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Abstract!

When biomolecules physically interact, natural selection operates on them jointly. 
Contacting positions in protein and RNA structures exhibit correlated patterns of 
sequence evolution due to constraints imposed by the interaction, and molecular 
arms races can develop between interacting proteins in pathogens and their 
hosts. To evaluate how well methods developed to detect coevolving residues 
within proteins can be adapted for cross-species, inter-protein analysis, we used 
statistical criteria to quantify the performance of these methods in detecting inter-
protein residues within 8 angstroms of each other in the co-crystal structures of 
33 bacterial protein interactions. We also evaluated their performance for 
detecting known residues at the interface of a host-virus protein complex with a 
partially solved structure. Our quantitative benchmarking showed that all 
coevolutionary methods clearly benefit from alignments with many sequences. 
Methods that aim to detect direct correlations generally outperform other 
approaches. However, faster mutual information based methods are occasionally 
competitive in small alignments and with relaxed false positive rates. All 
commonly used null distributions are anti-conservative and have high false 
positive rates in some scenarios, although the empirical distribution of scores 
performs reasonably well with deep alignments. We conclude that coevolutionary 
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analysis of cross-species protein interactions holds great promise but requires 
sequencing many more species pairs.!

Key points!

1. Coevolutionary analyses of cross-species protein-protein interactions is 
largely hindered by a lack of phylogenetically deep protein alignments for 
many proteins.!

2. Commonly used null distributions generally fail to control false positives in 
coevolutionary analyses, though errors are best controlled by the empirical 
null in large alignments.!

Introduction!

Coevolution—“the change of a biological object triggered by the change of a 
related object” [1]—is a powerful concept when applied to molecular sequence 
analysis because it reveals positional relationships that are worth preserving 
across evolutionary time scales. Sequence evolution is constrained by essential 
molecular interactions, such as contacts within a protein or RNA structure, as 
well as inter-molecular interactions in protein complexes and signaling pathways. 
These constraints define an epistasis between sites (residues or base-pairs) 
where the probability of a substitution depends on the states of other sites [2] 
involved in an interaction. Because epistasis can induce correlation between 
substitution patterns across columns in multiple sequence alignments, many 
methods have been developed that use evidence of coevolving alignment 
columns to detect physical interactions within and between biomolecules. These 
methods draw inspiration from diverse techniques in molecular phylogenetics, 
inverse statistical mechanics, Bayesian graphical modeling, information theory, 
sparse inference, and spectral theory (reviewed in [3] [4]).!

Despite good rationale for coevolutionary approaches, physically interacting 
alignment columns have been notoriously difficult to identify from correlated 
patterns of sequence evolution for several reasons. First, shared evolutionary 
history creates a background of correlated substitution patterns against which it 
can be difficult to distinguish additional constraints derived from physical 
interactions. Common phylogeny is particularly strong within a gene family (e.g., 
predicting intra-molecular contacts). But it is also present across gene families 
within a species or even between species (e.g., predicting host-virus protein 
interactions), especially at shorter evolutionary distances where gene trees mirror 
species trees more closely. Coevolution methods have used a variety of 
approaches to counter the dependence induced by shared phylogeny, including 
removing closely related sequences from alignments to reduce non-
independence [5,6], differential weighting of sequences when computing 
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statistics [7–9], and null distributions that directly model or indirectly account for 
phylogeny [10–13].!

A second challenge arises when trying to distinguish correlated evolution that 
arises from direct versus indirect interactions. Alignment columns that are 
indirectly implicated in an interaction can be strongly correlated, and most 
columns are involved in multiple, partially overlapping interactions. For these 
reasons, close physical interactions may not produce patterns of substitution that 
are significantly more highly correlated than the background present in 
structures. This problem has been the focus of a recent class of coevolutionary 
methods that focuses on reducing the number of incorrect predictions by 
disentangling direct from indirect correlations [9,14–16]. An alternative point of 
view considers these networks of indirectly correlated residues as protein sectors 
that can easily, through cooperative substitutions, respond to fluctuating 
evolutionary pressures [17].!

Finally, due to low power⎯resulting in part from the previous two 

challenges⎯physically interacting sites can typically only be detected in multiple 
sequence alignments that span large evolutionary divergences and contain many 
hundreds to thousands of sequences. Recent evaluations of a number of 
coevolution methods concluded that accurate contact predictions require 
alignments with one to five times as many sequences (with <90 % sequence 
redundancy) as positions [18,19].!

To date, coevolutionary prediction of physically interacting alignment columns 
has been applied with success to intra-molecular contacts [7,20–22] and well-
characterized inter-molecular interactions [23], such as bacterial two-component 
signaling systems [24], enzyme complexes [25], and fertilization proteins [26]. 
The signal-to-noise ratio is too low and the search space too large to use 
sequence evolution to effectively identify pairs of physically interacting protein 
residues across entire proteomes; most pairs of sites with correlated substitution 
patterns are not in direct contact, and most physically interacting sites do not 
have statistically correlated substitution patterns [27].!

However, the ability to now measure physical interactions between biomolecules 
with high-throughput technologies, such as affinity purification followed by mass 
spectrometry (APMS) [28], two-hybrid methods [29], and protein 
complementation assays [30], raises the possibility of using sequence 
coevolution in a more specific way: to refine predicted interactions in an 
experimentally reduced search space. For example, correlated substitution 
patterns in pairs of proteins could help determine if an experimentally measured 
interaction is likely to represent direct physical contact versus an indirect 
interaction in a complex or a false positive. Coevolutionary analysis could also be 
informative regarding which of the sites in a pair of interacting molecules are 
most likely to be in physical contact.!
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One particularly exciting application of this approach is to characterize and 
potentially manipulate interacting residues in host-virus and host-parasite protein 
interactomes [31,32]. Newly emerging data on antibody and antigen sequences 
within a host [33] offers an opportunity to harness coevolutionary signals to 
investigate the mechanisms of broadly neutralizing antibodies and immune 
evasion. The primary open question for these new applications is whether 
existing methods are sensitive and specific enough to detect coevolution with the 
levels of constraint and divergence that are present in inter-molecular data sets 
of modest size.!

To this end, we designed data processing scripts, statistical evaluation and 
visualization tools, and simulation pipelines that allowed us to easily extend a 
suite of coevolution methods designed for intra-protein interaction prediction 
(Table 1) so that they can be used to test for patterns of correlated sequence 
evolution at pairs of sites in two different proteins, potentially from different sets 
of organisms in different parts of the tree of life (e.g., human-bacteria, bacteria-
phage interactions). We then applied this integrated framework for coevolutionary 
analysis to refine and annotate a recently derived human-HIV1 protein-protein 
interaction network [31] and to test for coevolution in the well studied arms-race 
interaction between the mammalian cytidine deaminase APOBEC3G (A3G) and 
its HIV1 antagonist, Vif. Because fewer than ten orthologous mammal-lentivirus 
proteome pairs have been sequenced and mammalian divergence is low, we 
hypothesized that power would be low in these settings.!

To quantify the limitations of coevolutionary methods when only a handful of 
sequences are available, we used a data set of 33 within-species bacterial 
protein-protein interactions. To systematically determine the parameters that 
affect performance, we focused on the well-characterized interaction between 
bacterial histidine kinase A (HisKA) and its response regulator (RR), for which a 
co-crystal structure and thousands of sequences are available. By subsampling 
HisKA-RR sequence pairs, we show that most methods have appreciable 
precision or power at low false positive rates for alignments with ~500 or more 
sequences. However, the best performing method depends on whether power or 
precision is more important, the number of non-redundant sequences in the 
alignment, and whether the goal is to find structurally or functionally linked 
residues. By expanding this analysis to 32 additional bacterial interactions [23], 
we showed that these trends generalize beyond the specific example of HiskA 
and RR. We conclude that coevolution methods are able to identify some 
residues important for cross-species protein-protein interactions, but this 
approach will benefit greatly from additional sequence data.!
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Results!

