
i
i

“neuroelectro˙bioarxiv” — 2015/2/3 — 11:27 — page 1 — #1 i
i

i
i

i
i

A literature-based meta-analysis of brain-wide
electrophysiological diversity
Shreejoy J. Tripathy ∗ †, Shawn D. Burton ∗ , Matthew Geramita ‡, Richard C. Gerkin ∗ §, Nathaniel N. Urban ∗ ‡

∗Carnegie Mellon University, Pittsburgh, PA, USA,†University of Britsh Columbia, Vancouver, BC, Canada,‡University of Pittsburgh, Pittsburgh, PA, USA, and §Arizona State

University, Tempe, AZ, USA

Deposited to BioRxiv

For decades, neurophysiologists have characterized the biophysical
properties of a rich diversity of neuron types. However, identify-
ing common features and computational roles shared across neuron
types is made more difficult by inconsistent conventions for collect-
ing and reporting biophysical data. Here, we leverage NeuroElec-
tro, a literature-based database of electrophysiological properties
(www.neuroelectro.org), to better understand neuronal diversity –
both within and across neuron types – and the confounding influences
of methodological variability. We show that experimental conditions
(e.g., electrode types, recording temperatures, or animal age) can
explain a substantial degree of the literature-reported biophysical
variability observed within a neuron type. Critically, accounting for
experimental metadata enables massive cross-study data normaliza-
tion and reveals that electrophysiological data are far more repro-
ducible across labs than previously appreciated. Using this normal-
ized dataset, we find that neuron types throughout the brain cluster
by biophysical properties into 6-9 super-classes. These classes in-
clude intuitive clusters, such as fast-spiking basket cells, as well as
previously unrecognized clusters, including a novel class of cortical
and olfactory bulb interneurons that exhibit persistent activity at
theta-band frequencies.

neuron diversity | intrinsic biophysics | neuroinformatics | data mining

Introduction
Neurophysiologists have recorded and published vast amounts
of quantitative data about the biophysical properties of neuron
types across many years of study. Compared to other fields,
however, little progress has been made in compiling and cross-
analyzing these data, let alone collecting or depositing mea-
surements or raw data [1, 2]. It is thus difficult, for example,
to determine whether a cerebellar Purkinje cell is more simi-
lar to a hippocampal CA1 pyramidal cell or a cortical basket
cell without first re-collecting such data in a dedicated exper-
iment, even though thousands of recordings have been made
from these neuron types across many laboratories. By anal-
ogy to genetics, imagine if genes needed to be re-sequenced
every time an investigator wanted to examine genetic homol-
ogy [3, 4].

The fundamental challenge in comparing electrophysiologi-
cal data collected across laboratories is twofold. First, unlike
genetic sequences [3, 4] or neuron morphologies [5], electro-
physiological data is not compiled centrally but remains scat-
tered throughout the vast literature [1, 2]. Second, and per-
haps more critically, electrophysiological data is collected and
reported using inconsistent methodologies and nomenclatures
[6]. Thus, if two labs report phenotypic differences for the
same neuron type, do these differences reflect true biological
differences? Or are they merely the result of methodological
differences? These challenges stand as a major barrier to com-
parison and generalization of results across neuron types, and
routinely lead to unnecessary replication of experiments and
the slowing of progress [1, 2].

Here, we present a novel approach for integrating and nor-
malizing arbitrarily large amounts of brain-wide electrophys-
iological data collected across different labs. In contrast to

costly ongoing efforts by large institutes to record such data
anew [7, 8, 9], our methods capitalize on the immense wealth
of data on neuronal biophysics that has already been painstak-
ingly recorded and published. By leveraging the methodolog-
ical variability inherent in how different labs collect and re-
port biophysical data, we develop statistical methods to disen-
tangle the confounding role of methodological inconsistencies
from true biophysical differences among neuron types. This al-
lows us to normalize and compare data collected across labs,
including our own, and assess whether neuron types in dis-
parate regions of the brain share common electrophysiological
profiles, and thereby fulfill common computational and circuit
functions.

This work is of relevance to the broad community of neu-
rophysiologists and computational modelers as it makes large
amounts of valuable electrophysiological data easily accessi-
ble for subsequent comparison, reuse, and reanalysis. More
generally, our work offers a partial solution to the perceived
reproducibility crisis in science [10, 11, 12], by demonstrating
how data collected using methodologically inconsistent sources
can be combined and leveraged to generate novel insights.

