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Degradation of mRNA contributes to variation in transcript abundance. Studies of
individual mRNAs show that cis and trans factors control mRNA degradation rates.
However, transcriptome-wide studies have failed to identify global relationships
between transcript properties and mRNA degradation. We investigated the
contribution of cis and trans factors to transcriptome-wide degradation rate
variation in the budding yeast, Saccharomyces cerevisiae, using multiple regression
analysis. We find that multiple transcript properties are associated with mRNA
degradation rates and that a model incorporating these factors explains ~50% of the
genome-wide variance. Predictors of mRNA degradation rates include transcript
length, abundance, ribosome density, codon adaptation index (CAI) and GC content
of the third position in codons. To validate these factors we studied individual
transcripts expressed from identical promoters. We find that decreasing ribosome
density by mutating the translational start site of the GAP1 transcript increases its
degradation rate. Using variants of GFP that differ at synonymous sites, we show
that increased GC content of the third position of codons results in decreased mRNA
degradation rate. Thus, in steady-state conditions, a large fraction of genome-wide
variation in mRNA degradation rates is determined by inherent properties of
transcripts related to protein translation rather than specific regulatory
mechanisms.


https://doi.org/10.1101/014845
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/014845; this version posted February 4, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

INTRODUCTION

Alterations in the abundance of mRNA result from changes in both the rate of transcript
synthesis and the rate of transcript degradation. Synthesis and degradation of mRNAs is
critical for control of gene expression and cell survival as ablation of either process results
in rapid loss of viability (1, 2). The cis and trans factors that control rates of mRNA
synthesis have been extensively studied in many systems (reviewed in (3)). By comparison,
far less is known about factors that control rates of mRNA degradation. A complete
understanding of gene expression regulation requires identification of the sources of
variation in mRNA degradation.

Our understanding of the mechanisms by which mRNAs are degraded (reviewed in (4)) is
largely the result of studies of specific transcripts (5-7). These studies have shown that
mRNA degradation is controlled by cis factors, including sequence elements in the coding
(8, 9) and untranslated (10, 11) regions, as well as factors in trans, including RNA binding
proteins (12, 13) and non-coding RNAs (14). However, the extent to which these different
factors impact global patterns of mRNA degradation remains unclear.

Genome-wide mRNA degradation rates have been determined for a number of organisms
including bacteria (15), plants (16), flies (17), mouse (18) and human cell lines (19). In the
budding yeast, Saccharomyces cerevisiae, genome-wide mRNA degradation rates have been
measured using a variety of methods including transcriptional inhibition (20-22), genomic-
run-on (23), and metabolic labeling (24, 25). In general, the concordance between
different global studies of mRNA degradation rates is poor likely due to a combination of
technical and biological sources of variation. Recently, we introduced RNA Approach to
Equilibrium Sequencing (RATE-seq), which combines 4-thiouracil (4-tU) labeling and RNA-
seq for determination of genome-wide in-vivo mRNA degradation rates (26). Using
approach to equilibrium labeling kinetics and non-linear regression, RATE-seq overcomes
several problems with existing methods providing improved accuracy of mRNA
degradation rates estimates, and a measure of the precision with which the rates are
measured, in steady-state conditions.

Despite discrepancies in estimates of mRNA degradation rates among different studies,
three consistent features have been demonstrated across multiple transcriptome-wide
datasets. First, there is variation in the rates at which different transcripts are degraded:
some vary by as much as an order of magnitude. Second, transcripts for genes encoding
functionally-related products have similar degradation rates (20, 26, 27). Third, no single
property of transcripts explains the observed variation (20, 25, 24). This latter point
suggests that either the causative factors are obscured in genome-wide studies, or a
combination of different factors affect rates of degradation that have transcript specific
effects. Potential properties of transcripts that might impact their rate of degradation
include transcript length, GC content, transcript abundance, codon usage and folding
properties. However, testing the effect of any single property of transcripts on global
degradation rates is inherently challenging as each parameter can vary independently
across transcripts. At the same time many transcript properties are correlated with each
other making it difficult to identify causative factors. Thus, to identify determinants of
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variation in mRNA degradation rates all known properties of transcripts must be
considered simultaneously and experimental designs that modulate a single property are
required for validation experiments.

