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Abstract 36 

Imaging genetics is an emerging field in which the association between genes and neuroimaging-37 
based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and 38 
neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle 39 
for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and 40 
the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene 41 
Ontology, an online database, to select and prioritize certain genes, employing a stratified false 42 
discovery rate (sFDR) approach to investigate their associations with imaging phenotypes. sFDR has 43 
the potential to increase power in genome wide association studies (GWAS), and is quickly gaining 44 
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traction as a method for multiple testing correction. Our novel approach addresses both the pressing 45 
need in genetic research to move beyond candidate gene studies, while not being overburdened with 46 
a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of 47 
hippocampal volume using the Alzheimer’s Disease Neuroimaging Initiative sample. 48 

1. Introduction 49 

Imaging genetics is a burgeoning field that seeks to understand the association of neuroimaging-50 
based phenotypes, such as structural, functional (Thompson et al., 2010) and diffusion imaging-based 51 
metrics, (Patel et al., 2010) with genetic variations. Candidate gene studies were initially the method 52 
of choice for understanding gene function in humans, and successfully identified genes involved in 53 
Mendelian diseases; however, such studies have had less success for complex genetic disorders, with 54 
many novel findings failing to replicate in further studies (Hirschhorn et al., 2002). Reasons for such 55 
failures include a lack of power to identify the small effect sizes typically involved in complex traits, 56 
as well as a lack of knowledge about which genes are appropriate to study  (Tabor et al., 2002; 57 
Ioannidis, 2005). Around 2007, genome-wide association studies (GWAS) began to make inroads as 58 
an efficient method for identifying variants associated with complex disease. In this approach, 59 
approximately one million single nucleotide polymorphisms (SNPs) across the whole genome are 60 
interrogated simultaneously, hypothesis-free (Wellcome_Trust_Case_Control_Consortium, 2007). 61 
However, due to the large burden of multiple testing correction in a GWAS, a p-value of 5x10-8 or 62 
less, roughly equivalent to a p = 0.05 after Bonferroni correction for half a million independent 63 
variants, is generally required for a SNP to be recognized as significantly associated with a trait 64 
(Dudbridge and Gusnanto, 2008). Given the polygenic nature of complex traits and low effect sizes 65 
associated with these traits, large sample sizes are required to achieve adequate statistical power. 66 
Recently, a large imaging genetics study named ENIGMA (Enhancing NeuroImaging Genetics 67 
through Meta-Analysis) was undertaken, in which 21,000 subjects were included in a GWAS in order 68 
to identify genetic variants with association to hippocampal volume (Stein et al., 2012). While this 69 
study was a landmark demonstration for the use of imaging genetics techniques to investigate brain 70 
structures, it is not plausible for individual investigators to obtain such large sample sizes for their 71 
studies. 72 

Various approaches have been described to reduce the multiple testing burden for large scale GWAS. 73 
One such approach is to control for the false discovery rate (FDR), rather than the family-wise error 74 
rate (FWER) (Benjamini and Hochberg, 1995). Where the family-wise error rate identifies the 75 
probability of one type 1 error from the total tested hypotheses, FDR calculates the proportion of 76 
expected type 1 errors. Stratified false discovery rate (sFDR) is an extension of the FDR control 77 
approach, where the false discovery rate is controlled in distinct subsets (strata) of the data, one or 78 
more of which are believed to have a higher prior probability of being associated with the trait of 79 
interest. Strata are defined based on prior information such as linkage analysis, candidate gene 80 
studies, or biological pathways (Sun et al., 2006; Sun et al., 2012). An example of this approach by 81 
Sun et al. (2012) investigates the susceptibility to meconium ileus (severe intestinal obstruction) in 82 
individuals with cystic fibrosis by prioritizing a set of genes involved in the apical plasma membrane. 83 
In this article, Sun et al. (2012) selected strata defined by Gene Ontology (GO) terms. GO is a 84 
biomedical ontology database, which contains structured vocabulary terms known as GO terms 85 
designed to describe protein function (Ashburner et al., 2000). In more complex traits, this approach 86 
may not be refined enough for the proper stratification of data in sFDR. In the case of Alzheimer’s 87 
disease (AD), for example, a vast number of SNPs would be selected to have prior association, and 88 
this may reduce the value of stratification. We present a novel method that employs information from 89 
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previous studies alongside GO in order to create a refined list of relevant genes to be analyzed in the 90 
sFDR framework.  91 

