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Abstract 
Despite extraordinary efforts to profile cancer genomes on a large scale, 

interpreting the vast amount of genomic data in the light of cancer evolution and 
in a clinically relevant manner remains challenging. Here we demonstrate that 
cancer next-generation sequencing data is dominated by the signature of growth 
governed by a power-law distribution of mutant allele frequencies. The power-law 
signature is common to multiple tumor types and is a consequence of the 
effectively-neutral evolutionary dynamics that underpin the evolution of a large 
proportion of cancers, giving rise to the abundance of mutations responsible for 
intra-tumor heterogeneity. Importantly, the law allows the measurement, in each 
individual cancer, of the in vivo mutation rate and the timing of mutations with 
remarkable precision. This result provides a new way to interpret cancer genomic 
data by considering the physics of tumor growth in a way that is both patient-
specific and clinically relevant. 

Introduction 
Understanding how a tumor evolves is clinically-valuable information: 

prognosis is determined by the future course of the evolutionary process1,2, and 
therapeutic response is controlled by the evolution of resistant subpopulations3.  
However, in humans the details of the evolutionary process have remain largely 
uncharacterized as longitudinal measurements are impractical, and studies are 
complicated by inter-patient variation4 and intra-tumor heterogeneity5.  Moreover, 
the lack of a rigorous theoretical framework able to make predictions on existing 
data implies that results from cancer genomic profiling studies are often difficult 
to interpret. In particular, interpreting the allele frequency distribution reported by 
next-generation sequencing (NGS) data is problematic because of the lack of a 
formal model linking tumor evolution to the observed data. 

Here we show that after the accumulation of tumor-driving alterations 
leading to the first malignant cell, the expansion of the cancer clone is dominated 
by effectively-neutral dynamics in a large proportion of cancers of different types 
and from different cohorts. These dynamics are described by a parameter-free 
analytical model of tumor expansion that predicts a power-law distribution of the 
allele frequencies of subclonal mutations in the tumor. We also demonstrate that 
reanalyzing cancer genome sequencing data in the light of neutral evolution 
reveals the mutation rate per division and the mutational timeline in each 
individual patient. 
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Results 
 

Effectively-neutral cancer growth 
Recently, we have validated the hypothesis that colorectal cancers (CRC) 

grow as a single expansion, populated by a large number of intermixed 
subclones6. These results predict that initially after malignant transformation, 
individual subclones grow at similar rates, despite showing distinct mutational 
patterns. In this context, it is the timing of occurrence of a new mutation that is 
the major determinant of its prevalence within the tumor, rather than clonal 
selection for that mutation. 

Motivated by this latest evidence, here we developed a novel theoretical 
framework based on the concept of “effectively-neutral” evolutionary dynamics. 
The dynamics of neutral evolutionary processes have been studied extensively in 
the context of molecular evolution and population genetics7-13 and in mouse 
models of cancer14, but the presumption that subclone dynamics in human 
cancers are dominated by strong selection has meant that these ideas have not 
been applied to study cancer evolution. We derive a simple analytical result that 
specifically describes the distribution of mutant allele frequencies within a tumor 
that is measured by NGS data. Importantly, our model specifically considers the 
evolution of heterogeneous subclonal mutations.  

A tumor is founded by a single cell that has already acquired a significant 
mutation burden4: these “pre-cancer” mutations will be borne by every cell in the 
growing tumor, and so become “public” or clonal. Within the growing malignancy, 
mutations that occur within different cell lineages represent “private” or subclonal 
mutations. During the growth of the cancer, on average new cells are born at rate 
λb and die at rate λd, corresponding to a net growth rate of λ=λb–λd. We note that 
the growth fraction may be the entire tumor (λb=1) or only a small proportion of 
cells in active cell-cycle. The mean number of tumor cells as a function of time is 
then simply:  
 

𝑁 𝑡 = 𝑒!"                                                                          [1] 
 
With a mutation rate µ per chromosome set per division and a ploidy π (number 
of chromosome sets in a cell), the average number of mutations occurring in a 
population of N cells is: 
 

𝑚 𝑡 = 𝜇  𝜋  𝑁 𝑡 = 𝜇  𝜋  𝑒!"                                                [2] 
 
This equation is of limited use as neither µ, λ nor the cell cycle time can be 
measured directly in humans. Nevertheless, we do know that the allelic 
frequency of a newborn mutation at time t is the inverse of the number of 
chromosome sets in the population:  
  

𝑓(𝑡) = !
!  !(!)