Here, we analyzed mRNA degradation rates in S. cerevisiae using multiple regression
analysis (28, 19) and genome-wide datasets that have defined gene specific parameters.
These include protein levels (29), protein half-life (30), RNA abundance (31), transcription
rates (32), UTR lengths (33), ribosome density (34), association with RNA binding proteins
(35) and the function of the encoded product. A multiple regression model applied to
mRNA degradation rates determined using RATE-seq accounts for 50% of the variation in
mRNA degradation rates. Although less variation is explained for multiple regression
models applied to other genome-wide mRNA degradation datasets, many predictors are
significant in multiple datasets, suggesting that they are reproducible transcript properties
that impact degradation rates. These features include ribosome density, codon adaptation
index, and GC content of the wobble position in a codon (GC3) suggesting that protein
translation is closely related to mRNA degradation.

Using experimental studies of individual transcripts, we show that changing ribosome
density affects both the mRNA degradation rate and steady state levels. Using GFP coding
sequence variants that differ only in their GC3 content we show that coding sequence
affects mRNA degradation. Increasing the GC3 content increases the stability of mRNAs
resulting in increased steady-state level. Our results suggest that mRNA degradation is
determined by multiple factors, many of which are intimately linked to protein translation.

MATERIALS AND METHODS
Plasmid construction

Plasmid pCM188 (36) was used as the backbone for all plasmids. This CEN4 plasmid
contains the URA3 gene, a constitutively expressed tetracycline transactivator, and a
multiple cloning site with a CYCI TATA region upstream, all under control of two copies of
the tetracycline operator. Transcription of the gene is repressed in the presence of
tetracycline or its derivatives, including doxycycline. Plasmids DGP147, DGP148, DGP149,
and DGP231 are pCM188 with degenerate forms of GFP (37) ranging in GC content in the
third position of each codon as 0.71, 0.38, 0.60, and 0.67 respectively (GFP4, GFP1, GFP2,
GFP3). The coding sequence of each GFP was cloned into the BamHI and Notl sites.
Plasmid DGP217 is pCM188 with the GAP1 gene + 3’UTR cloned into the BamH I and Not I
sites. Plasmid DGP218 is the same as DGP217, except the start codon of GAPI has been
mutated to GTG.

Strains and Growth Conditions

The laboratory strain, FY3 (MATa ura3-52) which is isogenic to S288C was used for all
experiments. DGY696, 697, 698, and 1281 have plasmids DGP147, 148, 149, and 231
respectively. DGY1193 and 1194 carry plasmids DGP217 and DGP218 respectively, with
the GAPI1 locus deleted from start to stop with the KANMX4 cassette.
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For all experiments, a single colony for each strain was inoculated in synthetic complete
media without uracil, to maintain selection of the plasmids. Studies of the GAPI transcript
were performed in nitrogen limiting media with proline as the limiting nitrogen source, as
described in (38). Saturated cultures from overnight cultures were back-diluted 1:50 into
media of the same composition. Cells were allowed to grow for 5.5 hrs (~2.5 doublings)
before transcription was inhibited with doxycycline at a final concentration of 10ug/mL.
Cells were collected by filtration on nitrocellulose membranes and snap frozen in liquid
nitrogen.

RNA processing and qRT-PCR analysis

RNA was extracted using the hot phenol-chloroform method as in (26). Purified RNA was
then treated with RQ1 DNAse according to manufacturer recommendations. Reverse
transcription was performed using random hexamers and MMLVRT enzyme. Quantitative
Reverse Transcription PCR (qRT-PCR) was performed using the SYBR Green system and a
Roche Light Cycler. RNA levels were quantified in comparison to the HTA1 housekeeping
gene, which is unaffected by Doxycycline addition. Ratios were calculated using the
formula: Y=2((HTAl ct-Gene ct) with ct being the calculated cycle threshold. RNA levels from
each time point were normalized to t=0, which was set to 1. All analyses with error bars
are the mean +/- the standard error for 3-6 biological replicates. Values without error bars
are the average of two replicates. Primer sequences had amplification efficiencies of at
least 95% on RT products. The amplified product for all GFP strains begins between
position 463 and 586 of the transcript. The amplified products are all between 80 and 120
base pairs long. The sequences used for qRT-PCR analysis are as follows: HTA1 (Forward:
5’- GCTGGTAATGCTGCTAGGGATA-3’, Reverse: 5’- TTACCCAATAGCTTGTTCAATT-3),
GFP2, GFP4 (Forward: 5'-TTGCCGGATAACCACTACCT-3’, Reverse: 5-
CCTGCTGCAGTCACAAACTC-3’), GFP3 (Forward: 5’-GCCGATAAGCAGAAGAATGG-3’,
Reverse: 5-TGTTGATAATGGTCCGCAAG-3’), GFP4 (Forward: 5’-
CGACCATTACCAGCAGAACA-3’, Reverse: 5- GGGTCCTTTGACAGAGCAGA-3"), GAP1-ATG,
GAP1-GTG (Forward: 5 -TTTGTTCTGTCTTCGTCAC-3’, Reverse: 5-
CTCTACGGATTCACTGGCAGCA-3")