We demonstrate our method’s efficacy by investigating the association between genetic variants and 92 
hippocampal volume in the Alzheimer’s Disease Neuroimaging Initiative (ADNI1) dataset; sFDR is 93 
performed to stratify genes of particular interest to AD. The dominant symptom of AD is dementia, 94 
where memory, reasoning, and thinking are all impaired. The hippocampus plays a key role in 95 
cognitive functioning, influencing processes such as learning and the ability to make new memories 96 
(Braskie et al., 2013). Further, in considering the neurodegeneration of medial temporal lobe 97 
structures, the changes in hippocampal structure are considered to be one of the strongest quantitative 98 
phenotypes associated with AD and can often be used to predict cognitive decline in AD patients 99 
(Braskie et al., 2013).  100 

This article presents a novel, systematic method to determine the optimal stratification of SNPs for 101 
sFDR analysis. We employed GO alongside previous GWAS findings, and applied our method to the 102 
ADNI1 dataset. Our method reduces the multiple testing correction burden with the potential to 103 
discover novel biomarkers in imaging genetics. Useful not only for new genetic studies, our tool is 104 
highly applicable to mining already existing GWAS data and improving the integration of publically 105 
available bioinformatics resources such as GO with imaging genetics studies. 106 

2. Materials and Methods  107 
 108 
Box 1 
Gene Ontology 

Gene Ontology (http://geneontology.org/) is a publically available, free, ontology database that 
describes protein function (Ashburner et al., 2000). Gene products – proteins – are classified and 
grouped in three main ontologies: cellular components (CC) where the protein is located within 
subcellular compartments, molecular functions (MF) indicates the specific function of the gene is 
carried out in normal conditions and biological processes (BP) which describes the processes a 
protein is involved in (e.g.: neurogenesis). The ontology follows a hierarchical order and there are 
defined relationships between the GO terms. In the ontology structure, terms at the top represent 
general or broad concepts, whereas terms near the bottom represent more detailed processes. 
Therefore if a term has terms subordinate to it, it is referred to as a ‘parent’ term. Similarly, if a term 
has other terms superior to it, then it is referred to as a ‘child’ term. Both manual and automatic 
annotations of proteins are available in the GO database. Automatic annotations are inferred from 
electronic annotations and are not manually reviewed by a curator. In manual annotations, a curator 
reviews primary articles to generate annotations, and each annotation is based on experimental data 
referenced to a PubMed ID. The documentation for manual curation can be found at 
http://geneontology.org/page/annotation, and an example of annotations created by the authors can be 
found in the Alzheimer’s University of Toronto dataset at 
http://www.ebi.ac.uk/QuickGO/GAnnotation?source=Alzheimers_University_of_Toronto 
Quick GO (http://www.ebi.ac.uk/QuickGO/) is a web based tool used to extract data from the GO 
database.  
Cytoscape 

Cytoscape is an open source software platform visualization tool used to integrate data into complex 
networks of molecular interaction and biological pathways ((Saito et al., 2012), 
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http://www.cytoscape.org/). See Figure 4 as an example of a biological network. 

 109 

2.1 Selecting Priority List of Genes  110 

Below, we detail how we assembled a list of priority genes, derived comprehensive gene networks 111 
based on these so-called “seed” genes, and pruned these networks appropriately. Our priority SNPs 112 
were selected from genes involved in biological systems associated with AD. Figure 1 outlines the 113 
entire process followed, including SNP selection (Figure 1A) and the preparation and subsequent 114 
analysis of the genetic and imaging data (Figure 1B).  115 

Step 1: Twenty-one hits from a previous meta-analysis of AD GWAS signals were used as a starting 116 
point to identify top gene hits (Lambert et al., 2013). In addition we added amyloid precursor protein 117 
(APP) (Goate et al., 1991), Presenilin-1 (PSEN1) and Presenilin-2 (PSEN2) (Cruts et al., 1998)  to 118 
our gene list based on association with higher risk of developing early onset of AD. Furthermore rare 119 
variants within these gene regions also increase the risk of late onset AD (Cruchaga et al., 2012) .  120 

Step 2: Gene Ontology (GO) (refer to Box 1) was used to group genes, and subsequently to derive 121 
common biological process networks using a three step process detailed below. 122 

Firstly, the biological process (BP) ontology dataset within GO was examined using Quick GO (refer 123 
to Box 1) in order to identify all BP terms associated with the genes under investigation, hereafter 124 
called originally selected GO terms (OGO terms). No restrictions were given on the type of evidence 125 
codes used for the annotation of the OGO terms. Secondly, similar OGO terms were grouped 126 
together to form key BP domain categories. Specifically, they were grouped based on common parent 127 
terms, which were higher up in the hierarchal ontology. Thirdly, common biological processes were 128 
identified based on the frequency of occurrence of previously associated genes. Only OGO terms 129 
associated with these common processes are carried forward to the next step. 130 