= !!!"

!
     [3] 

 
Importantly, in the absence of clonal selection (or indeed significant genetic drift), 
the allelic frequency (the relative fraction) of a mutation will remain constant 
during the expansion although the total number of cells with that mutation will 
increase. Solving for t and substituting into [2] gives an expression for the 
number of mutations m(f) at frequency f:  
 

𝑚 𝑓 = !
!
      [4] 

 
Hence, the distribution of mutant allele frequencies within a cancer is predicted to 
follow a 1/f power-law distribution with coefficient µ. The 1/f noise or pink noise is 
common in nature and found in several physical, biological and economic 
systems15. We note that this result is not only valid in the case of exponential 
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expansion, but for any monotonic growth function N(t). Critically, the distribution 
m(f) is naturally provided by next-generation sequencing data and importantly, it 
is independent of the parameters describing tumor growth, which are often 
immeasurable. To assess the accuracy of the model fit we use the cumulative 
distribution: 
 

𝑀 𝑣 = 𝑚(𝑓)!
! 𝑑𝑓 = 𝜇  (log 𝑣 − log 𝑢 )   [5] 

 
because it is less sensitive to “noise” in allelic frequency estimates inherent to 
NGS data. We note that in this model we do not consider public mutations as 
those have been accumulated in previous neoplastic stages for which the 
ancestral information has been lost. The model is therefore applied only to 
subclonal (private) mutations within a sample (the mutations describing 
malignant growth) whereas public mutations are filtered out. The range 
[u,v]=[0.25,0.1] for the integral in equation [5] is conservatively chosen to exclude 
public mutations, minimize the influence of copy number changes and account 
for the lower limit of detection in 50-100x depth sequencing, which is 5-10%16. 
We note that this detectability limit means that we are only able to study the initial 
growth of a tumor using “bulk” data (e.g. DNA from a large piece of tumor, rather 
than a single cell), since subclonal populations quickly fall below the detectability 
threshold as the tumor grows. 
 
Colorectal cancer evolution 
 The allelic frequency distribution of mutations in a tumor as measured by 
NGS whole-exome sequencing is shown in Figure 1A (data from ref 6). Mutations 
with high allelic frequency (>0.3) are likely to be public (clonal), however 
considerable information on the subclonal architecture of the tumor is encoded in 
lower frequencies mutations. The same data can be represented as the 
cumulative distribution in equation [5], where we focus only on the subclonal 
mutations captured by our model (Figure 1B). Remarkably, this follows precisely 
the log-linear distribution predicted by our model for this example in Figure 1B, as 
indicated by the high goodness of fit measure R2. In Figure 1C we considered 
our cohort of 6 multi-sampling CRCs6 and 106 TCGA colon adenocarcinomas17 
that underwent whole-exome sequencing and contained at least 20 subclonal 
mutations (see Material and Methods for details). The latter were separated 
between tumors characterized by chromosomal instability (CIN) and 
microsatellite instability (MSI). The power-law distribution is remarkably well 
supported in both these independent cohorts, with 62/112 (55.3%) of the cases 
reporting a goodness of fit measure R2>0.95. These results confirm that in many 
CRCs, during the initial expansion of the tumor intra-tumor clonal dynamics are 
not dominated by strong selection but rather effectively-neutral evolution. We 
note that for a proportion of cancers with R2<0.95 this seems not to be the case. 
The poor fit in these samples may be due to lower sequencing quality, high 
normal contamination, or simply because these neoplasms do not develop 
according to an effectively-neutral evolution model.  