Results
Building an electrophysiological database by mining the re-
search literature. To make use of the formidable amount of
neuronal electrophysiological data present within the research
literature, we developed methods to attempt to “mine” such
data from the text of published papers. While forgoing the
difficulties of recording anew from multiple neuron types and
brain areas, such a data-mining approach is not without its
own challenges. These challenges include inconsistencies in
published neuron naming schemes [6], in how electrophysio-
logical properties are defined and calculated, and in experi-
mental conditions themselves [9]. However, we reasoned that
these limitations could potentially be overcome, by capitaliz-
ing on the redundancy of published values and the presence
of informal community-based reporting standards [13, 6]. Our
hope was thus to produce a unified dataset of sufficient qual-
ity for use in subsequent meta-analyses, and further, that the
dissemination of such a resource would encourage better stan-
dardization and consistency of future data collection.

We built a database, NeuroElectro, that links specific neu-
ron types to measurements of biophysical properties reported
within published research articles (Fig. 1A). Specifically, from
331 articles, we extracted and manually curated information
on basic biophysical properties of 97 neuron types recorded
during normotypic (i.e., “control”) conditions (Fig. S1A,B).
Briefly, our mining strategy follows a three-stage process (de-
tailed in ref. [14]). First, we developed automated text-mining
algorithms [15, 16] to identify and extract content related to
biophysical properties and experimental conditions. Our al-
gorithms extracted reported mean biophysical measurement
values, reflecting pooled values computed across multiple neu-
rons within a type. Second, we manually curated the mined
content, taking care to correctly label misidentified neuron
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Fig. 1. Schematic of NeuroElectro database construction and ex-
ample electrophysiological measurements. A) Semi-automated text-mining

algorithms were applied to journal articles to extract neuron type-specific biophys-

ical measurements and experimental conditions. B-G) Example electrophysiological

measurements extracted from the research literature for cerebellar Purkinje cells, CA1

pyramidal cells, cortical basket cells, ventral tegmental area dopaminergic cells, and

striatal medium spiny neurons (abbreviated as CB, Purk; CA1, PC; Ctx, BC; VTA, DA;

and Str, MSN). Each circle denotes the value of the mean biophysical measurement

value reported within an article.

types or electrophysiological properties. To help categorize the
neuron types recorded within each article, we used the semi-
standardized listing of expert-defined neuron types provided
by NeuroLex [17, 18]. Finally, we manually standardized the
extracted electrophysiological values to a common set of units
(e.g., GΩ to MΩ) and calculation conventions where possible
(Fig. S1C,D). We found the accuracy for data categorization
and extraction to be 96% overall during a systematic quality
control (QC) audit (see Appendix), which we deemed to be of
sufficient quality for further meta-analyses.

A sample of the resulting data is shown in Fig. 1 and the
dataset in its entirety can be interactively explored through
our web interface at http://neuroelectro.org. The dataset
reflects known features of several neuron types; for exam-
ple, cortical basket cells have narrow action potentials [19]
and striatal medium spiny neurons rest at relatively hyperpo-
larized potentials [20]. In this study, we have focused our
meta-analyses on six commonly and reliably reported bio-
physical properties: resting membrane potential, input resis-
tance, membrane time constant, spike half-width, spike ampli-
tude, and spike threshold (abbreviated as Vrest, Rinput, τm,
APhw, APamp, APthr, respectively). Other parameters, such
as spike afterhyperpolarization amplitude and time course, are
recorded in NeuroElectro, but we chose not to not include
them in the following analyses due to questions about the con-
sistency of their reporting in the literature.

Experimental metadata explains cross-study variance among
electrophysiological measurements.Our literature-based ap-
proach relies on pooling information across articles, which has
the inherent advantage of distilling the consensus view of sev-
eral expert investigators and laboratories. However, data col-
lected under different experimental conditions may not be di-

rectly comparable. For example, Rinput tends to decrease as
animals age [21, 22]. Because NeuroElectro measurements are
randomly sampled from the literature, relationships between
experimental conditions (“metadata”) and electrophysiologi-
cal measurements (“data”) should also be reflected within the
dataset (Fig. 2A,B). By annotating each electrophysiologi-
cal measurement in our database with a corresponding set of
experimental metadata (Fig. 2A and S2), we were able to
address the following three questions. First, can experimen-