Multiple Regression Analysis

For multiple regression analysis we used degradation rates rather than half-lives, which
are typically log-normally distributed. To minimize the effects of extreme outliers we
removed values more than 1.5 times the interquartile range. Degradation rates for most
datasets were calculated as In(2)/thartife, €xcept in (25) and (26) where the effects of
dilution as a result of cellular growth was also considered. Transcript counts were from
(31) and estimated based on an assumption of ~60,000 mRNA/cell (39). Protein per
mRNA was calculated as the values from (29) divided by the values for counts. Codon
adaptation index (40) was calculated for each transcript based on the codon frequency
tables in the seqinr package in R (R core team). To normalize the data we log transformed
the predictor variables (logio(Variable) or logio(Variable +1)), except for GC content of each
codon position, which is approximately normal in distribution, and AG, which is negative in
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value. For categorical variables, transcripts were classified as bound by an RNABP based
on data from (35), and as present or absent from a Gene Ontology group based on GO SLIM
files downloaded from SGD.

In a linear multiple regression model (Crawley 2012), a parameter of interest is modeled as
being dependent on two or more predictors. We use the degradation rate constant as the
parameter of interest, and the other measurements as predictors. To build the model, we
followed two separate approaches. In the first approach, we first determined the p-value of
the pair wise correlation of each predictor to degradation rate. This indicates whether the
regression coefficient is significantly different from zero, and whether or not the predictor
has any effect on degradation rate. Next we included all predictors that have a p-value less
than 0.05 into the multiple regression models. We then performed stepwise deletion of
terms by removing sequentially the predictors with the highest p-value. The final model is
then the reduced model where only significant terms remained. We obtained the same
result using the step function in R, which reduces models based on Akaike’s Information
Criterion (AIC). In a second approach, we first calculated the significance of each predictor
when it is the only one in the model, as above. We then started adding to the model based
on the predictors with the lowest p-value. With each additional term we checked to see
that all of the terms in the model were significant. If a new term was added and it was not
significant, we removed it from the model. If a new term was added and a different
predictor lost its significance, we tested a model with either the new predictor or the one
that lost significance, and retained the one that explained more variation. We did not add
terms that were insignificant in the pair wise correlation with degradation rate. Both
approaches gave similar results. Model diagnostics suggest there is no obvious curvature
or patterns in terms of increase or decrease in variance as a function of fitted values
(Figure S6). There is also minimal curvature in the normal Q-Q plot, suggesting the model
follows linearity (Figure S6).

R functions and packages

We performed all analyses using R (R Core Team 2013) and several open source packages.
In addition to custom written functions in R, we also used functions from the following
packages: TeachingDemos, Biostrings, LSD, stringi, GeneRfold and seqinr.

RESULTS
Multiple transcript properties affect global mRNA degradation rates

Previous studies have found evidence for the effect of specific properties of transcripts on
the degradation rate of individual transcripts (10, 8, 11, 12). We tested the relationship
between globally measured transcript features (Table 1) and genome-wide mRNA
degradation rates determined using RATE-seq (Table S1). We find that several transcript
features are significantly correlated with mRNA degradation rates (Figure 1A and Table
$2). The most significant single feature predictive of mRNA degradation rates measured
using RATE-seq is the length of the coding sequence, which explains almost 30% of the
variance. The folding energy (AG) is also significantly associated with mRNA degradation
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rates, which may be due to the fact that folding energy and coding sequence length are
highly correlated. Several features related to the translation of transcripts are also
significantly associated with mRNA degradation rates including ribosome density, the
codon adaptation index and the GC3 content. We also tested whether the function of the
encoded product is predictive of mRNA degradation rate and found that functional
assignment using gene ontology (GO) terms explains a significant fraction of the variation
(Figure 1A). This is consistent with the observation that transcripts encoding proteins in
similar functional categories degrade with similar kinetics (20, 26, 27). In addition,
association with specific mRNA binding proteins also explains a significant fraction of
variation in mRNA degradation rates (Figure 1A). These results suggest a relationship
between several transcript features and mRNA degradation rates. We observed similar
relationships between these predictors and mRNA degradation rates measured using other
methods (Figure S1) suggesting that some of these relationships are reproducible despite
the poor agreement in mRNA degradation rates among different studies.