Based on the outcome of the three steps outlined above, we grouped all child terms that derived from 131 
parent terms in the domains of synaptic function, neuroanatomical structure development, and 132 
neurogenesis. These three parent terms were found to be under the common network of “nervous 133 
system development and synaptic transmission”, which was identified as a common biological 134 
process. GO terms that fell under the network “nervous system development and synaptic 135 
transmission” were the fourth child term from the BP parent GO term. Refer to Box 1 under Gene 136 
Ontology section for child and parent terminology. In order to benchmark our approach in the 137 
selection of common biological processes, INRICH  (Lee et al., 2012) was used as an alternative, 138 
objective, method to derive the common biological process domains. However, no significant results 139 
were identified to take forward to sFDR. The INRICH process is defined in the supplementary text.  140 

Step 3: Cytoscape 2.8 (refer to Box 1) was used to visualize the biological process network “nervous 141 
system development and synaptic transmission”, and parent GO terms from the OGO terms were 142 
extracted to contextualize this network. As expected, the networks were overly complex and 143 
contained much extraneous information. To remedy this, an algorithm was developed to effectively 144 
reduce redundant data in order to create an effectively “pruned” network. This is accomplished by 145 
using building and pruning techniques based on the relationships of OGO terms. Figures 2-4 146 
demonstrate different stages of this algorithm with the OGO terms in green boxes. Figure 2 shows a 147 
subsection of GO terms in the complete “nervous system development and synaptic transmission” 148 
network before pruning of the data. Figures 3A to 3D display how specific criteria were used to 149 
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remove non-targeted GO terms. Figure 4 shows the final pruned data of the nervous system 150 
development and synaptic transmission network.  151 

The following criteria were used to select the child and parent GO terms. 152 

a. When extracting the ontology of the OGO terms using Cytoscape, child terms are 153 
automatically selected. Therefore, to simplify the ontology networks, child terms were 154 
removed. Orange terms in Figure 3A represent extra child terms of the OGO terms, which are 155 
not needed in the network. For example the GO term ‘axonogenesis’ has two child terms 156 
‘collateral sprouting’ and ‘peripheral nervous system neuron axonogenesis’. These are not 157 
necessary because the genes from step 1 have not been associated with these GO terms. 158 
(Figure 3A) 159 

b. If more than one parent term is identified for an OGO term, then a common parent term, 160 
which is shared by most of the OGO terms, is chosen. As an example, the term 161 
‘axonogenesis’ has two parent terms, namely, ‘neuron projection morphogenesis’ and ‘cell 162 
morphogenesis involved in neuron differentiation’.  In Figure 3B the term ‘neuron projection 163 
morphogenesis’, displayed in a pink box, is removed because the alternate parent term, ‘cell 164 
morphogenesis involved in neuron differentiation’, is a parent term to both the selected GO 165 
terms ‘dendrite morphogenesis’ and ‘axonogenesis’.  166 

c. A positive or negative regulation child term will have two types of parents. As an example, 167 
we will investigate the term ‘negative regulation of axonogenesis’. The first parent will be the 168 
term it regulates (‘axongenesis’) and the second parent would likely be a term that has 169 
‘regulation’ as a key word in the term name, for example, ‘regulation of axonogenesis’ could 170 
be a candidate. Therefore the parent term that is regulated was selected, in this case the term 171 
‘axonogenesis’, and the parent term that regulates a biological process but does not specify 172 
positive or negative regulation (‘regulation of axonogenesis’) is removed – shown in a yellow 173 
box -- because the child term will be more specific in terms of explaining how it is regulating 174 
the parent term (eg. negative regulation of axonogenesis), Figure 3C.  175 
 176 

Step 4: Quick GO was used to extract all the genes that are associated to the OGO terms (as 177 
displayed in Figure 4 in green boxes) in the pruned “nervous system development and synaptic 178 
transmission” network. SNPs from these genes were extracted from the ADNI1 dataset using a 179 
reference file containing the start and end positions of the transcribed gene portion according to the 180 
Homo sapiens build 37 protein and coding genes from National Center for Biotechnology 181 
Information (NCBI). This list of SNPs formed the priority list for sFDR.  182 

2.2 ADNI Imaging Data  183 
 184 

2.2.1 ADNI Data 185 
GWAS data and magnetic resonance imaging (MRI) neuroimaging data was obtained from the 186 
Alzheimer’s Disease Neuroimaging Initiative (ADNI).  Established in 2003 to facilitate the 187 
development of methods for biomarker investigation in order to enable detection of Alzheimer’s 188 
disease (AD) at earlier stages, ADNI is a partnership between the National Institute on Aging, the 189 
National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration, 190 
private pharmaceutical companies, and nonprofit organizations (http://adni.loni.usc.edu/ ; Michael 191 
W. Weiner, Principal Investigator). The ADNI database contains different information including 192 
neuroimaging, clinical, and genome-wide SNPs data. According to the ADNI protocol, subjects are 193 
diagnosed as cognitively normal (CN), mild cognitive impairment (MCI), or Alzheimer’s disease 194 
(AD), based on the severity of their condition, and are recruited from Canada and the United States. 195 
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We used the ADNI1 dataset “ADNI1: Complete 1Yr 1.5T” (Wyman et al., 2013). 1.5T scanners 196 
(General Electric Healthcare, Philips Medical System or Siemens Medical Solutions) were used with 197 
the protocol described by (Jack et al., 2008). Before quality control (QC), 817 Caucasian 1.5T MRI 198 
subject scans were obtained from the ADNI1 database. Of the 817 subjects, 757 had GWAS data and 199 
662 passed quality control. Figure 1B shows the overall steps taken to process the ADNI 1 MRI and 200 
GWAS data. 201 