Fig. 2. Methodological differences significantly explains observed
variability in literature-mined electrophysiological data. A) Cartoon

illustrating metadata-based NeuroElectro data normalization. B) Example data show-

ing how measured values of Rinput vary as a function of recording electrode type

and animal age. C) Variance explained by statistical models for each electrophysio-

logical property when only neuron type information is used (black) and when neuron

type plus all metadata attributes are used (red). Error bars indicate standard devia-

tions, computed from 90% bootstrap resamplings of the entire dataset. D-F) Example

relationships between specific metadata predictors and variation in electrophysiolog-

ical properties. Dots show model-adjusted electrophysiological measurements after

accounting for specific differences across neuron types. Panel F refers to correction of

liquid junction potential (”jxn”). Asterisks indicate population mean and error bars in-

dicate s.d. G) Influence of individual metadata predictors in helping explain variance in

specific electrophysiological properties. Heatmap values indicate relative improvement

over the model that includes neuron type information only. Circles indicate where the

regression model including a metadata attribute was statistically more predictive than

the model with neuron type information alone (p < 0.05; ANOVA). H) Example data

before (black) and after using statistical models to adjust for differences in metadata

among electrophysiological measurements (red). Measurements become less variable

and skewed after adjustment for methodological differences.
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tal metadata be used to account for and even correct for the
variability of data reported across studies? Second, what is
the influence of specific experimental conditions (e.g., record-
ing temperature and electrode type) on measurements of bio-
physical properties? Third, what is the residual variability
in reported values for a given neuron type after differences in
several experimental conditions have been accounted for?

We used linear regression models to characterize the rela-
tionship between electrophysiological measurements and ex-
perimental metadata (after appropriate data filtering, like re-
moving data from non-rodent species). We first asked to
what extent the variability observed among electrophysiolog-
ical measurements could be explained by neuron type alone
(i.e., how consistent are measurements of the same neuron
type from article-to-article). We found that Vrest was re-
ported fairly consistently (Fig. 2C; adj. R2 = 0.6; i.e., 60%
of the variability in Vrest across cells was explained by cell
type). However, most properties, such as τm and APthr, had
measurements which differed greatly across studies recording
from the same neuron type (adj. R2 < 0.25). Thus, there
exists a large amount of variance in electrophysiological data
that is unexplained by neuron type alone.

Fig. 3. Direct comparison of NeuroElectro measurements to de
novo recordings. A,B) Representative recordings of a neocortical basket cell (A)

and a main olfactory bulb mitral cell (B), showing responses to hyperpolarizing,

rheobase, and suprathreshold current injections (top), and AP waveform (bottom).

C,D) Morphologies for cells in A and B. E, F) Database measurements for mitral

and basket cells before (crosses) and after (circles) metadata normalization and cor-

responding Urban Lab single-cell measurements (triangles). Error bars indicate s.d.,

computed across database measurements within a neuron type. G,H) Confusion matri-

ces highlighting classification of each recorded single-cell to corresponding aggregate

NeuroElectro neuron type for the raw (G) or metadata-normalized (H) NeuroElectro

dataset. Matrix y-axis indicates recorded neuron identity and number within parenthe-

ses indicates n of recorded single-cells per neuron type. X-axis indicates the predicted

neuron type based on biophysical similarity to NeuroElectro (i.e., perfect classification

is a diagonal along matrix).

We found in many cases, however, that experimental meta-
data could significantly explain the variability in reported elec-
trophysiological data (Figs. 2D-F, summary in G). For ex-
ample, knowing whether neurons were recorded using patch
versus sharp electrodes explained a substantial fraction of the
observed variance in Rinput, with sharp electrodes yielding on
average ∼100 MΩ lower Rinput than patch electrodes (Fig.
2D). Thus, the dataset inherently reflects a historical contro-
versy when the patch-clamp technique was first introduced
and similar large discrepancies were observed in Rinput mea-
surements made with patch versus sharp electrodes [23]. Col-
lectively, incorporating multiple experimental metadata fac-
tors accounted for considerably more measurement variability
than neuron type alone (Fig. 2B; details in Methods). Im-
portantly, these regression models provide quantitative rela-
tionships which can be used as “correction factors” to adjust
or normalize each electrophysiological measurement for multi-
variate differences in recording practices across studies (Fig. 2
A,H). Such adjustments are conceptually analogous to “Q10”
correction factors, often used to systematically correct for tem-
perature dependent kinetic reaction rates [24].