Performance benchmarking of coevolution methods!

The coevolutionary methods benchmarked in our analyses fall into three general 
groups (Table 1). Information-based methods are various flavors of Mutual 
Information between pairs of sites, each considered independently. Direct 
methods are those that consider pairs of sites in the context of a sparse global 
statistical model for contacts in the multiple sequence alignment. Phylogenetic 
methods explicitly use a substitution rate matrix and phylogenetic tree in their 
calculation of a coevolution statistic that may take into account the biochemical 
and physical properties of amino acid residues, as well as report a P-value based 
on internal simulation of independently evolving sites. In this benchmark we use 
the CoMap P-value as a statistic for comparison with other coevolution methods. 
Other differences among the coevolution methods include the incorporation of 
two additional techniques that have been shown to improve performance, re-
weighting sequences such that similar sequences contribute less to the final 
score [5] and applying an Average Product Correction (APC) to remove 
background noise and phylogenetic signal from “raw” coevolution statistics [8].!

To benchmark coevolution methods, we used 33 within-species pairs of proteins 
with co-crystal structures determined from E. coli proteins. These include a set of 
paired alignments compiled by [23], plus the histidine kinase-response regulator 
(HisKA-RR) bacterial two-component system graciously provided by Weigt 
[personal communication]. We included HisKA-RR, because it is a well-
characterized interaction with a very large, diverse multiple sequence alignment 
(8998 sequences for each gene) and genetic evidence supporting several 
interactions. For these reasons, HisKA-RR has also been used previously in 
coevolutionary analyses [34].!

Because the HisKA-RR alignment is so large, it enabled us to quantify the effects 
of alignment size and diversity by down-sampling the full alignment to produce a 
wide range of smaller pairs of HisKA and RR multiple sequence alignments with 
different numbers of sequences (range 5 to 5000 sequences) and phylogenies 
from the original alignment. The 32 alignment pairs from [23] naturally varied in 
size (range 168 to 1428 sequences).!

For each pair of multiple sequence alignments from two interacting proteins, we 
compared every site in the first protein to every site in the second protein and 
scored these pairs of alignment columns for coevolution using each of the 
methods in Table 1. We then used coevolution scores to predict inter-domain 
pairs of amino acid residues that are less than 8 angstroms (Å) to each other, 
measured between Cβs, in the representative co-crystal structure (see Methods). 
We also repeated our analyses of the HisKA-RR sub-alignments using a stricter 
definition of contacts that requires additional biochemical evidence for specificity 
determination, and an alternate definition that measures distance between the 
closest non-hydrogen atoms. Trends in our results were generally similar across 
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these choices of definition for true interactions, but we observed some 
differences in performance between definitions when enforcing a false positive 
rate (FPR) (Figure S2).!

The performance of each method to distinguish contacting pairs of residues 
(positives) from other residue pairs (negatives) was measured as previously 
described [14,35] and evaluated using power (also called recall and true positive 
rate (TPR)) and precision (also called positive predictive value (PPV)) at a range 
of low FPRs. Power and precision are complementary performance measures 
that quantify the percentage of interacting residue pairs that are found and the 
percentage of identified residue pairs that are interacting, respectively. Precision 
is a useful measure of performance in cases where positives (contacting pairs of 
residues) are overwhelmed by negatives (non-contacting residues). A method 
with high precision is helpful for generating lists of high confidence pairs of 
residues for expensive follow-up studies, even if it misses a number of truly 
interacting sites and therefore has relatively low power. We additionally examined 
four threshold-independent performance measures, area under Receiver-
Operator Curve (auROC), area under precision-recall curve (auPR), maximum 
F1-score (fmax), maximum φ (phimax).!

Physically interacting sites can be accurately detected 
in large sequence alignments!

Our primary finding is that many coevolutionary methods are able to detect inter-
molecular contacts at low FPRs in alignments with hundreds of diverse 
sequences from each protein, consistent with previous studies of intra-molecular 
contacts [3], specifically when the alignments are deeper than they are long 
[18,19]. We capture this rectangular quality in the statistic Neff/L, where Neff is 
the effective number of sequences as calculated by PSICOV [14] and L is the 
total number of columns in the pair of alignments. We observe similar trends 
when we use the number of sequences (N) or their phylogenetic diversity (PD), 
rather than Neff/L, to compare performance. The relationship between N, PD, 
and Neff is explored further in the Supplemental Text: Diversity of sequences and 
Supplemental Figures S10, S11 and S21. The diversity of residues within the 
individual alignment columns that make up each pair is another important factor 
to consider, and is explored in the Supplemental Text: Performance by column 
entropy categories.!

Both power and precision improve with increasing Neff/L for nearly all 
coevolutionary methods (Figure 1), in the HisKA-RR data set. However, for 
alignments with Neff/L < 1.0, power at FPR<5% and precision at FPR<0.1% both 
remain relatively low (<50%). Additionally, the performance metrics fmax and 
phimax show that there are no score thresholds (i.e. the strictness of predictions) 
that achieve both high precision and power in alignments with Neff/L < ~3.0 
(Supplemental Figure S1). Despite the smaller range in Neff/L values, these 
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performance trends are also observed across the 32 alignments in [23] 
(Supplemental Figures S3 and S6).!

In general, we confirm that coevolutionary methods that adjust for background 
phylogenetic signal through sequence re-weighting and/or average product 
correction (APC) (e.g., DI, DIplm, and PSICOV) perform better than the phylogeny 
unaware mutual information (MI) based methods and the phylogeny aware 
approaches that explicitly use evolutionary models. In the HisKA-RR alignment, 
we observed two major exceptions to this trend when using the strictest definition 
for contacting pairs (i.e., requiring residue Cβ < 8Å coupled with biochemical 
evidence for specificity determination) (Supplemental Figure S2). First, the 
standard MI statistic is the most precise method for detecting contacting sites in 
alignments with Neff/L > 1.6 and FPR < 0.1%. Second, mutual information 
normalized by the joint entropy (MIj) has relatively high power in many scenarios 
and is the most powerful method for detecting contacting sites that are supported 
by experimental evidence at FPR < 5%. However, MIj has drastically lower power 
at FPR < 0.1%. These findings suggest that MI is a reasonable choice if the goal 
of the analysis is to predict a small number of very high confidence contacts, 
whereas MIj may be useful for detecting as many contacts as possible if a 
moderate FPR can be tolerated. These methods are both straightforward to 
compute, adding to their utility in these settings.!

CoMap performance is an interesting case because, in contrast to DI, DIplm, and 
PSICOV, it was not designed to find contacting residues. In the smallest 
alignments (5 sequences) we tested, it can have slightly better performance than 
the other methods. However, its poor performance in other alignments may 
indicate that it is identifying a set of coevolving residue pairs that partially overlap 
with contacting residues. It remains to explore whether CoMap can be used to 
prioritize residue pairs predicted by the other methods for functional assays.!

Finally, we looked at the relationship between performance and the proportion of 
residue pairs that are contacts. Comparing across all 33 structures in our 
analyses, we observed the proportion of contacts is correlated with precision 
(Supplemental Figure S7). This means that most strongly coevolving residues in 
a protein pair are more likely to be physically interacting in co-crystal structures 
with larger interfaces.!