Estimating the per-base mutation rate µ per division in human 
malignancies is challenging since direct measurements are not possible.  
Previous estimates critically depend on assumptions about the cell cycle time T 
and the mean tumor growth rate λ. Importantly, the analysis of tumor evolution 
using genomic data is dependent on quantification of the total mutational burden 
within the cancer18-20. Indeed, accurate measurement of all mutations within a 
cancer, including heterogeneous ones, is technically unfeasible since most 
mutations will be spatially isolated in small numbers of cells and so remain 
undetected by current sequencing assays5. However, in our model we are able to 
circumvent this issue by using only the subclonal mutations to measure the 
mutation rate per cell division in each individual patient, simply by fitting the 
gradient of the line given in equation [5]. We estimated the mutation rate in all 
samples with R2>0.95 and found an overall mutation rate of µ≈10-7-10-6 
mutations per division in non-MSI cancers (Figure 1D). Expectedly, the mutation 
rate was almost 10-fold higher in the hypermutator MSI group (median: 
µ=8.9×10-6; F-test: p=8.76×10-10) with respect to the CIN group (median: 
µ=1.22×10-6) and our cohort (median: µ=1.14×10-6), which was comprised of all 
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but one CIN tumors6. Different mutational types (e.g. transitions or transversions) 
are caused by particular mutational processes21, and so likely occur at different 
rates. Measuring the mutation rate of different mutation types revealed that C>T 
mutations occurred at median µC>T=1.4×10-6, a rate nearly 10-fold higher than 
any other type of mutation (F-test: p=4.11×10-6; Figure 1E). We stratified 
according to CIN versus MSI and found that the mutation rate of each mutational 
type reflected the overall mutation rate for the group (Figure S1).  

To further test effectively-neutral evolution, we contrasted the estimated 
mutation rate of synonymous mutations (unlikely to ever be under selection) 
versus the rate of missense and nonsense mutations (liable to experience 
selection). Although the latter group of mutations is more common than the 
former, after adjustment for the number of potentially synonymous or non-
synonymous sites in the exome, the two rates were equivalent (t-test: p=0.38; 
Figure S2A), precisely as predicted by our model of neutral evolution. We also 
confirmed the robustness of our model to ongoing copy-number changes  
(Methods and Figure S2B,C). 
 
Pan-cancer analysis 

We next applied our model to a large pan-cancer cohort of 883 exome-
sequenced cancers from 14 tumor types. The fit was remarkably good across 
cancer types (Figure 2A) with 44.1% of the cases showing R2>0.95. Interestingly, 
we found that whereas several tumor types were clearly dominated by initial 
neutral evolution, such as colon, stomach, lung, prostate, cervical and bladder, 
others showed a consistently poorer fit, indicating that the clonal dynamics are 
typically not neutral in these malignancies. Other types displayed mixed 
dynamics, with some cases that were characterized by neutral evolution and 
some that were not. We can use the R2 value to identify cancer types that are 
more dominated by non-neutral dynamics like selective pressures, such as 
pancreatic, glioblastoma and renal. The latter is of particular interest as it 
displays convergent evolution likely driven by strong selective forces22, whereas 
convergent evolution was not found in lung cancer23,24, consistent with our results 
on the respective presence and absence of strong selection in the two cancer 
types.  