As a caveat, we note that there still remained a consider-
able amount of unexplained variance in electrophysiological
measurements, even after metadata adjustment. This vari-
ance likely reflects: 1) within-type neuronal variability [25, 26];
2) additional experimental conditions not yet considered, like
recording solution contents (e.g., see Fig. S3) or overall prepa-
ration and recording quality; and 3) subtle differences in how
investigators define electrophysiological properties (e.g., see
Fig. S4 and Discussion).

Experimental validation of NeuroElectro data before and af-
ter metadata normalization. To directly validate NeuroElectro
dataset measurements and our metadata normalization proce-

Fig. 4. Exploring correlations between biophysical properties.A,B)

Example data showing pairwise correlations among biophysical properties. Each data

point corresponds to measurements from a single neuron type (after averaging ob-

servations collected across multiple studies and adjusting for experimental condition

differences). C) Correlation matrix of biophysical properties (Spearman’s correlation).

Circles indicate where correlation of biophysical properties was statistically significant

(p<0.05 after Benjamini-Hochberg false discovery rate correction). D) Variance ex-

plained across probabilistic principal components of electrophysiological correlation

matrix in C.
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dure, we recorded from a subset of commonly studied neuron
types, including CA1 pyramidal cells, main olfactory bulb mi-
tral cells and granule cells, neocortical basket cells, and stri-
atal medium spiny neurons (Fig. 3A-F and S5). Critically, to
compare our de novo recordings to NeuroElectro, we needed to
first statistically normalize the NeuroElectro measurements to
the experimental conditions used in our lab - namely, our use
of whole-cell patch-clamp recordings near physiological tem-
peratures in acute slices from young-adult mice.

Comparing our single-cell biophysical measurements to Neu-
roElectro, we found close agreement to the global mean and
variance defining each NeuroElectro neuron type following
metadata adjustment (Fig. 3E,F). To quantify this agreement,
we used a confusion matrix analysis to classify each recorded
cell to the corresponding most similar NeuroElectro neuron
type. Experimentally recorded neurons were almost always
correctly matched to the corresponding NeuroElectro neuron
type after metadata normalization (81% of cells; 34 of 42 neu-
rons; chance = 20%; Fig. 3H), but matched considerably less
well when using the raw unnormalized NeuroElectro values
(48% of cells; 20 of 42 neurons; Fig. 3G).

We thus conclude that the electrophysiological data and
metadata populating NeuroElectro are sufficiently accurate
and that individual labs can reasonably expect their own
recordings to match NeuroElectro after adjusting for differ-
ences in experimental conditions. Moreover, this analysis un-
derscores that: 1) single neurons, even of the same canonical
type, are biophysically heterogeneous [25, 26]; and 2) incor-
rectly matched neurons may provide clues to functional simi-
larities across different neuron types.

Investigating brain-wide correlations among biophysical prop-
erties.We next performed a series of analyses on our nor-
malized brain-wide electrophysiology dataset with the goal of
learning relationships between biophysical properties and di-
verse neuron types. To further help reduce the influence of
unaccounted-for measurement and methodological variability,
we first summarized electrophysiological data at the neuron
type level by pooling measurements across articles. Corre-
lating measurements of biophysical properties across neuron
types, we observed a number of significant correlations (exam-
ples in Fig. 4A,B; summary in C and S6), including correla-
tions expected a priori, such as a positive correlation between
Rinput and τm. We also observed biophysical correlations more
difficult to explain via first principles of neural biophysics, such
as anti-correlation between Rinput and APamp and correlation
between APthr and APhw.

These correlations led us to use dimensionality reduction
techniques to determine if this six parameter description of
neuronal diversity could be further simplified. Principal com-
ponent analysis (using probabilistic PCA, pPCA, to help ac-
count for unobserved or “missing” biophysical measurements)
showed that 50% of the variance across neuron types could
be explained by a single component that largely reflects neu-
ronal size (Fig. 4D and S6B). An additional 22% can be ex-
plained by the second PC which roughly reflects basal firing
rates and excitability (Fig. S6C,D). This analysis is unique
through its focus on brain-wide neuronal diversity ; moreover,
such relationships may differ from previous correlations based
on within neuron type variability [25, 26].

Biophysical similarity identifies approximately 6-9 super-
classes of neuron types. Lastly, we used NeuroElectro to gain
insights into unknown biophysical similarities among diverse
neuron types, with the goal of uncovering shared homology of
function between different neurons. For example, fast-spiking

basket cells populate multiple brain regions yet play similar
functional roles within their larger neural circuits [27, 19]. Our
goal was to use the normalized electrophysiological features to
identify additional sets of biophysically similar neuron types
which may also share computational functions.