Choice of null distribution affects performance!

The previous results show performance based on the known HisKA-RR 
structure. When applying the methods in our study in practice the structure 
usually is not known. One therefore uses a null distribution to control false 
predictions. Specifically, an upper quantile of the distribution of coevolutionary 
statistics in the absence of coevolutionary constraint is used as a threshold; one 
declares any pair of sites with a statistic exceeding the threshold a predicted 
contact. The goal is to minimize false predictions by predicting contacts only 
when statistics are much larger than expected by chance under the null 
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distribution. A variety of null distributions are commonly used, including 
theoretical limiting distributions [5,8], the observed empirical distribution (under 
the assumption that most pairs of sites are not coevolving) [36] and parametric, 
semi-parametric, and non-parametric bootstrap distributions [10,37]. Theoretical 
and empirical nulls are more computationally efficient than bootstrap methods, 
which require simulating large data sets. The HisKA-RR interaction provides a 
framework for assessing the performance of these different approaches.!

We used our sampled sub-alignments of HisKA-RR and the 32 alignments in [23] 
to compare the performance of two commonly used null distributions and to 
evaluate the sensitivity of each approach to alignment size. For each null 
distribution and coevolutionary statistic, we first employed the non-contact pairs 
of residues to assess if the FPR was truly controlled or not at given target FPRs 
of 5% and 0.1%.!

The normal distribution is commonly used as theoretical null for mutual 
information and its normalized variants. Under this assumption, we standardized 
the coevolution scores to Z-scores and compared these to upper quantiles of the 
standard normal distribution (mean = 0, variance = 1). We then used the resulting 
upper-tail P-values (Pnormal) to predict contacting residue pairs. We found that 
nominal FPRs using this approach consistently exceed the target FPR across the 
range of Neff/L values in both the HisKA-RR sub-alignments and the alignments 
in [23] (Figures 2 and Supplemental Figure S4). In general, as Neff/L increases, 
the nominal FPR for Direct methods increases while it decreases in Information 
based methods. Nominal FPRs were up to twice to 20 times the target FPR for 
target FPRs 5% and 0.1% respectively. This suggests that either non-contacting 
residue pairs carry signals of coevolution (e.g., due to phylogeny, structural, or 
other evolutionary constraints) and/or that Z-scores of coevolution statistics have 
variance greater than one across non-contacting residues (e.g., due to an 
underestimated standard deviation across residue pairs resulting from within 
protein constraints or residues appearing in many pairs). Three of the four 
phylogeny aware CoMap methods controlled the nominal FPR below the target in 
all cases suggesting that the charge compensation analysis is predicting long-
range residue interactions as well as contacts.!

Thus, while the normal distribution applied to standardized coevolution statistics 
can practically be used as a null distribution, we conclude that this approach 
results in elevated rates of false positive predictions, likely due to shared 
phylogeny or structural constraints affecting non-contacting residue pairs. A 
theoretical null (eg. noncentral gamma [38]) that is parameterized for individual 
column pairs may therefore be more appropriate.!

Another choice of null distribution is the observed empirical distribution of the 
coevolution statistics. A P-value (Pempirical) for a score S is simply the proportion of 
scores that are more extreme than S. This straightforward method can be easily 
applied with any statistic. However, it also assumes that no pairs of sites are 
coevolving and should therefore produce thresholds that are too strict when there 
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are some coevolving sites in the data set (i.e., making it harder to predict real 
contacts). Contrary to this expectation, we found that the empirical null 
distribution—like the normal null distribution—produces nominal FPRs that 
exceed target FPRs (Figure 3 and Supplemental Figure S5). However, it is the 
Direct methods that best control the nominal FPR in both sets of alignments, 
marginally exceeding the target FPR in only a couple of cases. The Information-
based methods fared well in the alignments in [23], however the HisKA-RR sub-
alignments reveal that at Neff/L < 0.3, control of the FPR is lost, especially in 
MIHmin. The Phylogenetic method that consistently exceeded the target FPR was 
the CoMap correlation analysis (CMPcor) which makes no assumptions regarding 
the biochemical properties of the amino acids. These results suggest that the 
empirical null distribution is not as conservative of an approach as one might 
expect from including contacting residue pairs in the null distribution. Although, it 
may suffer from some of the same effects that make the normal null distribution 
anti-conservative, such as shared phylogeny or structural constraints, alignments 
with very few sequences (eg. 5-50) have a limited number of possible scores 
which leads to ties in P-values between contacting and non-contacting residues.!

These results are encouraging, but still leave us with the challenge of how to 
choose an appropriate P-value cutoff in a real analysis when the structure is 
unknown. Since our findings indicate that nominal FPRs exceed target FPRs with 
all three types of null distributions and nearly all methods, stricter P-value cutoffs 
than the target false positive rate seem warranted. But it is not clear how much 
stricter will be needed in any given alignment pair without additional information 
to guide such modifications (eg. incorporating alignment properties such as Neff/
L into a model for each coevolution method). Hence, in most applications one 
must simply aim to control a target FPR, knowing that the true error rate is likely 
to be larger (Supplemental Figures S8 and S9). For this reason, the empirical null 
distribution may be the best choice to use as it controls error rates across the 
majority of alignment sizes, target FPRs, and coevolution methods (Figures 3 
and S5) tested. As a rule of thumb, the empirical null overall controls the FPR for 
the Direct methods, however in small alignments (5 sequences or Neff/L < 0.3) it 
can be up to 1.5 times the target FPR.!

Cross-Species Case Study 1: Applying coevolution 
methods to Vif-A3G identifies some residues known to 
affect host-virus interactions!

Viral infectivity factor (Vif) is a lentiviral accessory protein whose primary function 
is to target the antiviral cytidine deaminase APOBEC3G (A3G) of its mammalian 
hosts through ubiquitination. Because the two protein families are in an 
evolutionary arms race [39,40], we hypothesized that they would be an 
informative example for exploring the utility of coevolution methods in host-virus 
protein pairs (i.e., inter-protein, inter-species interactions). This is a novel 
application of coevolution analysis, which has primarily been applied to residues 
within a protein or between pairs of proteins in the same genome.!
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A major challenge in performing coevolutionary analysis on cross-species protein 
pairs is acquiring appropriate data, including paired alignments and protein 
structures for validation. For Vif-A3G, we were able to identify 16 pairs of 
sequences (Neff = 10.0) from different primates (A3G orthologs) and their 
lentiviruses (Vif orthologs) in public databases (Table S2). Our benchmarking 
results on HisKA-RR indicate that such small protein families push the useful 
limits of the coevolution statistics we tested (Neff/L = 0.014). The low sequence 
diversity of A3G (Neff = 3.04) within primates compared to Vif (Neff = 11.3) within 
primate lentiviruses also presents challenges. Hence, we expect coevolutionary 
analysis to potentially have limited power in this scenario. To quantitatively 
evaluate performance, requires validated Vif-A3G interactions. The structure of 
Vif in complex with A3G has not been solved. However, biochemical assays have 
solidly identified regions important for binding and ubiquitination along the 
individual reference sequences of HIV1 Vif [41–44] and human A3G [45,46] 
(Table S3). For this analysis, we therefore take the residues in biochemically-
validated regions to be positives even though they might not be contacts (ie. Cβ 
distance ≥ 8Å), and assume that all remaining residues are negatives, even 
though other sites (including sites deleted in these reference sequences) are 
possibly involved in the interaction. While further experimentation is needed to 
understand the relationship between functionally important sites and the structure 
of the protein interaction, as well as the effects of mutations in these sites on the 
fitness of lentiviruses, we explore whether any clues can be identified in the 
limited data that describes the coevolutionary history of the Vif-A3G residues.!