Although many transcript properties are correlated with each other (Figure S2), some
properties show no correlation and therefore may exert independent and differential
effects on the rate of mRNA degradation. Therefore, we used multiple regression analysis
to model the contribution of multiple transcript features to variation in mRNA degradation
rates simultaneously (methods). We initially built a model incorporating all factors and
used sequential reduction to arrive at a minimal model (methods). We find that the
explained variation when multiple transcript properties are included exceeds the variance
explained by any single factor suggesting that degradation rates are determined by a
combination of transcript features (“model” in Figure 1A). When the categorical factors of
gene function and binding to specific proteins, are included 50% of the variance in mRNA
degradation rates can be explained (“model++” in Figure 1A). Thus, the rates predicted by
a multiple regression model are in good agreement with experimentally determined rates
(Figure 1B). Models incorporating all features explain significant fractions of the variation
reported in other mRNA degradation datasets, albeit with reduced explanatory power
(Figure 1C). Interestingly, we find that models applied to mRNA degradation rates
measured using transcriptional inhibition tend to explain much less variation than models
applied to RNA degradation rates measured with different metabolic labeling methods.

Our model suggests an inverse relationship between mRNA degradation rate and
translational elongation rates, as measured by Codon Adaptation Index (CAI) and ribosome
density. Translation elongation rates are slowed during peptide bond formation for proline
residues (41), and particularly when multiple prolines are encoded sequentially. To
further investigate the role of translation elongation in mRNA degradation, we classified
transcripts based on presence or absence of at least four sequential proline codons.
Consistent with our multiple regression model, transcripts rich in proline degrade more
rapidly than the rest of the transcriptome (Figure 2A). Interestingly, stretches of proline
codons are also associated with overall lower protein expression levels (Figure 2B).

Ribosome density affects mRNA degradation rate


https://doi.org/10.1101/014845
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/014845; this version posted February 4, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Our regression analysis suggests that different aspects of translation affect mRNA
degradation rates. Ribosomes are generally thought to protect mRNAs from degradation
(4). Consistent with previous analyses (42), we find that increased ribosome density is
associated with decreased rates of mRNA degradation (Figure S3). To experimentally
reduce the density of ribosomes on specific transcripts, we mutated the start codon of an
endogenous transcript GAP1, which encodes the general amino acid permease, from ATG to
GTG and placed it under control of doxycycline-repressible promoters (36). Addition of
doxycycline has little effect on cellular physiology and no detectable effect on global gene
expression (43). ATG start codons are required for the small ribosomal subunit to recruit
the large ribosomal subunit for fully formed ribosomes. Mutation of ATG to GTG is
expected to reduce the number of ribosomes bound to an mRNA, but not eliminate
ribosome binding entirely as a downstream ATG may serve as a start codon for 80s
ribosome formation.

We tested the GAPI transcripts for alteration in degradation kinetics as a function of start
codon mutation. In the absence of a start codon, we find that the GAPI transcript is
significantly decreased in steady state mRNA abundance (Figure 3A) and the transcript
degrades more rapidly upon transcriptional inhibition (Figure 3B and Figure 3C). Our
results suggest that a decrease in ribosome density increases the degradation of the GAP1
transcript, consistent with the global trend detected in our regression model

Decreased GC content of the third codon position increases the rate of mRNA
degradation

Our multiple regression model predicts that factors involved in translation including
ribosome density, codon adaptation index and the GC3 content, contribute to variation in
mRNA degradation rates (Figure 1A). GC3 content affects mRNA abundance and mRNA
degradation in E. coli (37). By studying a small set of transcripts in mammalian cells, GC3
content was also found to affect mRNA levels, but not degradation rates (44) implying that
mRNA synthesis or processing must underlie differences in mRNA levels. However, a more
recent genome-wide study found evidence that decreased GC3 content is correlated with
increased mRNA degradation rates (19).