2.2.2 Hippocampal Segmentation 202 
Hippocampal segmentation was carried out in all 662 samples with GWAS data, using a modified 203 
multi-atlas algorithm known as the Multiple Automatically Generated Templates (MAGeT-Brain) 204 
algorithm (Chakravarty et al., 2013; Pipitone et al., 2014).  The MAGeT Brain algorithm overcomes 205 
the limitations of model-based segmentation techniques, and avoids the requirement for larger atlas 206 
libraries typically required in more traditional multi-atlas segmentation strategies (Heckemann et al., 207 
2006; Collins and Pruessner, 2010) by bootstrapping the segmentation procedure using data from the 208 
participants being analyzed. The segmentation procedure consists of three steps. First, five high-209 
resolution MRI atlases developed by our group were used as inputs (Winterburn et al., 2013) and are 210 
used to automatically generate a “template library” based on a subset of the ADNI1 dataset using a 211 
model based segmentation procedure. For the purposes of this work we used a subset of subjects 212 
consisting of 7 AD, 7 MCI and 7 CN subjects evenly distributed across an age range of 58-90 to 213 
model the anatomical variability across the ADNI1 dataset. Model-based segmentation is used to 214 
segment each of the subjects in the template library leading to a total of 5 candidate segmentations 215 
per subject. The next step proceeds much like a regular multi-atlas segmentation strategy, where each 216 
subject is nonlinearly matched to each of the subjects in the template library, yielding 105 (5 atlases 217 
× 21 templates) candidate segmentations for each subject. The last step is a voxel voting technique 218 
where a label at each voxel that is most frequently occurring is used for the final segmentation 219 
(Collins and Pruessner, 2010). All resultant segmentations were manually inspected by an expert 220 
rater and only those segmentations passing quality control were used in the analysis. Images not 221 
successfully segmented by the MAGeT Brain algorithm were segmented manually for use. All input 222 
atlases (http://cobralab.ca/atlases/Hippocampus.html) and source code for MAGeT-Brain are freely 223 
available online (https://github.com/CobraLab/MAGeTbrain). Nonlinear transformations were 224 
estimated using the ANTs algorithm (Avants et al., 2008) and image processing steps were carried 225 
out using the MINC toolbox 226 
(http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit). 227 

2.3 ADNI1 Genetic Data 228 
 229 

2.3.1 Genetic Data Quality Control  230 
Quality control (QC) was performed on the ADNI 1 GWAS data (N=757) using PLINK (version 231 
1.07, http://pngu.mgh.harvard.edu/~purcell/plink/ (Purcell et al., 2007)). In addition R (http://www.r-232 
project.org/ ) was used to visualize the results. Individuals with discordant sex information, high 233 
level of missing data (> 2%) and heterozygosity rates greater than 3 standard deviations from the 234 
mean were removed from the sample. One of each pair of individuals displaying a high level of pair-235 
wise identity by descent (IBD > 0.185) were also removed. In addition, SNPs with minor allele 236 
frequency (MAF) <1% and Hardy-Weinberg equilibrium (p < 1x10-7) were removed. After QC, 662 237 
individuals remained in the analysis set. Multidimensional scaling (MDS) was performed in PLINK 238 
using HapMap3 (Altshuler et al., 2010) as a reference panel. When the population is compared with 239 
the CEU (CEPH - Utah residents with ancestry from northern and western Europe), YRI (Yoruba in 240 
Ibadan, Nigeria), JPT (Japanese in Tokyo, Japan), TSI (Tuscans in Italy) and CHB (Han Chinese in 241 
Beijing, China) ancestry, the sample clustered around CEU and TSI sample. MDS was subsequently 242 
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carried out with the ADNI1, CEU, TSI and Jewish ancestry samples and aligned completely with the 243 
later three samples (Supplementary Figure S1). The Jewish ancestry sample was made available by 244 
Mark Silverberg. 245 