The n=390 cancers with R2>0.95 were selected for mutation rate analysis, 
showing differences of more than an order of magnitude between types (Figure 
2B).  The highest mutation rates were observed in malignancies characterized by 
poor prognosis, such as lung adenocarcinoma (median: µ=2.98×10-6), lung 
squamous cell carcinoma (median: µ=2.44×10-6) and melanoma (median: 
µ=2.14×10-6). The lowest rates were registered for prostate (median µ=6.4×10-7) 
and low grade glioma (median µ=7.08×10-7). We stratified the mutation rates into 
different mutational types (Figure 2C) and found that C>A mutations occurred at 
a significantly higher rate in lung cancers, consistent with their causation by 
tobacco smoke21. C>T mutation rates were most consistent across cancer types, 
likely because of their association with normal replicative errors, as opposed to 
being caused by a particular stochastically-arising defect in DNA replication or 
repair25.  Melanoma had the highest rate of C>T mutations, as expected from the 
skin’s exposure to UV radiation. 

Importantly, equation [2] demonstrates that there is a relationship between 
the mutation rate and the growth rate of the tumor, meaning that our estimate of 
the mutation rate is dependent on the unknown symmetric cell division rate that 
drives cancer growth. Consequently, if symmetric divisions are rare, we 
acknowledge that this may lead to an overestimation of the real mutation rate per 
division.  
 
Mutational timelines 

Recognition that the initial growth of a tumor follows effectively neutral 
dynamics allows estimation of the size of the tumor when a mutation with 
frequency f occurred: 
 

𝑁 = !
!  !

      (6) 
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Figure 3A,B shows the decomposition of the mutational timeline for two 
illustrative cases, namely sample TB from6 and sample TCGA-AA-3712 from17. 
Previous estimates of this mutational timeline relied on cross-sectional data26-29 
which are compromised by the extensive heterogeneity, whereas multi-region 
profiling approaches are instead accurate but expensive and laborious22,30,31. 
Using our formal model of cancer evolution this timeline information becomes 
accessible from routinely available genomic data. We note that only the order of 
initial mutations can be deciphered by our method, because of the difficulty in 
detecting rare mutations discussed above (Figure 4A). We found that classical 
CRC driver alterations, such as in the APC, KRAS and TP53 genes were indeed 
present in the first malignant cell (likely because they accumulated during 
previous neoplastic stages). This confirms what we previously reported using 
single-gland mutational profiling where all these drivers, when present, were 
found in all glands6. However, we also found that when we considered a more 
extended list of putative drivers, many occurred after the initial seeding of the 
malignancy implying they had not experienced strong selection.  

Discussion 
 Understanding the evolutionary dynamics of subclones within human 
cancers is challenging because longitudinal observations are unfeasible.  Here 
we have demonstrated that the initial growth of cancer is often dominated by 
neutral evolutionary dynamics, an observation that is consistent across 14 cancer 
types.  For the first time we present a mathematical law of mutational 
accumulation during cancer growth that predicts mutational patterns routinely 
reported using NGS. This result suggests that following the critical genomic 
event(s) that initiate clonal expansion the subsequent sub-clone evolution is 
effectively neutral and so the frequency (f) of private mutations is characterized 
by a 1/f distribution (Figure 4B). In this context, it is possible that the 
microenvironment indeed does not play a fundamental role in driving the initial 
subclone evolution, since despite genetic differences between cells and the 
presumable differences in the microenvironment they reside in, the overall 
pattern of evolution is effectively neutral. Further, it is tempting to suggest that 
eventual adaptation to distinct microenvironments may be due to cancer cell 
plasticity, rather than clonal selection: the lack of clonal selection observed 
suggests that the original genomic events that triggered malignant growth may 
inherently cause a plastic phenotype and so facilitate adaption to different 
microenvironments without requiring clonal evolution. We note that some cancer 
types were more dominated by neutral evolution than others. We speculate that 
such evolutionary dynamics may be driven by the cellular architecture of the 
tumor (e.g. glandular structures that limit the effects of selection) and/or the 
anatomical location of the malignancy (e.g. growing in a lumen versus growing in 
a highly confined space). Despite the evidence for lack of natural selection during 
malignant growth, eventual treatment is likely to change the rules of the game 
and strongly select for treatment resistant clones. The same may happen in the 
context of the purported evolutionary bottleneck preceding metastatic 
dissemination. 