First, we computed coevolutionary statistics for all Vif-A3G residue pairs and 
evaluated how well the statistics pinpoint the positive functionally important 
residues compared to negatives. For this evaluation, we used the empirical 
distribution of scores as a null distribution to determine statistical significance 
(i.e., Pempirical) because they have lower false positive rates across Neff/L values 
at strict significance thresholds. Because the positives and negatives are single 
residues in each sequence instead of inter-protein residue pairs, we summarized 
Pempirical for each residue by assigning it the most significant Pempirical across all 
inter-protein pairs to which it belongs, and then explored the Vif and A3G results 
individually. From our benchmarking on the bacterial data sets, we know that 
significance thresholds that control the FPR vary by method and Neff/L, and that 
strict thresholds that yield very low (~2-3%) power are typically needed to control 
FPR in small alignments. We therefore chose to identify a significance threshold 
for each method that maximizes precision on the known functional sites in each 
protein. Then, we estimated power and FPR at these thresholds.!

On Vif, with the exception of CMPcor and DI32, the maximum precisions for each 
method ranged from 9 to 20% (i.e. only one or two residues out of ten predicted 
to be positives are truly positives)(Supplemental Figure S14). At these precision-
optimized thresholds, MIj and MIminh predict almost every Vif residue to be 
coevolving; a stricter threshold would not result in a lower proportion of incorrect 
predictions. In contrast, the precisions for CMPcor, CMPpol, and DI32 are the 
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highest (20%, 40%, 100% respectively). However, this comes at the cost of 
making the fewest number of predictions with the latter only making a single 
prediction. For these methods, less strict thresholds are needed to identify a 
greater proportion of positives at the cost of increasing the proportion of false 
discoveries. Across all methods, low fmax and phimax values (0.26 and below) 
suggest there are no significance thresholds that balance power and precision for 
this data set.!

We observed similarly low performance on A3G (Supplemental Figure S16). 
Encouragingly, we note that positions 128-130 are correctly identified by multiple 
methods (Supplemental Figure S12B). Residues at position 130 (e.g., D vs A) 
are highly likely to be adaptations that conferred species-specific resistance to 
Vif-induced degradation in Old World Monkeys 5-6MYA [39,40]. Position 128, that 
also provides species-specific resistance, is thought to be more recent 
[39,40,47]. While these coevolution methods alone may not yet be accurate 
enough to identify functional residues, they potentially enhance other 
evolutionary analyses. For example, of the many Apobec sites under positive 
selection [40], it is reasonable that lentiviruses are more likely shaping the 
evolution of those sites that coevolve with Vif than sites that coevolve with other 
viral or virus-like agents.!

Secondly, we visualized the localization of Vif residues predicted to be coevolving 
with A3G on a partial structure of Vif in complex with cofactors utilized for protein 
ubiquitination [48] (Figure 4). In [48], the authors are able to see that a critical 
subset of the Vif positives is solvent-exposed. We re-evaluated performance with 
only these residues as the positives (Supplemental Figure S15). There is poor 
precision to identify the putative solvent-exposed interface among the methods; 
CMPcor at 50% and CMPvol at 10% are the only methods with precision >6%.!

Our analysis of the Vif-A3G interaction confirms that power to detect functionally 
important residues in each protein family is also low in inter-protein analyses 
between species, even though it is plausible that an arms race between lentivirus 
and mammal would give rise to stronger signals of coevolution compared to 
background. It is important to consider that perhaps the positions we considered 
positives may not all be of equal evolutionary importance across primates. 
Interfaces may be gained or lost and the rapid evolution of the two proteins likely 
produces many alternative solutions to maintaining an antagonistic interaction. 
There were many predicted positions that were not in the positives and further 
systematic validation and more comprehensive sequencing of lentiviruses and 
primates is needed to determine which pairs of residues are actually in close 
proximity or functionally required for other reasons. Additionally, there appears to 
be some level of complementarity in the predictions made by VI and MIminh and 
the CMP methods, which measure different biochemical trade offs between 
coevolving residues. This strengthens the rationale for integrating methods to 
better predict interface residues experiencing potentially different evolutionary 
constraints (e.g., structural, catalytic activity, specificity). Coevolutionary analysis 
can help to generate and prioritize candidates for these experiments.!
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Cross-Species Case Study 2: The interaction network of 
HIV and human proteins shows only weak evidence of 
coevolution across mammals!

We sought to use inter-protein residue coevolution to refine a recently derived 
APMS protein-protein interaction network of the HIV-human interactome [31]. 
This study detected human proteins that interact with each HIV protein, either via 
direct physical contact or as members of complexes. Specifically, we hoped to 
use evidence of sequence coevolution to resolve direct versus indirect protein 
interactions amongst all human proteins measured to interact with each HIV 
protein. Secondly, we wanted to know if coevolutionary signals are strong 
enough to pinpoint key residues involved in the interfaces of any direct 
interactions.!

For each protein in the HIV genome, we computed a multiple sequence 
alignment with all other sequenced immunodeficiency viruses that infect 
mammals with sequenced genomes. Similarly, we generated a multiple alignment 
of each human protein with the sequences of its orthologs from any mammal with 
a sequenced immunodeficiency virus. This produced pairs of host-virus protein 
alignments with up to six immunodeficiency viruses and their primate, feline, and 
bovidae hosts. For each pair of residues in a host-virus protein pair, we quantified 
coevolution using MIj and a semi-parametric bootstrap to calculate P-values (See 
Supplemental Text: Simulating independently evolving pairs of alignments). For 
each protein pair, we varied the significance threshold and computed the count of 
significantly coevolving residue-pairs. We then compared this statistic for 
interacting protein pairs from the APMS network versus a control set of 100 
randomly chosen lentivirus-mammal protein pairs not included in the APMS 
network. We found that APMS detected interactions have only marginally more 
counts of significant signals of coevolution compared to non-interactions (best 
auROC = 0.541 at Pbootstrap < 0.0001), and therefore counts of coevolving 
residues are not sensitive enough to distinguish direct interactions or the 
residues involved in them for this set of virus and host proteins. Based on our 
benchmarking, we conclude that this lack of signal may result from low power 
due to the lack of sequenced lentivirus-mammal proteome pairs.!

Discussion!

In this work we aimed to paint a picture of the performance of emerging methods 
to identify inter-protein contacts using coevolution and to identify properties of 
alignments where performance is expected to be best. As previously noted in 
intra-protein predictions [3,9,14], re-weighting of the sequences to account for the 
underlying phylogeny is important for inter-protein predictions as well, however 
as the comparison between MIw and MI shows, it is important to tune the 
parameters controlling the re-weighting in cases where there are fast evolving 
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alignment columns in an overall conserved protein family. Fortunately, methods 
that search for direct correlations–using a global statistical model for the 
sequence alignments–seem to be able to correct for the improper weighting 
(compare MIw to DI). These methods are more precise at strict false positive 
rates than their counterparts especially when the alignments have Neff/L < 1.0. 
However, it may be beneficial to use a faster, MI-based method if the use case 
allows for a relaxed FPR and is concerned with power versus precision.!