2.3.2 Data Preparation, Pre-Phasing and Imputation  246 
The GWAS data was based on UCSC, (University of California, Santa Cruz) build 36 reference 247 
(Lander et al., 2001), and the liftover tool available from the NCBI (http://genome.ucsc.edu/cgi-248 
bin/hgLiftOver) was used to convert each SNP location to build 37. SHAPEIT 2.0 ((Delaneau et al., 249 
2012), https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html) was used to pre-phase 250 
the haplotypes of the GWAS data after QC. Imputation was performed on the pre-phased data using 251 
Impute2 ((Marchini et al., 2007), https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) for the 252 
autosomal chromosomes with the 1000 Genome (March 2012) data as a reference. SNPs with info 253 
values of equal and greater than 0.5 and MAF > 0.05 were retained for analysis. 254 

2.3.3 Association of Hippocampal Volume with GWAS Data 255 
SNPTEST 2.5 ((Marchini et al., 2007), 256 
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) was used to examine 257 
associations between hippocampal volumes with both imputed and genotyped SNPs. Covariates used 258 
in the analysis were gender, age, first dimension from MDS to control for population structure, 259 
baseline diagnoses (CN, MCI, or AD), APOE status because APOE e4 carriers have a higher risk of 260 
developing AD (Farrer et al., 1997) and intracranial volume to correct for variation in brain sizes 261 
within individuals in the sample. Three phenotypes were investigated: left hippocampal volume, right 262 
hippocampal volume, and mean (of the left and right) hippocampal volume. Frequentist association 263 
testing was undertaken for each phenotype, with a ‘method’ option in place to control for genotype 264 
uncertainty in the association test.  265 

2.4 Stratification of SNPs 266 
Fixed FDR strategies are used to control FDR in a group of tests. In sFDR, SNP p-values from the 267 
association analysis are grouped into distinct strata, one or more of which are believed to have a 268 
higher prior probability of being associated with the trait of interest (Sun et al., 2006).  The 269 
association p-values of each SNP are transformed to q-values and FDR is controlled separately 270 
within each strata. To control the FDR at a given level – 5% in this analysis – the null hypothesis is 271 
rejected when tests have a q-value equal to or less than the specified threshold (0.05). This method 272 
increases the power to identify true associations if one of the strata is enriched with associated 273 
variants. When the strata aren’t enriched, the method is still robust. Two SNP strata were formed in 274 
our data. All SNPs in the genes associated to the OGO terms (Figure 4) from the pruned “nervous 275 
system development and synaptic transmission” network formed one, high priority, strata (249,001 276 
SNPs), and all the remaining SNPs formed the other (5,457,557 SNPs) in our non-priority stratum.  277 
Association p-values from SNPTEST were merged with each corresponding SNPs in each strata 278 
(priority and non-priority list) for sFDR. A Perl script was used to analyze priority and non-priority 279 
SNPs (http://www.utstat.toronto.edu/sun/Software/SFDR/). 280 

3. Results       281 

3.1 SNP Selection  282 

Step 1: From the 21 loci identified in Lambert et al., (2013) in association with AD, 10 were already 283 
known through previous GWAS and 11 novel loci were found (Table 1). APP, PSEN1 and PSEN2 284 
were also added to the gene list.  285 
 286 
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Step 2: Common biological processes within the gene list were identified using GO. INRICH was 287 
used as an alternative objective method, but significant results were not found. Regardless, results 288 
from INRICH may be found in the supplementary section. The GO database was accessed on January 289 
27th 2014. In the GO database all genes from the list had BP GO terms annotated to them except the 290 
gene Membrane-spanning 4-domains subfamily A member 6A (MS4A6A). Table 2 shows the 291 
common BP domains associated with the 21 genes. In this study we focused on the “nervous system 292 
development and synaptic transmission” network (Figure 4), which included many genes from our 293 
original list. The network can be broken down into sub-domains with key GO terms in the areas of 294 
synaptic function, neuroanatomical structure development, and neurogenesis. For example, in the 295 
domain “neuroanatomical structure development”, myocyte-specific enhancer factor 2C (MEF2C) 296 
has been associated with GO terms ‘denate gyrus development’ and ‘nervous system development’.  297 
 298 
Step 3: Cytoscape visualization of the nervous system synaptic transmission network is shown in 299 
Figure 4. 300 
 301 
Step 4: The list of genes associated with the OGO terms from the pruned nervous system and 302 
synaptic transmission network included 1249 genes, after removal of all non-autosomal genes 1146 303 
genes remained and formed our stratum for sFDR. Supplementary Table S1 shows a list of all 304 
priority genes with chromosome number, start and end position and gene symbol. Furthermore 305 
Supplementary Table S2 contains all 249,001 SNPs from 1146 genes used for sFDR.   306 
  307 
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Table 1. Top genes associated with AD from the Lambert et al., (2013) meta-analysis. 308 

Table 1a) 10 loci known to be associated with Alzheimer’s disease 
Gene Symbol Gene Name 

APOE Apolipoprotein E 
BIN1 Myc box-dependent-interacting protein 1 
CLU Clusterin (Apolipoprotein J) 