To study the contribution of GC3 content to variation in mRNA degradation rates we used
GFP constructs that differ in sequence at synonymous sites only (37). We studied four GFP
transcripts that span a range of GC3 content (Figure 4A). Changes in GC3 content also
results in overall variation in total GC content (Figure 4A). Coding sequences were placed
under control of the identical doxycycline-regulated promoter and engineered to have the
same UTRs (Figure 4B). We confirmed that all four constructs result in functional GFP
expression (data not shown).

As all coding sequences are expressed from an identical promoter differences in steady
state. mRNA abundance must result from differences in degradation, synthesis or
processing. We find that steady-state mRNA levels vary with GC3 content with the highest
GC3 content resulting in the highest steady-state mRNA abundance (Figure 4B) consistent
with observations in mammalian cells (44). Following addition of doxycycline to repress
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transcription initiation, we confirmed that three of the four transcripts degrade
differentially in a GC3-dependent manner (Figure 4C and 4D), consistent with our
multiple regression prediction. Using the measured steady-state abundances and
degradation rates for the three transcripts, we estimated synthesis rates. All three strains
have similar estimated rates of synthesis consistent with differences in degradation rates
being the primary determinant of differences in steady-state mRNA levels. We find that a
fourth construct, which has much lower GC3 content, and the lowest steady-state
abundance does not significantly differ in its mRNA degradation rate from the second
lowest GC3 (Figure S4). This may reflect a limitation of the statistical power of our assay
and the fact that other factors are likely to interact with the GC3 effect.

DISCUSSION

The abundance of mRNAs is determined by both the rate at which they are synthesized and
the rate at which they are degraded. Previous studies of individual transcripts have
determined cis and trans factors that affect mRNA degradation rates (4, 45). However,
variation in genome-wide mRNA degradation rates cannot be explained by any single
property of transcripts. In this study we sought to construct a comprehensive model that
predicts mRNA degradation rates. Using multiple regression analysis, we find that 43% of
variation in mRNA degradation rates determined using RATE-seq can be explained by
considering multiple inherent properties of transcripts in a single model. By including
association with specific RNA binding proteins and the function of the encoded product,
~50% of the genome-wide variation in mRNA degradation rates can be explained.
Interestingly, we find that methods for measuring RNA degradation that use transcriptional
inhibition tend to explain far less variation than less disruptive methods. This may reflect
that fact that metabolic labeling methods, which minimally perturb the cell, yield more
physiologically relevant degradation rates than transcriptional inhibition, which results in
rapid cell death.

In our analysis of mRNA degradation rates measured using RATE-seq, coding sequence
length is the strongest single predictor of mRNA degradation rates: in general, the longer a
transcript the more rapidly it is degraded. Other genome-wide investigations have shown
a positive relationship between the length of the mature mRNA and its rate of degradation
(46, 19, 47, 48). Studies of individual transcripts have shown that increasing transcript
length by addition of specific sequences containing “instability elements” enhances a
transcript’s rate of degradation (49). It is possible that it is not the length of the transcript
that affects its degradation, but the presence of additional regulatory elements, to which
trans factors such as RNA binding proteins can bind. A second, though not mutually
exclusive explanation for the observed relationship with mRNA length, relates to the
abundance of a transcript. The highest transcript levels are achieved through rapid
synthesis and slow degradation. Therefore, the most abundant transcripts are expected to
have slow rates of degradation. Within the transcriptome, the most abundant transcripts
include those encoding ribosomal proteins and histones, which also tend to have the
shortest coding length. The observed effect of length on mRNA degradation rates is likely a
combination of both regulatory elements and non-random relationships between the
encoded function of the transcript and its length.
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Association with ribosomes increases mRNA stability

Our multiple regression analysis provided evidence that protein translation impacts mRNA
degradation rates. Previous studies regarding the role of translation on mRNA degradation
have shown differing results. In a detailed study of the CYC1 transcript, all start codons
were removed from its coding region thereby preventing ribosome binding and translation
(50). Following global transcription inhibition with thiolutin, the translationally impaired
transcript degraded with similar kinetics to the translated transcript. Similarly, when
translation of the MFAZ transcript was inhibited by introducing a strong secondary
structure in the 5’ region of the transcript it was not found to alter the degradation kinetics
following transcriptional inhibition using the GAL system (51). By contrast, using the same
method to reduce translation of the PGKI transcript, results in an increased mRNA
degradation rate (6). Studies based on individual transcripts may be limited due to both
interaction with additional factors and issues of statistical power. Our analysis shows that
genome-wide, increased ribosome density is correlated with decreased mRNA rates
(Figure 1 and Figure S3) as recently reported (42).