We also investigated the use of three null models to control the false positive 
rate. Counter-intuitively, a null model that explicitly models evolution 
independently for each alignment fails to control the false positive rate. We 
believe that our simulated alignments are systematically scoring too low because 
they fail to capture the correct amount of variation in the observed alignments, 
resulting in artificially significant P-values, except for when the effects of having 
small alignment sizes results in overly conservative P-values. Using a standard 
normal or the empirical distribution of scores as null models also failed to control 
the false positive rate, likely due to the correlation structure imposed by the 
shared evolutionary history of the residues, the distribution of evolutionary rates 
of the residues, or because asymptotic assumptions do not hold at small sample 
sizes. Thus, choosing an appropriate P-value cutoff in a real analysis when the 
structure is unknown and alignment depth is shallow still remains a challenge. 
However, we show that in diverse enough alignments the empirical null 
successfully controls the false positive rate for Direct methods. As a future 
direction, we suggest exploring theoretical null distributions that can be 
parameterized for individual alignment column pairs such as [38] or further 
improving protein evolution simulators to generate distributions of scores where 
the evolutionary rates are more similar between the null and alternate 
hypothesis.!

A related problem to the one discussed here is to search a large set of protein 
pairs (within or between species) to determine which ones are interacting. In this 
setting, coevolution method performance is potentially more important than when 
predicting contacting residues for known interactions, because the search space 
will contain so many negatives (i.e., non-interacting pairs). A permissive P-value 
cutoff will lead to a large number of false positives and that may misinform 
investigators, while being too strict will lead to false negatives that keep 
potentially important findings hidden. While models exist that identify cutoffs 
based on benchmark data sets (e.g., Supplemental Figures S8 and S9, [23]), it 
would be interesting to understand why the parameters in these studies are 
appropriate and if they generalize to all protein-protein interactions. Ideally, we 
would like to understand what a null model teaches us about phylogeny-induced 
coevolution in the absence of structural inter- or intra-protein constraints. Another 
challenge for predicting interacting protein pairs from coevolutionary tests is how 
to summarize statistics for individual pairs of residues to produce a single score 
for a pair of proteins. Based on some preliminary investigations of these 
questions, we conclude that it is unlikely that cross-species interacting protein 
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pairs can be accurately distinguished from non-interacting pairs on a genome-
wide scale.!

The progress of high-throughput interaction mapping highlights the need for 
continued refinement of inter-protein coevolution detection methods. Given that 
improper re-weighting of sequences can negatively affect power and the false 
positive rate, perhaps expanding Direct methods to independently obtain 
sequence weights for each alignment or using an evolution-based probabilistic 
weight (such as in CoMap or using phylogenetic logistic regression) for unusual 
variation in each column is a logical next step forward. Another important 
contribution would be to develop a generalizable null model that can help 
differentiate contacts when there are very few sequences available for protein 
families. Furthermore, investigating the correlations among the coevolution 
statistics themselves in inter-protein data sets could potentially disentangle 
structural from non-structural coevolutionary forces as well as serving to 
construct an ensemble method. Comprehensively sequencing orthologous pairs 
of protein families is a straightforward way to test the usefulness of these future 
contributions while simultaneously enabling current methods to perform to their 
fullest.!

Materials and Methods!

Multiple sequence alignments!

A master alignment of 8998 concatenated HisKA and RR sequences was 
graciously provided by Martin Weigt. From this alignment, aligned sequences 
were sampled uniformly (each sequence had equal probability of being sampled) 
to create sub-alignments with 5, 50, 250, 500, 1000, and 5000 sequences. We 
sampled 10 sub-alignments of each alignment size (number of sequences in sub-
alignment), resulting in 60 total alignment pairs.!

The alignments in [23] were downloaded from complexes section of the Baker 
lab website (http://gremlin.bakerlab.org/complexes/
PDB_benchmark_alignments.zip) on Aug 29, 2014. The corresponding structures 
were downloaded from PDB and processed to obtain contacts between 
representative protein chains.!

The CoMap implementation requires a preprocessing step to remove sequence 
redundancy (a data munging alternative to sequence weighting). This additional 
step was also necessary to prevent buffer underflow errors when evaluating 
likelihoods in very large input trees. Therefore, all alignments with more than 200 
sequences were culled to contain the 200 most diverse sequences before being 
passed to CoMap. The sub-alignment used corresponds to the 200-leaf sub-tree 
that maximizes PD for each original input alignment and tree.!
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Measuring coevolution!

The coevolution methods used are listed in Table 1 and Table S1. Wrappers for 
the Direct methods are provided in coevo_tools to facilitate running from the 
command line. For methods in the plmDCA, mfDCA and hpDCA packages, 
MATLAB, or the MATLAB runtime executable is required as well as various 
MATLAB Toolbox dependencies and licenses.!

Evaluating coevolution performance!

For each method, coevolution scores for pairs of amino acid positions were used 
to predict inter-domain pairs of amino acid residues that are close to each other 
in the representative co-crystal structure (PDB ID: 3DGE).!

We define positives as pairs of alignment positions mapping to amino acid 
residues whose beta carbons (Cβ) are less than 8 angstroms apart in 3DGE. All 
other pairs of alignment positions are considered negatives.!

We considered the following two alternative definitions of positives:!

• Closest non-hydrogen atom-atom distance between residues is less than 6 
angstroms!

• Cβ distance is less than 8 angstroms and at least one residue is mentioned 
as important in determining specificity of the HisKA-RR interaction in [49–
53].!

Residue pairs are predicted as coevolving if their scores or P-values are above a 
given threshold (eg. top 1%, P < 0.05) (Table S4).!

Phylogenetic diversity!

Phylogenetic diversity (PD) is calculated as the sum of the branch lengths in a 
tree built from the concatenated multiple sequence alignment of both proteins. 
Trees were built using FastTree (version 2.1.7 SSE3) with options -gamma –
nosupport –wag.!
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Figures and Tables!

Figure 1: Coevolution statistics differ in their ability to detect residue contacts in 
HisKA-RR sub-alignments. Performance improves with larger, more diverse 
alignments. A: Power (TPR) and precision (PPV) at false positive rate (FPR) < 
5%, B: at FPR < 0.1%. See Misc. Abbreviations and Table 1 for abbreviations.!

Figure 2: Commonly used null distributions for coevolution statistics’ null 
distributions often fail to control the false positive rate (FPR). A: Nominal FPRs 
for target FPR < 5%, B: target FPR < 0.1% (dashed lines) in the HisKA-RR 
alignments, assuming standardized scores have a standard normal null 
distribution, (i.e. using Pnormal). The phylogenetic methods control FPR at a 
threshold of 0.001, because they do not make any predictions at this significance 
level. See Misc. Abbreviations and Table 1 for abbreviations!

Figure 3: Commonly used null distributions for coevolution statistics’ null 
distributions often fail to control the false positive rate (FPR). A: Nominal FPRs 
for target FPR < 5%, B: target FPR < 0.1% (dashed lines) in the HisKA-RR 
alignments, using the empirical distribution of score ranks as the null distribution 
(i.e. using Pempirical). See Misc. Abbreviations and Table 1 for abbreviations!

Figure 4: HIV1 Vif (light blue) in complex with co-factors (grey) sans APOBEC3G 
(A3G) (PDB ID: 4N9F). Residues in red are predicted to be coevolving with A3G 
optimizing precision (PPV) using A: previously known essential residues, B-D: 
predictions using CMPchg, MI, DI respectively. E: Few Vif residues previously 
known to interact with A3G are correctly predicted by more than four methods 
and none by methods in all classes of methods (Information-based, Direct, 
Phylogenetic). See Misc. Abbreviations and Table 1 for abbreviations.!