ABCA7 ATP-binding cassette sub-family A member 7 
CR1 Complement receptor type 1 

PICALM Phosphatidylinositol-binding clathrin assembly protein 
MS4A6A Membrane-spanning 4-domains subfamily A member 6A 

CD33 Myeloid cell surface antigen CD33 
CD2AP CD2-associated protein 
EPHA1 Ephrin type-A receptor 1 

Table 1b) 11 new loci associated Alzheimer’s disease 
Gene Symbol Gene Name 

HLA Human leukocyte antigen class II histocompatibility antigen 
SORL1 Sortilin-related receptor 
PTK2B Protein-tyrosine kinase 2-beta 

SLC24A4 Sodium/potassium/calcium exchanger 4 
NYAP1 Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 1 
CELF1 Encode CUGBP, Elav-like family member 1 region 
NME8 Thioredoxin domain-containing protein 3 

FERMT2 Fermitin family homolog 2 
INPP5D Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 
MEF2C Myocyte-specific enhancer factor 2C 
CASS4 Cas scaffolding protein family member 4 

 309 
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Table 2. Common GO Biological Process domains of gene hits from the Lambert et al., (2013) 310 
meta-analysis. 311 

Gene Protein 
ID 

Vesicle-
mediated 
transport 

and 
Endocytosis 

Steroid 
and 

cholesterol 
metabolic 

process 

Immune 
system 
process 

Cell 
membrane 
processes 

and 
Cell 

migration 

Nervous 
system  

development 
and 

Synaptic 
transmission 

Regulation 
of 

calcium-
mediated 
signaling 

DRB5 Q30154   X    
SORL1 Q92673 X X  X   
PTK2B Q14289   X X X X 

SLC24A4 Q8NFF2 X     X 
NYAP1 Q6ZVC0     X  
MADD Q8WXG6    X   
NME8 Q8N427    X   

FERMT2 Q96AC1 X   X   
INPP5D Q92835   X    
MEF2C Q06413     X  
CASS4 Q9NQ75       
APOE P02649 X X  X X X 
BIN1 O00499 X   X   
CLU P10909 X X X    

ABCA7 Q8IZY2 X X X    
CR1 P17927   X    

PICALM Q13492 X  X  X  
MS4A6A Q9H2W1       

CD33 P20138   X X   
CD2AP Q9Y5K6    X   
EPHA1 P21709   X X   

 312 

3.2 Quality Control of Imaging and GWAS data 313 

After quality control (QC) of automatic hippocampal segmentations, 9 segmentations out of 662 314 
subjects failed which were corrected though manual segmentation. For the ADNI1 GWAS data, the 315 
sample initially consisted of 757 individuals, and after QC the sample was reduced to 662 subjects. 316 
The number of SNPs in the GWAS data after QC was 529,623 from 620,901 original variants, of 317 
which 517,064 SNPs were on autosomal chromosomes. After imputation of the GWAS, data the 318 
number of SNPs typed increased to 17,418,272. After QC of imputed SNPs, 5,706,558 SNPs were 319 
used for the association analysis with mean hippocampal volume.  320 

3.3 Association Testing with Hippocampal Volume  321 

P-values from association testing between the SNPs and mean hippocampal volume did not result in 322 
any GWAS significant findings after correction for multiple testing (Figure 5). Some, however, 323 
approached significance (Table 3, SNPs with uncorrected p-values). For example rs72909661 in 324 
gene region Stearoyl-CoA desaturase 5 (SCD5) neared GWAS significance with an uncorrected p= 325 
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8.97x10-7. The top 10 SNPs found within gene regions were: Autism susceptibility gene 2 protein 326 
(AUTS2; rs2158616; p= 1.16x10-6), Transmembrane protein - family with sequence similarity 155 327 
member A (FAM155A; rs1033880; p=4.42x10-6) and long non-coding RNAs (LOC440173; 328 
rs11791915; p=1.76x10-6). Testing with left and right hippocampal volumes as response variables 329 
resulted in no GWAS significant findings, as displayed in the supplemental materials. 330 

 331 
Table 3. Top 10 most significant SNPs within gene regions from association testing of mean 332 
hippocampal volume  333 
MAF represents minor allele frequency and p-value is the associated significance between the SNP 334 
and phenotype (mean hippocampal volume). Significant SNPs at a GWAS level are at p < 5x10-8. 335 
Chromosome 