Importantly, the realization that the within-tumor clonal dynamics are 
effectively-neutral means that the in vivo mutation rate per division can be 
directly measured in a sample. This parameter plays a key role in cancer 
evolution, progression and treatment resistance.  Importantly, these 
measurements can be performed in a patient-specific manner and so may be 
useful for prognostication and the personalization of therapy. Recognizing that 
the initial growth of a neoplasm is dominated by effectively-neutral clonal 
dynamics provides an analytically tractable and rigorous method to study cancer 
evolution and gain clinically relevant insight from commonly available genomic 
data.  

Online Methods 
The processing of exome-sequencing data from6 and TCGA17 involved 

PCR duplicate removal and variant calling on matched-normal pairs using 
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Mutect16. A mutation was considered if the depth of coverage was ≥10 and at 
least 3 reads supported the variant. Mutations that aligned to a more than one 
genomic location were discarded. Non-CRCs in the TCGA had mutations called 
using Mutect according to the pipeline described in32. Microsatellite instability in 
the TCGA colon cancer samples was called using MSIsensor33. 

To fit our model to allele frequency data we considered only variants with 
an allele frequency in the range [u,v]. The low boundary v is due to the fact that 
we have a limit in NGS data for the reliable detectability of low-frequency 
mutations in the order of 5-10%16. The high boundary u is necessary to consider 
only subclonal alterations and not public mutations that were present in the first 
transformed cell. In the case of diploid tumors, this threshold is 0.5 (mutations 
with 50% allelic frequency are heterozygous public or clonal), in the case of 
triploid tumors, this threshold drops to 0.33. For all samples we used a boundary 
of [0.1-0.25] to account only for reliably called mutations and normal 
contamination in the samples. All the samples considered in this study had a 
minimum of 20 reliably called private mutations within the fit boundary. Once 
these conditions were met in a sample, equation [5] was used to perform the fit 
as illustrated in Figure 1B. 
 Ongoing copy-number change (allelic deletion or duplication) can alter the 
frequency of a variant in a manner that is not described by equation [4]. We 
assessed the impact of copy-number alterations (CNAs) on our estimates of the 
mutation rate within the TCGA colorectal cancer samples by using the paired 
publically available segmented SNP-array data to exclude somatic mutations that 
fell within regions of CNA. CNVs were identified having an absolute log-R-
ratio>0.5, and the model fit was performed only on diploid regions of the genome. 
Figure S2B shows that the fit of the model is not perturbed by copy number 
alterations since, despite the reduced number of mutations per sample, the 
goodness of fit is still remarkably high. Furthermore, the estimates of the 
mutation rate based only on the remaining variants (e.g. variants located in 
diploid regions of the genome) were in excellent agreement were estimates 
based upon all variants (Figure S2C). 

Contributions 
AS and TG jointly contributed to the development of the model, the analysis of 
the data and the interpretation of the results.	
  

Acknowledgements 
AS is supported by The Chris Rokos Fellowship in Evolution and Cancer. This 
work was supported by the Wellcome Trust [105104/Z/14/Z]. We thank Prof. 
Darryl Shibata for the fruitful discussion. We would like to that Noemi Andor 
(Stanford University) for supplying mutation calls for the TCGA data. 

Figure Legends 
	
  
Figure 1. Effectively-neutral evolution is common in CRC and allows the 
measurement of the mutation rate per division in each tumor. (A) The output 
of NGS data such as whole-exome sequencing can be summarized as a 
histogram of the allele frequency of mutations, here represented for sample TB. 
Mutation with relatively high frequency (>0.3) are likely to be clonal (public), 
whereas low frequency mutations capture the tumor subclonal architecture. (B) 
The same data can be represented as the cumulative distribution M(f) of 
subclonal mutations. This was found to be log-linear with f, precisely as predicted 
by our effectively-neutral model. (C) R2 goodness of fit of our CRC cohort as well 
as a TCGA colon cancer cohort (n=112) grouped by CIN versus MSI confirmed 
that effectively-neutral evolution is common (55.3% with R2>0.95)  (D) 
Measurements of the mutation rate showed that the CIN groups had median 
mutation rate of µ=1.22×10-6 whereas MSI tumors reported an almost 10-fold 
higher rate (median: µ=8.9×10-6, F-test: p=8.76×10-10). (E) Stratification by 
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mutation type indicates that C>T mutations occur significantly at greater rate than 
other types. 
 