Table 1: Coevolution methods included in analysis. Information-based methods: 
MI: mutual information [54], VI: variation of information [55], MIj: MI divided by 
alignment column-pair entropy, MIHmin: MI divided by minimum column entropy 
[8], MIw: MI with adjusted amino acid probabilities. Direct methods: DI: direct 
information–MI with re-estimated joint probabilities [9], DI256, DI32: DI using 
Hopfield-Potts for dimensional reduction (256 and 32 patterns respectively) [56], 
DIplm: Frobenius norm of coupling matrices in 21-state Potts model using 
pseudolikelihood maximization [35], PSICOV: sparse inverse covariance 
estimation [14]. Phylogenetic methods: CoMap P-values for four analyses 
CMPcor: substitution correlation analysis [10], CMPpol for polarity compensation, 
CMPchg for charge compensation, CMPvol for volume compensation [2].!

Misc. Abbreviations: CoMap is abbreviated CMP in the main text and figures 
and CoMapP in supplemental figures. Effective number of sequences per column 
is abbreviated Neff/L. Phylogenetic distance is abbreviated PD. MIHmin appears 
as MIminh in figure legends. Precision (PPV) optimized metrics: ppvcut, ppvmax, 
ppvTPR, ppvFPR are the Pempirical threshold that maximizes PPV, said maximum 
PPV, power (TPR), and false positive rate (FPR) at said threshold.!
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Supplemental Text!

A toolkit for inter-molecular coevolution analysis!

In order to build a software suite for evaluating existing approaches to 
coevolution analysis, we first obtained implementations for a collection of intra-
molecular coevolution software tools spanning the range of methods in the 
literature (Table 1). The coevolutionary methods in our analyses can be divided 
into two major groups, those that consider each pair of sites independently and 
those that consider pairs of sites in the context of a global statistical model for the 
multiple sequence alignment. Other methodological differences include the 
incorporation of two additional techniques that have been shown to improve 
performance, re-weighting sequences such that similar sequences contribute 
less to the final score [1] and applying an Average Product Correction (APC) to 
remove background noise and phylogenetic signal from “raw” coevolution 
statistics [2]. Of the methods we benchmarked, only CoMap (1) explicitly uses a 
phylogenetic model in its calculation of a coevolution statistic, (2) accounts for 
biochemical and physical properties of amino acid residues, and (3) reports a P-
value based on internal simulation of independently evolving sites. In this 
benchmark we use the CoMap P-value as a statistic for comparison with other 
coevolution methods.!

Our toolkit consists of three parts, (1) a collection of wrappers and post-
processing utilities to facilitate running the coevolution programs from the 
command line and standardizing the diverse output formats into a single 
manageable file (https://github.com/aavilahe/coevo_tools), (2) an R package for 
calculating empirical and theoretical P-values and measuring performance 
(https://github.com/aavilahe/coevo_analysis_Rpackage), and (3) scripts for 
visualizing coevolving residues on PDB protein structures (https://github.com/
aavilahe/coevo_tools). We also implemented the canonical mutual information 
statistic, normalizations of mutual information in [3], and an information theoretic 
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distance with desirable properties [4] not previously included in coevolution 
analyses (https://github.com/aavilahe/infCalc). Many of the coevolution methods 
we tested are computationally expensive, so we prepared our workflow to take 
advantage of multiprocessing workstations and high performance computing 
clusters.!

We additionally designed our implementations to facilitate inter-molecular 
analysis by defining data structures, such as paired alignments and 
corresponding phylogenetic tree pairs, that accommodate analysis of multiple 
sequence alignment columns derived from two different proteins sequenced in 
potentially non-overlapping but matched sets of species. The matching of 
species is a key extension of standard gene family coevolution analysis to allow 
for interactome data analysis, where each sequence in one protein alignment is 
paired with one or more sequences in the second protein alignment (e.g., hosts 
and their viruses).!

To extend CoMap-like P-values to other methods by simulating pairs of 
independently evolving protein alignments, we developed a semi-parametric 
simulation pipeline that combines software from the RAxML or FastTree, 
ANCESCON, Revolver, and HMMER3 packages [5–9] to estimate phylogenies 
from pairs of sequence alignments and then use these fitted models to generate 
large collections of protein sequence alignments that closely match observed 
protein families in alignment length, alignment size, phylogenetic diversity, amino 
acid composition, and domain architecture, in the absence of coevolution (see 
Methods). Our simulation pipeline is available at https://github.com/aavilahe/
simulate_tools.!

Diversity of sequences!

To investigate whether higher power in larger alignments results primarily from 
the number sequences per se or depends upon the diversity of the sequences, 
we compared the performance across alignments with different diversity values 
but the same number of sequences. We quantified diversity using phylogenetic 
diversity (PD) [10] and the effective number of sequences as calculated by 
PSICOV (Neff) [11] (Supplemental Figures S10, S11, S22, S23). For HisKA-RR 
sub-alignments, we found weak positive and negative relationships between the 
nominal false positive rate and PD for some methods in alignments with 5 
sequences at given target false positive rates (Supplemental Figures S10, S11). 
While the range in diversity for such small alignments is small (PD: 7.5-11, Neff: 
5), under the normal distribution, the false positive rate is better controlled in 
diverse alignments. However, under the empirical null, the Information-based 
methods do not control the FPR for these alignments and have larger false 
positive rates as diversity increases in these alignments.!

One caveat of our HisKA-RR analysis is that (for computational reasons) we 
generated sub-alignments by random sampling and therefore only explored a 
range of phylogenies close to the typical diversity for each alignment size. The 
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alignments in [12] provide a broader range of phylogenetic scenarios. Across 
these 32 protein pairs, we observe fairly strong correlations between Neff and 
performance (Figure S22, S23), although performance is quite variable at any 
Neff value. For example, the alignment pair with the highest Neff had the poorest 
performance while one with an intermediate value had the second best 
performance.!

Performance by column entropy categories!

For a subset of methods, we measured the performance of the coevolution 
methods in pairs of columns with different rates of evolution. For each alignment 
size, the column entropies for each of the 10 HisKA and RR sub-alignments were 
aggregated and their median calculated. Then, for each sub-alignment, column 
pairs were binned into one of the following four categories:!

1. above-median-HisKA-entropy + above-median-RR-entropy!
2. above-median-HisKA-entropy + below-median-RR-entropy!
3. below-median-HisKA-entropy + above-median-RR-entropy!
4. below-median-HisKA-entropy + below-median-RR-entropy!

Then for each category, the false positive rate, true positive rate, and precision 
were calculated, and the median performance is given in Supplemental Figures 
S17 and S18. Cutoffs and P-values that depend on the observed data are 
recalculated using only the column-pairs in each bin (eg. Pnormal, Pempirical).!

Most methods perform best on pairs of alignment columns with 

similar sequence variation in the two proteins!

To explore the effect of substitution rate variation across sites in HisKA and RR, 
we parsed our performance results according to the entropy of the two alignment 
columns (one from each gene) in every pair of evaluated sites. For each 
alignment size, we split columns into below- versus above-median entropy 
separately for each gene, and then classified pairs of sites into the resulting four 
groups (see Methods). Then we computed power and precision separately for 
each rate category group. This analysis showed that faster evolving (i.e., above-
median-HisKA paired with above-median-RR) contacts are generally the easiest 
to detect with coevolutionary methods. Dually conserved residues (i.e., low-
HisKA paired with low-RR) (Supplemental Figures S17 and S18) are the next 
easiest to detect. We conclude that MIw’s drop in performance at 5000 
sequences may be due to dually-variable columns being improperly reweighted. 
These analyses show that sequence variation quantitatively affects the accuracy 
of coevolution analyses, with most methods performing best when coevolving 
residue pairs have similar substitution rates.!
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Simulating independently evolving pairs of alignments!