Number SNP ID Base 
position MAF p-value NCBI Gene 

ID Gene Symbol 

9 rs75592689 89700141 0.07 6.92E-07 494127 LOC494127 
4 rs72909661 83680826 0.05 8.97E-07 79966 SCD5 
7 rs2158616 70075454 0.10 1.16E-06 26053 AUTS2 
7 rs2158617 70075447 0.10 1.23E-06 26053 AUTS2 
7 rs2158618 70075402 0.10 1.60E-06 26053 AUTS2 
9 rs11791915 89643751 0.08 1.76E-06 440173 LOC440173 
9 rs11789129 89638584 0.07 2.42E-06 440173 LOC440173 
13 rs1033880 108222156 0.44 4.42E-06 728215 FAM155A 
13 rs9520494 108222992 0.44 6.00E-06 728215 FAM155A 
13 rs9520495 108224804 0.44 6.79E-06 728215 FAM155A 

 336 
 337 
3.4 sFDR Results 338 
In total there were 249,001 SNPs in our priority stratum and 5,457,557 SNPs in our non-priority 339 
stratum. No q-values from the priority list (nervous system development and synaptic transmission 340 
stratum) reached the 0.05 threshold. All of the top 97 ranked SNPs were found in our priority list, but 341 
these SNPs were not significant at a q-value of less than 0.05. In particular, SNPs in our priority list 342 
within gene regions: C2 calcium-dependent domain containing 3 (CDCD3), growth arrest-specific 343 
(GAS7), Semaphorin-3D (SEMA3D), Gap junction alpha-1 protein (GJA1) and Rap guanine 344 
nucleotide exchange factor 1 (RAPGEF1) were ranked in the top 10 but with an sFDR q-value of 345 
0.71 (Table 4). Both the priority and non-priority stratum display uniform p-values; this indicates 346 
that there is no true association between the SNPs and mean hippocampal volume (Supplementary 347 
Figure S1 and S2).  348 
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Table 4. Top 10 most significant sFDR results for mean hippocampal volume 349 
P-value is the associated significance between the SNP and phenotype (mean hippocampal volume). 350 
Significant SNPs at a GWAS level is p < 5x10-8. The sFDR q-value controls the false discovery rate; 351 
the q-value is the adjusted p-value. Significant q-value is set to 0.05. ‘Rank’ is the order of SNPs 352 
based on sFDR q-values from a total of 5,706,558 SNPs. 353 
Chromosome 

number SNP ID Base 
position p-value q-value rank NCBI 

Gene ID 
Gene 

Symbol 
11 rs12417424 73751481 2.94E-05 0.7113 1 26005 C2CD3 
17 rs62064532 9850440 3.17E-05 0.7113 2 8522 GAS7 
11 rs4944877 73753671 3.74E-05 0.7113 3 26005 C2CD3 
11 rs58006161 73860874 4.05E-05 0.7113 4 26005 C2CD3 
11 rs58719576 73860873 4.05E-05 0.7113 5 26005 C2CD3 
7 rs17558985 84643942 4.19E-05 0.7113 6 223117 SEMA3D 
17 rs55753206 9856314 6.34E-05 0.7113 7 8522 GAS7 
6 rs113413235 121762030 6.35E-05 0.7113 8 2697 GJA1 
9 rs7469510 134559741 6.37E-05 0.7113 9 2889 RAPGEF1 