To study the effect of ribosome density on the rate of mRNA degradation we mutated the
start codon of GAPI from an ATG to GTG. Consistent with results from our genome-wide
study, loss of the first start codon results in reduced mRNA levels and an increased rate of
mRNA degradation. Using a functional assay, we found that mutation of the start codon
does not result in a loss of protein function (Figure S5). The next potential start codon is
288 nucleotides (96 amino acids) downstream of the wildtype start codon and thus we
postulate that its use may result in a protein product that retains much of the wildtype
GAP1 activity. Within the first 96 amino acids are residues known to affect the extent of
functionality and localization of the encoded permease (52). Therefore, in addition to a
decrease in ribosome density, we cannot exclude the possibility that alteration in protein
function and/or possibly its production contributes to the decreased stability of the
transcript.

Synonymous coding mutations affect mRNA stability

Regression analysis suggested genome-wide relationships between codon usage and mRNA
degradation rates. We find a negative correlation between codon adaptation index and
mRNA degradation rate. Bias towards more frequent codons in a transcript may increase
the rate of elongation during protein translation (53). Therefore, this negative correlation
suggests that faster elongation by ribosomes may result in decreased rates of degradation.
Consistent with this possibility we find that the presence of multiple sequential proline
codons, which greatly slow the elongation rate, results in faster mRNA degradation rates.

We also find genome-wide evidence that the GC3 content is negatively correlated with
rates of mRNA degradation. These results are consistent with an earlier study that found a
positive correlation between synonymous A|T dinucleotides spanning codon boundaries
and mRNA degradation rates (54). To validate this result, we experimentally tested the
effect of GC3 content on mRNA degradation using GFP-encoding transcripts that differ in
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GC3 content. Consistent with our genome-wide analysis we find that decreasing the GC3
content results in increased mRNA degradation rates and lowered steady-state
abundances. Recently, increased GC3 content has been suggested to decrease mRNA
degradation rates in human lymphoblastoid cells and possibly explain some variation in
mRNA degradation rates between different individuals (19). Thus, the relationship
between GC3 content and mRNA degradation rates may be widely conserved in eukaryotes.

Conclusion

Our study shows that genome-wide variation in mRNA degradation rates is best explained
by a combination of different transcript features as suggested more than two decades ago
(49). The fact that many properties of transcripts are correlated makes it difficult to
identify causative relationships; however, through careful experimentation it is possible to
confirm genome-wide principles as we have shown in this study. Many of the factors that
affect genome-wide patterns of mRNA degradation rates are related to protein production
highlighting the close relationship between mRNA degradation and translation, which
warrants further investigation.
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FIGURE LEGENDS

Figure 1. Multiple factors are associated with variation in mRNA degradation rates. (a)
Individual predictors explain different amounts of the variation in mRNA degradation rates
determined using RATE-seq. Multiple regression models including continuous variables
(model) and continuous and categorical variables (model++) explain around half the
variation in mRNA degradation rates. Positive correlations are indicated in red whereas
negative correlations are indicates in green. Values corresponding to ANOVA and multiple
regression are in blue. (b) A comparison of modeled mRNA degradation rates with
measured mRNA degradation rates shows that the model behaves similarly across the
entire range of mRNA degradation rates. (c) Multiple regression models applied to
published mRNA degradation rates explain different amounts of the variation. Less
variance can be explained for mRNA degradation rates that rely on transcriptional
inhibition. Genomic Run On is indicated with GRO. Dynamic Transcriptome Analysis is
indicated with DTA. Labeling studies using thiouracil or thiouridine are indicated in
parentheses with 4tU and 4sU respectively.

Figure 2. The presence of multiple proline codons affects degradation rates and protein
production. (@) Proline-rich proteins, which are translated more slowly, tend to have more
stable transcripts than proline-poor proteins. (b) The steady-state abundance of poly-
proline containing proteins is reduced compared to the global distribution of protein
abundances.