We performed a hierarchical clustering analysis of the
neuron types using the metadata-normalized NeuroElectro
dataset. Specifically, for each pair of neuron types, we as-
sessed their similarity by comparing the set of six basic bio-
physical properties defined above. Here, we chose to be agnos-
tic about the relative importance of each biophysical property
and weighted them by their relative measurement uncertainty
(defined in Fig. 2C). We further mitigated unaccounted-for
measurement and methodological variability by focusing on
neuron types reported within at least three articles.

Several previously described classes of neuron types emerged
from this analysis, validating our unbiased clustering approach
(Fig. 5). For example, neocortical and hippocampal basket
cells were closely clustered, as were GABAergic medium spiny
neurons of both dorsal and ventral striatum. Likewise, we
observed distinct clusters of both excitatory neocortical and
non-neocortical projection neuron types, differing with respect
to their Vrest. Further, metadata normalization was critical, as
performing the analysis using the unnormalized dataset gave
paradoxical results; for example, that CA1 basket cells were
more similar to thalamic relay cells than to cortical basket
cells (Fig. S7).

Novel super-classes of neuron types also emerged from our
clustering analysis. Foremost, we observed a cluster contain-
ing main olfactory bulb Blanes and external tufted cells, den-
tate gyrus hilar cells, and neocortical Martinotti cells that
were defined by a depolarized Vrest and relatively hyperpolar-
ized APthr. This is the first report identifying the shared elec-
trophysiological similarity of these neuron types. Intriguingly,
each of these neuron types exhibits low-threshold and persis-
tent spiking activity at theta-band frequencies [28, 29, 30, 31],
and thus may share the computational function of driving or
triggering recurrent network theta rhythms. Similarly, we ob-
served a large cluster of high Rinput, broad spiking cells from
the midbrain and brainstem, including the VTA and locus
coeruleus. Though markedly diverse in their combined neuro-
transmitter phenotype, many of these neuron types neverthe-
less exhibit similar activity patterns comprised of spontaneous
“pacemaker”-like tonic firing [32, 33], a behavior attributable
to their distinctively depolarized Vrest.

Across the entire dataset, the major divisions among neuron
types tended to be in terms of neuron size and basal excitabil-
ity (see also Fig. S4E-H). Additionally, we observed a qualita-
tive correspondence between biophysical similarity and gross
anatomical position, suggesting that shared precursor lineage
may yield similar biophysical properties [34]. While this initial
analysis is focused only on simple biophysical properties, the
observed “super-classes” are encouraging because they appear
to also reflect gestalt spike pattern phenotypes, such as pace-
maker or low-threshold firing behaviors. In the future, incor-
porating additional parameters such as spike AHP amplitudes
or ionic currents will likely further refine these super-classes
and better define their computational roles [13, 35].

Discussion
Here, we have developed a general approach for reconciling
long-standing methodological inconsistencies that have made
brain-wide meta-analyses of electrophysiological data exceed-
ingly difficult. Using semi-automated text-mining [14], we
were able to accurately compile considerable amounts of neu-
ronal biophysical data from the vast research literature. In
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Fig. 5. Hierarchical clustering of diverse neuron types on the basis of biophysical similarity. Neuron types sorted in order of biophysical similarity

(similiarity indicated by levels of dendrogram; dendrogram linkages computed using Ward’s method and Euclidean distances). Heatmap values indicate observed neuron

type-specific electrophysiological measurements, red (blue) values indicate large (small) values relative to mean across neuron types. Statistical consistency of dendrogram

subtrees calculated via bootstrap resampling (red values indicate approximately unbiased (AU) p-values (see Methods); p-values rounded to nearest integer for visualization).

Dendrogram subtrees are grouped into neuron type super-classes indicated by text coloring (and are otherwise black) based on p-values and visual inspection. Only neuron

types with measurements defined by at least three articles and with at least four (of the six total) biophysical properties reported were used in this analysis. Probabalistic PCA

was used to impute unobserved measurements, indicated via green dots on heatmap.

our initial analyses of the extracted data within NeuroElec-
tro, we found that the raw biophysical data values pertain-
ing to the same neuron type were immensely variable across
studies. However, the size of this unprecedented collection of
electrophysiological data enabled us to explicitly quantify the
relationships between experimental conditions and biophysical
properties. With these statistical models, we could systemati-
cally normalize methodologically-inconsistent data to account
for basic differences in experimental protocols thereby reveal-
ing the actual features of neuron types.