In order to classify pairs of sites as coevolving or not coevolving using a semi-
parametric bootstrapped null distribution, we calculated a P-value for the score at 
every pair of positions by comparing the observed score to the distribution of 
scores simulated for that pair under the null hypothesis (independent 
coevolution).!

To simulate alignments, we used FastTree (version 2.1.7 SSE3) [6] to build 
maximum likelihood phylogenetic trees for the HisKA and RR protein families. We 
used hmmbuild from the HMMER3 package [9] (version 3.0 March 2010) to build 
a profile hidden Markov model (pHMM) for each family. We sampled amino acid 
residues from a first order Markov chain to generate an initial sequence for each 
family. Finally, we used Revolver (version 1.0) [8] to simulate 1000 alignments for 
each family independently. Revolver can simulate the evolution of a given root 
sequence that adheres to the domain constraints imposed by a pHMM, and 
preserves a similar phylogenetic history to the observed alignment. Revolver 
used the WAG substitution matrix and indel probabilities were set to zero in order 
to simulate constant length alignments. Gaps from the observed alignment were 
then overlaid on the simulated alignment. We automated this process in a 
pipeline available at https://github.com/aavilahe/simulate_tools.!

A third type of null distribution is based on employing bootstrap methods to 
resample the observed alignment in ways that break coevolutionary correlation or 
to generate alignments from a model without coevolution. These approaches 
have the benefit that they directly account for phylogenetic effects in the null 
distribution and therefore have the potential to more accurately control FPRs but 
are computationally intensive and not suitable for all methods as they can greatly 
increase computational time. To explore this possibility, we implemented a semi-
parametric bootstrap null distribution for the phylogeny unaware methods in the 
HisKA-RR sub-alignments as an example of this approach.!

This null distribution aims to resemble the observed alignments in terms of 
substitution rates and patterns, but substitutions are generated independently in 
HisKA and RR and are therefore not correlated beyond any correlation induced 
by similarities in the phylogenies of the two gene families. Unfortunately, we 
found that P-values calculated using the bootstrap null distribution were heavily 
influenced by the error in simulating alignment columns with appropriate amino 
acid variation. Simulation error increased with alignment size, as did nominal 
FPRs. Residue pairs for which the bootstrap simulated alignment columns have 
too much sequence variation tend to have small P-values, regardless of whether 
or not they are contacting residues. Consequently, at a target FPR of 5%, the 
nominal FPR was not adequately controlled for alignments with more than 5 
sequences (Neff/L = 0.02) for any method except PSICOV. Interestingly, PSICOV 
is the method least affected by the simulation error.!
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Recalculating the nominal FPR using only alignment column pairs that were 
moderately well simulated (no more than 250 of 1000 simulations were over or 
under conserved) showed much lower FPR for all methods except MIHmin 
(Supplemental Figure S19). MI and VI are controlled below a target FPR <5%. At 
a stricter target FPR < 0.1%, PSICOV, MI, and VI are the only methods with 
completely controlled FPR at all alignment sizes. MIw, DI, and MIj are controlled 
in alignments with fewer than 1000, 500, 250 sequences respectively. Together 
these results suggest that the DI, MIw, MIj, VI are sensitive to the amount of 
variation in the simulated alignments, while PSICOV and MIHmin are more robust 
to predicting fast and slowly evolving columns. However, MIHmin’s higher FPR 
suggests it is identifying coevolving residues that are not structurally close. 
Perhaps they may be part of an alternate network of evolutionarily important 
residues, for example “protein sectors [13]” that span more than one protein.!

CoMap internally estimates P-values using a similar simulation approach. 
Nominal FPRs for CoMap methods, using their P-values directly, resemble those 
of the Information based approaches using the normal distribution as a null (twice 
to 20 times the target FPR). We conclude that it is very important for the 
evolutionary conservation of alignment columns in the bootstrap null distribution 
to closely match conservation levels in the observed data. Despite using 
currently accepted techniques for generating bootstrap distributions, we found 
that matching conservation levels this closely is challenging. This is an important 
problem for future research in the coevolution field.!

1000 alignments were independently simulated for 8998 HisKA and RR 
sequences each.!

First a phylogenetic tree for each alignment was built using FastTree (version 
2.1.7 SSE3) with options –gamma –nosupport –wag.!

The following steps were then automated in the simulate_tools pipeline:!

1. Build profile HMM!

2. Sample starting “root sequence” for simulation using first order Markov chain!

3. Generate xml control file for Revolver!

A. No tree scaling!
B. Heterogeneous rates (alpha = 1, ncats = 9)!
C. No indels!

4. Run Revolver!

An example command for simulating 1000 RR alignments:!

runSimAli --tree RR.tree     \ 

    --outdir /path/to/output \  

    --num\_sims 1000 JobNameRR RR.phy!
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From these simulated master alignments, sequences corresponding to the 
observed sub-alignments were extracted to create a total of 60000 sub-
alignments, each corresponding to one of the original 60 observed sub-
alignments.!

Structure visualization!

The Vif complex 4N9F was rendered using the UCSF Chimera package (version 
1.81) from the Computer Graphics Laboratory, University of California, San 
Francisco (supported by NIH P41 RR01081) [14].!

Alternate theoretical null Pgamma!

[15] derive the noncentral gamma distribution for a mutual information estimator 
sufficiently accurate for when the true MI <0.2 bits. The shape and scaling 
parameters depend on the number of observations (eg. number of sequences in 
alignment) and number of realizations of the two categorical variables (eg. 
number of different residues with non-zero probability in each alignment column), 
and the noncentrality parameter is used to specify “true MI” under the null 
hypothesis.!

Supplemental Figures and Tables!

Figure S1: Threshold-independent performance metrics show that coevolution 
methods fail to achieve both high precision (PPV) and power (TPR) in HisKA-RR 
sub-alignments with Neff/L < ~3.0. See Misc. Abbreviations and Table 1 for 
abbreviations.!

Figures S2: Power (TPR) and precision (PPV) at controlled false positive rates 
(A: FPR <5%, B: <0.1%) in HisKA-RR sub-alignments using a stricter definition 
for contacting residues that requires experimental evidence for specificity 
determination. See Misc. Abbreviations and Table 1 for abbreviations.!

Figure S3: Coevolution statistics differ in their ability to detect residue contacts in 
the 32 alignments in [12]. Performance varies widely across the range of Neff/L 
values. A: Power (TPR) and precision (PPV) at false positive rate (FPR) < 5%, 
B: at FPR < 0.1%. See Misc. Abbreviations and Table 1 for abbreviations.!

Figure S4: Commonly used null distributions for coevolution statistics’ null 
distributions often fail to control the false positive rate (FPR). A: Nominal FPRs 
for target FPR < 5%, B: target FPR < 0.1% (dashed lines) in the 32 alignments in 
[12], assuming standardized scores have a standard normal null distribution, 
(i.e. using Pnormal). See Misc. Abbreviations and Table 1 for abbreviations.!

Figure S5: Commonly used null distributions for coevolution statistics’ null 
distributions often fail to control the false positive rate (FPR). A: Nominal FPRs 
for target FPR < 5%, B: target FPR < 0.1% (dashed lines) in the 32 alignments in 
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[12] using the empirical distribution of score ranks as the null distribution 
(i.e. using Pempirical). See Misc. Abbreviations and Table 1 for abbreviations.!

Figure S6: Threshold-independent performance metrics vary in the 32 
alignments in [12] but trend upwards with increasing Neff/L. See Misc. 
Abbreviations and Table 1 for abbreviations.!