Figure 3. The effect of ribosome density on GAPI mRNA degradation rate. (a) Mutation of
the start codon in GAP1 from ATG to GTG results in a reduced steady state transcript level
(a) and (b) increased mRNA degradation. In (b) we show the average value for each time
point +/-SEM. In (c) we show bootstrapped confidence intervals for the regression of all
data points. Solid lines indicate the line of best fit and dotted lines indicate confidence
intervals. In blue is the transcript with a normal start codon. In red is the transcript with a
mutated start codon.

Figure 4: GC3 content affects degradation kinetics and steady state levels. (a) Four GFP
transcripts containing synonymous mutations span a range of GC3 content (left) and
overall GC (right). Alignment of each GFP relative to GFP2. Positions of similarity in
sequence are depicted by gray line and differences are in triangles. Colors indicate
different GFP constructs. (b) Differences in GC3 content affect steady state levels of
transcripts. (c,d) GFP2, GFP3 and GFP4 degrade in a GC3-dependent manner. In (c) we
show the average value for each time point +/-SEM. In (d) we show bootstrapped 95%
confidence intervals for the regression of all data points. Solid lines indicate the line of best
fit and dotted lines indicate confidence intervals.
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Table 1. Parameters included in model.

Predictor N Units Transformation Reference
Coding Length 5850 nucleotides logio(nucleotides) SGD

3'UTR length 4950 nucleotides logio(nucleotides+1) SGD/ (33)
5'UTR length 4345 nucleotides logio(nucleotides+1) SGD/ (33)
5'UTR GC 4345 proportion none SGD/(33)
content

3'UTR GC 4911 proportion none SGD/(33)
content

Abundance 5488 rpM logio((rpM/total reads)*60,000) | (31)
Protein/ cell 3818 protein/cell logio(protein/cell) (29)
Ribosome 5269 rpkM l0g10(rpkM+1) (34)
density

Transcription 4346 molecules/min logip(molecules/min) (32)

rate

Coding GC 5850 proportion none SGD
position 1

Coding GC 5850 proportion none SGD
position 2

Coding GC 5850 proportion none SGD
position 3

Protein 3164 min l0ogip(min) (30)
half-life

deltaG 5850 kcal/mol none SGD/GeneRFold
CAI 5850 relative scale logio(relative scale) CAI function in R
Protein/ mRNA 3583 protein/cell/ logio(protein/cell/transcript+1) (29, 31)

transcript
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SUPPLEMENTAL FIGURES

Figure S1. Multiple predictors best explain variation in mRNA degradation. We show the
adjusted R?for individual predictors in each model. Predictors are as follows: 1=Coding
length, 2=3’UTR length, 3=5'UTR length, 4=5'UTR GC content, 5=3'UTR GC content,
6=mRNA abundance, 7=Protein per cell, 8=Ribosome density, 9=Transcription rate,
10=GC1, 11=GC2, 12=GC3, 13=Protein half-life, 14=deltaG, 15=CAl, 16=Protein per mRNA,
17=GO, 18=RNABP, 19=model with continuous variables, and 20=model with continuous
variables +GO +RNABP.

Figure S2. Predictors of mRNA degradation variation are highly correlated. We show that
a number of predictors are highly correlated.

Figure S3. Degradation rate decreases with increased ribosome density. The ribosome
density of a transcript is inversely correlated with degradation rate, showing that the more
ribosomes present, the more stable the transcript.

Figure S4. GFP1 and GFP2 are similar in their degradation kinetics.

Figure S5. Effect of mutated start codon on GFP protein. We grew yeast in minimal media
containing D-histidine and D-serine. D-his is toxic to cells and leads to cell growth
inhibition and death. In the absence of a functional GAP1 protein, cells do not have the
permease and do not take up D-his. We show five strains: GAP1-WT=wild type strain,
GAP1-KO=strain with complete knockout of coding sequence of GAP1, GAP1-NF=Derived

strain with non-functional GAP1, GAP1-ATG=plasmid GAP1 with normal start codon, and
GAP1-GTG=plasmid GAP1 with GTG in place of start codon.

Figure S6. Diagnostics of the model fit.
SUPPLEMENTAL TABLES
Table S1. Matrix with all parameters included in regression analysis.

Table S2. Matrix with p-value, adjusted R?, and correlation for each predictor and reported
mRNA degradation rate.

Table S3. Data for qPCR experiments.
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