 354 

4. Discussion 355 

In contrast to existing approaches, our novel method provides a systematic integration framework for 356 
previous knowledge with the GO database. Alternatives such as Aligator (Holmans et al., 2009) and 357 
INRICH both rely on the identification of over-represented GO categories among significant hits; we 358 
identify and adapt relevant categories and use sFDR to increase power while controlling for 359 
multiplicity. 360 
 361 
With no individual variants reaching genome-wide significance, we suspect a lack of statistical 362 
power even while employing the sFDR framework. In the future, our method will be adapted and 363 
applied to different datasets, and specifically, alternate phenotypes of AD.  The high concentration of 364 
amyloid plaques in subcortical structures in late stage AD and neurofibrillary tangles originating in 365 
the medial temporal lobe implicate these regions as potential targets for future analysis (Braak and 366 
Braak, 1991).  367 
 368 
The process by which priority SNPs are selected for sFDR could be considered subjective and 369 
represents an area of active development for our algorithm. Often the associations in GWAS studies 370 
are designated to the most promising gene in the region from a biological standpoint, introducing bias 371 
in step 1. One approach to combat this phenomenon would be for the input list to include all genes 372 
within a high recombination region alongside the most significant hit. Selection of the common 373 
biological domains in step 2 is also subjective and could be replaced with a standard pathway 374 
approach such as INRICH or Aligator. We have performed pilot work using INRICH as outlined in 375 
the supplementary text. In this example no pathways were identified, preventing us from pursuing 376 
this avenue. This is likely due to a lack of power to identify relevant pathways. 377 
 378 
Another area of active development relating to SNP selection revolves around growing and pruning 379 
the network of terms utilized. Specifically, the GO terms in the “nervous system development and 380 
synaptic transmission” domain are general, and apply towards whole brain structure; currently the 381 
ontology does not capture particular brain regions in details such as hippocampal development. For 382 
example, in our priority list, SNPs in gene region growth arrest-specific protein 7 which plays a role 383 
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in neuronal development are mainly expressed in mature cerebellar Purkinje cells (Ju et al., 1998). 384 
As such, further pruning the GO network by focusing on BP GO terms annotated to genes specific to 385 
one brain region, such as the hippocampus, or neuronal cell type within such structures may be 386 
crucial. Biological processes associated with structural information have recently begun to be 387 
captured in GO (Huntley et al., 2014). Therefore, when genes are annotated to BP GO terms, 388 
additional information on where the biological process is occurring can be recorded. As a result, 389 
filtering the data and looking at BP GO terms occurring in neuro-anatomical cells in region of the 390 
hippocampus may help in further pruning the network.  391 
 392 
Both automatic and manual curation was used to assign GO terms to the genes in question.  393 
Automatic curation is the result of machine learning algorithms, and the terms assigned tend to be 394 
much broader than the manually curated ones and adds a potential source of noise to our priority 395 
SNPs stratum. In the example analysis presented here the inclusion of these sub-optimal 396 
classifications was necessary due to the limited manual annotation of the loci observed in Lambert et 397 
al., yet we acknowledge the shortcomings of this approach and advise the prioritization of manually 398 
curated data GO data. To further address the issue we are in the process of manually curating the list 399 
of 21 loci associated with AD.  400 
 401 
In conclusion, this article introduces the use of GO, an online database, as a novel method to 402 
efficiently prioritize data for sFDR multiple testing control. In particular we applied this method to a 403 
GWAS of hippocampal volume in the ADNI1 dataset. Though novel biomarkers were not identified, 404 
our method has the potential to improve the identification of genes in imaging-genetic studies.  405 
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Figure Legends  560 

Figure 1. Method overview of both the selection of priority SNPs and association testing analysis 561 
between ADNI1 GWAS and imaging data. (A) Steps taken to select for priority SNPs. Gene hits 562 
from a meta-analysis by Lambert et al., (2013) were used as a starting point (Step 1) and GO was 563 
then used to identify common biological processes within the gene hits (Step 2). Cytoscape was used 564 
to build and visualize common biological process networks -- in this case the “nervous development 565 
and synaptic transmission” network was selected (Step 3 and Step 4). All genes from the selected GO 566 
terms in the network were extracted to form the priority list of SNPs. sFDR was then implemented 567 
with the priority SNPs. (B) Shows quality controls steps taken GWAS data and hippocampal imaging 568 
data. Association analysis was performed between imputed quality control (QC) GWAS data with 569 
QCed hippocampal segmentation.  570 
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Figure 2. Sample of initial network with selected GO terms before pruning. A subsection is selected 572 
to show how the criteria was used to prune the complex GO network. Pruning steps are shown in 573 
Figure 3. 574 

575 
  576 
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Figure 3. Criteria used to prune a complex network. Green box: Selected GO terms that are 577 
associated with a gene identified from Lambert et al., (2013). Orange box: Child terms of selected 578 
GO terms. Pink box: Less common parent term only associated with one selected parent GO term.  579 
Yellow box: Regulation GO terms that do not specify positive or negative regulation. (A) Child terms 580 
of selected GO terms were removed. (B) A less common parent GO term (neuron projection 581 
morphogenesis) which has one selected child GO term (‘axongenesis’) is removed because ‘Cell 582 
morphogenesis involved in neuron differentiation’ is a parent term for both selected GO terms 583 
‘axonogenesis’ and ‘dendrite morphogenesis’. (C) Regulation terms that does not specify the type of 584 
regulation is removed because selected GO term ‘negative regulation of axonogensis” is more 585 
descriptive than the parent GO term ‘regulation of axongenesis’. (D) A sample of a pruned network 586 
after following the criteria in Figure 3A -3C.  587 
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Figure 4. Gene Ontology (GO) biological process network of the “nervous system development and 591 
synaptic transmission” in association with AD. Green boxes are GO terms that are associated with 592 
the specific genes (blue ovals) connected by purple dotted line. White boxes are intermediate parent 593 
GO terms related to the selected GO terms (green boxes). Black arrows represent ‘is_a’ relationship 594 
between the GO terms and its parent term; blue arrows shows a ‘part _of’ relationship; orange 595 
arrows, a ‘regulation’ relationship; green arrows, a ‘positive_regulation’ relationship and red arrows, 596 
a negative_regulation’ relationship. 597 
 598 
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Figure 5. A Manhattan plot of imputed ADNI1 GWAS data. The x-axis represents the chromosomal 602 
location for each SNPs. The y-axis represents the log p-values of SNPs in association with AD. The 603 
red horizontal line represents the threshold for GWAS significant SNPs.  604 
 605 
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