variance-stabilizing analysis. 671 
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