Figure S7: Precision (PPV) but not power (TPR) is positively correlated with the 
proportion of contacts in the 32 alignments in [12] at controlled false positive 
rates A: FPR < 0.1% B: FPR < 5%. See Misc. Abbreviations and Table 1 for 
abbreviations.!

Figure S8: Nominal FPR at a given target FPR assuming a normal null 
distribution (Pnormal) for all 60 HisKA-RR sub-alignments. See Misc. Abbreviations 
and Table 1 for abbreviations.!

Figure S9: Nominal FPR at given target FPR assuming an empirical null 
distribution (Pempirical) for all 60 HisKA-RR sub-alignments. See Misc. 
Abbreviations and Table 1 for abbreviations.!

Figure S10: Sequence diversity may be important for controlling the false 
positive rate (FPR) in small alignments. Nominal FPR vs phylogenetic diversity 
(PD) at Pnormal < 0.05. PD is the sum of branch lengths. See Misc. Abbreviations 
and Table 1 for abbreviations.!

Figure S11: Sequence diversity may be important for controlling the false 
positive rate (FPR) in small alignments. A: Nominal FPR vs phylogenetic 
diversity (PD) at Pempirical < 0.05 and B: Pempirical < 0.001. PD is the sum of branch 
lengths. See Misc. Abbreviations and Table 1 for abbreviations.!

Figure S12: Precision (PPV) optimized predictions of contacting residues (not 
pairs) in Vif using previously known essential residues show varying levels of 
sensitivity across coevolution methods. See Misc. Abbreviations and Table 1 for 
abbreviations.!

Figure S13: Precision (PPV) optimized predictions of contacting residues (not 
pairs) in A3G using previously known essential residues show varying levels of 
sensitivity across coevolution methods. See Misc. Abbreviations and Table 1 for 
abbreviations.!

Figure S14: Threshold-dependent performance metrics using Pempirical threshold 
that maximizes precision in Vif. See Misc. Abbreviations and Table 1 for 
abbreviations.!

Figure S15: Threshold-dependent performance metrics using Pempirical threshold 
that maximizes precision in Vif using critical residues. See Misc. Abbreviations 
and Table 1 for abbreviations.!
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Figure S16: Threshold-dependent performance metrics using Pempirical threshold 
that maximizes precision in A3G. See Misc. Abbreviations and Table 1 for 
abbreviations.!

Figure S17: Power at FPR < 5% by HisKA-RR sub-alignment size and entropy of 
individual alignment columns for a subset of coevolution methods. See Misc. 
Abbreviations and Table 1 for abbreviations.!

Figure S18: Precision at FPR < 0.1% by HisKA-RR sub-alignment size and 
entropy of individual alignment columns for a subset of coevolution method. See 
Misc. Abbreviations and Table 1 for abbreviations.!

Figure S19: Pboostrap fails to control the FPR except for PSICOV at target FPR < 
5% in HisKA-RR alignments. Eliminating residue pairs with large simulation 
errors shows PSICOV and MIHmin are most robust to variation at individual sites. 
See Misc. Abbreviations and Table 1 for abbreviations.!

Figure S20: FPR vs Neff/L at 0.1% and 5% target FPRs in HisKA-RR alignments 
using CoMap’s internal P-values. See Misc. Abbreviations and Table 1 for 
abbreviations.!

Figure S21: Alignment size N vs effective number of sequences as calculated by 
PSICOV (Neff) in A: HisKA-RR sub alignments and B: alignments in [12]. See 
Misc. Abbreviations and Table 1 for abbreviations.!

Figure S22: Threshold-independent performance vs Neff in alignments in [12]. 
See Misc. Abbreviations and Table 1 for abbreviations.!

Figure S23: Precision (PPV) vs Neff in alignments in [12] at controlled Pempirical < 
0.001. See Misc. Abbreviations and Table 1 for abbreviations.!

Table S1: Coevolution method software implementation version numbers and 
source code.!

Table S2: Species names and accession numbers of sequences used in Vif-A3G 
coevolution analysis.!

Table S3: Essential and critical sites for Vif-A3G interaction.!

Table S4: Confusion matrix definition for HisKA-RR coevolution benchmarking 
analysis. True Positive Rate (TPR): TP / (TP + FN), False Positive Rate (FPR): 
FP / (FP + TN), Precision (PPV): TP / (TP + FP). Phi: (TP * TN)/sqrt((TP + FN)
(TN + FP)(TP + FP)(TN + FN)), F: 2/(1/PPV + 1/TPR).!

Misc. Abbreviations: CoMap is abbreviated CMP in the main text and figures 
and CoMapP in supplemental figures. Effective number of sequences per column 
is abbreviated Neff/L. Phylogenetic distance is abbreviated PD. MIHmin appears 
as MIminh in figure legends. Precision (PPV) optimized metrics: ppvcut, ppvmax, 
ppvTPR, ppvFPR are the Pempirical threshold that maximizes PPV, said maximum 
PPV, power (TPR), and false positive rate (FPR) at said threshold.!
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Method APC Re-weighting Reference Software package

Information-based MI No None [54, 8] infCalc

VI [55]

MIj [8]

MIHmin

MIw seq %id [9] DCA

Direct DI Yes seq %id, pseudocount

DI256 [56] Code S1 in [56]

DI32

DIplm seq %id [35] plmDCA

PSICOV Blosum, pseudocount [14] PSICOV

Phylogenetic CMPcor No Downsampling [10] CoMap

CMPchg [2]

CMPvol

CMPpol

Table 1
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Method Software package Version URL

Information-based MI infCalc v0.1.2 https://github.com/aavilahe/infcalc

VI

MIj

MIHmin

MIw DCA "2011/12" http://dca.ucsd.edu/DCA/DCA.html

Direct DI

DI256 Code S1 in [56] "2013" http://doi.org/10.1371/journal.pcbi.1003176.s002

DI32

DIplm plmDCA symmetric_v2 http://plmdca.csc.kth.se/

PSICOV PSICOV V1.09 http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/

Phylogenetic CMPcor CoMap 1.5.1b5 http://home.gna.org/comap/doc/html/index.html

CMPchg

CMPvol

CMPpol

Table S1
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Mammal A3G accession Lentivirus Vif accession

Homo sapiens NP_068594.1 HIV1 Q72499

HIV2 Q74121

Pan troglodytes NP_001009001.1 SIVcpz Q1A266

Gorilla gorilla AAT44394.1 SIVgor ACM63194.1

Macaca mulatta NP_001185622.1 SIVmac P05903

Macaca nemestrina ADU03765.1 SIVmne AAA91932.1

Chlorocebus pygerythrus AEY75955.1 SIVver P27983

Chlorocebus tantalus AEY75957.1 SIVtan P89905

Chlorocebus sabaeus AEY75959.1 SIVsab AAA21506.1

Chlorocebus aethiops aethiops AEY75961.1 SIVgri AAA47589.1

Cercopithecus cephus AGE34488.1 SIVmus1 ABO61046.1

SIVmus2 ABO61055.1

Cercocebus torquatus AGE34491.1 SIVrcm AAK69675.1

Cercocebus atys AGE34496.1 SIVsmm P19506

Colobus guereza AGE34499.1 SIVcol AAK01034.1

Table S2
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Position Notes

Vif 21-23,26 A3G-specific

30

40-44

55-72 A3G and A3F

A3G 121-149 essential for Vif-binding

Table S3
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Prediction

Cβ distance Coevolving Not coevolving

< 8Å TP FN

≥ 8Å FP TN

Table S4
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