Figure 2. Pan-cancer effectively-neutral evolution and estimation of the 
mutation rate. (A) R2 values from 883 cancers of 14 different types supported 
our model in a large proportion of cases (44.1% of R2>0.95) and across the 
majority of cancer types, particularly colon, stomach, lung, prostate, cervical and 
bladder. On the contrary, pancreatic, glioblastoma and renal were characterized 
by non-neutral evolution. The other types displayed a mixed dynamics. (B) The 
highest mutation rate was found in lung cancer and melanoma, generally 
characterized by poor prognosis. Lower rates were found in thyroid, low grade 
glioma and prostate. (C) Stratification by mutation type revealed patterns 
consistent with exposure, such as higher C>A mutations in lung cancer due to 
tobacco and higher C>T mutations in melanoma from UV radiation. 
 
Figure 3. Reconstruction of the mutational timeline in each patient. The 
frequency of a mutation within the tumor predicts the size of the tumor when the 
mutation occurred.  (A,B) The deconvolution of the mutational timeline is 
illustrated for sample TB and TCGA-AA-3712, in which whereas established 
CRC drivers (APC, KRAS, TP53) were found to be present from the first 
malignant cell, several non validated putative drivers were mutated after 
malignant seeding, despite the underlying neutral dynamics. This suggests that 
some of these candidate alterations may not be fundamental drivers of growth in 
all samples. Confidence intervals are calculated using a binomial test on the 
number of variant reads versus the depth of coverage for each mutation. 
 
Figure 4. The neutral evolutionary model. (A) Current sequencing 
technologies using bulk samples detect only mutations occurring during the initial 
tumor growth because the allelic frequency of new mutations quickly falls below 
the detection limit θ as the tumor grows. Thus, low-frequency late-arising 
mutations go undetected using bulk sample profiling. (B) After the accumulation 
of genomic alterations, the cancer expansion is likely triggered by a single critical 
genomic event (the accumulation of a “full house” of genomic changes) followed 
by neutral evolution that generates a large number of new mutations in ever 
smaller subclones. In this context, the allelic frequency of mutations f(t) follows a 
1/N distribution and, consequently, the accumulation of mutations m(f) follows a 
characteristic 1/f distribution. Deviations from this law indicate instead the 
presence of selection or significant drift. 
 
Figure S1. Rates of different mutation types in CRC. As for the overall 
mutation rate (Figure 2B), all mutation types apart from C>G were significantly 
higher in the MSI group. 
 
Figure S2. Neutrality is further validated using synonymous versus 
nonsynonymous/stop mutations and is robust to copy number changes. 
(A) A random base change within a codon is more likely to result in a 
nonsynonymous or stopgain mutation than a synonymous mutation; hence we 
expect the mutation rate per division of non-synonymous mutations to be higher 
than for synonymous mutations. However, the neutral model predicts that when 
adjusting for the total number of possible non-synonymous versus synonymous 
sites, these two rates should be the same. This is indeed true (t-test; p=0.38), as 
shown for the colon cancer samples reported in Figure 1, thus providing further 
validation for our neutral model of cancer growth. (B) Using SNP arrays paired to 
the exome sequenced samples we subtracted from the analysis those mutations 
that fell within regions of the genome with altered copy number. The consistent 
high values of goodness of fit demonstrate that our model is robust to 
confounding copy number changes. (C) Estimating the mutation rates using only 
the mutations in copy number devoid regions yields the same results, confirming 
the robustness of our approach. 
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