Following methodological normalization, we obtained, for
the first time, a unified reference dataset of neuronal bio-
physics amenable to brain-wide electrophysiological compar-
isons. Such metadata normalization was critical for compar-
ing our de novo single-cell recordings to NeuroElectro data
from other neuron types. Our subsequent meta-analyses
uncovered novel electrophysiological correlations and several
biophysically-based neuronal super-classes predicted to ex-
hibit similar functionality. For example, we identify a new

super-class containing hippocampal, neocortical, and olfactory
bulb interneurons capable of persistent theta frequency activ-
ity – an emergent behavior attributable, in part, to a uniquely
depolarized Vrest and hyperpolarized APthr. While such clus-
tering analyses are limited by the somewhat low resolution
data currently available, our approach is easily extensible to
novel datasets, including from raw electrophysiological traces
or additional data modalities like gene expression [36, 37] or
morphology [5].

Electrophysiological standards will improve future meta-
analyses. A major goal of our project was to rigorously identify
the sources of variance that limit the comparison of cross-study
electrophysiological data. However, a difficulty that we reg-
ularly encountered came from the lack of formal standards
used in reporting electrophysiological data. For example, dur-
ing the NeuroElectro database QC audit (see Appendix), we
observed at least six different definitions for calculating Rinput

(Fig. S4). Rigorously accounting for such inconsistent defini-
tions was further hindered by frequently insufficient method-
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ological details describing how each property was defined and
calculated (i.e., only ∼ 60% of electrophysiological measure-
ments were described with adequate detail to enable indepen-
dent re-measurement). Thus, to the extent that inconsistent
electrophysiological definitions yield systematically different
measurements, naively pooling across studies (as we have done
here) will continue to be a source of unexplained variance until
more complete reporting standards are adopted.

Similarly, our approach requires mapping each extracted da-
tum to a canonical neuron type. Since investigators use dif-
ferent terminologies to refer to neuron types [6], we used the
community-generated expert-defined list of neuron types pro-
vided by NeuroLex [17, 18]. This choice saves us from the chal-
lenging task of redefining the canonical list of neuron types,
but at present these definitions currently “lump” rather than
“split” neuron types (e.g., “neocortex layer 5-6 pyramidal neu-
ron”). While this lumping will also add unexplained variance
to neuron type biophysical measurements, we have built the
mapping of data to neuron type in NeuroElectro to be highly
flexible, allowing NeuroElectro to similarly evolve to match
updates in neuron type definitions.

Based on our experiences, we recommend the usage of com-
mon definitions for basic biophysical measurements [13] and
neuron types [6, 18]. We also ask that experimentalists re-
port more basic electrophysiological information within arti-
cles and, if possible, publish such data using machine-readable
formats like data tables. Similarly, relevant experimental de-
tails should be clearly stated within methods sections [12]
(e.g., liquid junction potential correction and recording qual-
ity criteria). In contrast to mandating that investigators stan-
dardize experimental protocols (e.g., using the same mouse
line or electrode pipette solution), these shifts in data report-
ing practices we propose are simple, requiring minimal changes
to current workflows. Implementing these basic recommenda-
tions will facilitate further data compilation efforts and the

ultimate development of a comprehensive “parts list” of the
brain [8].

Meta-analysis as a remedy for the reproducibility crisis in neu-
roscience. Biomedical science is perceived to be undergoing a
“reproducibility crisis” [11, 12], where up to half of published
findings may be false [10]. In neurophysiology, such irrepro-
ducibility has been used to justify efforts by large single in-
stitutes to standardize the recollection of large amounts of
data in the absence of an overarching question or hypothesis
[7, 9, 38].

We feel that our meta-analysis approach offers a potential
alternative solution. Specifically, by aggregating vast amounts
of previously collected quantitive data and tagging these with
appropriate experimental metadata, the metadata can help re-
solve systematic discrepancies between data values. Thus, as
opposed to the standard practice of only utilizing data from
a single study or laboratory, this “wisdom of the crowds” ap-
proach explicitly links together the work of a wide commu-
nity of investigators. Neuropsychiatric genetics provides an
excellent example, where investigators have identified greater
numbers of genetic loci conferring significant disease risk by
pooling subject data across sites and consortia [37]. While
such quantitative meta-analyses are in their infancy in cellu-
lar and systems neuroscience [1, 2], we feel that this approach
increases the reach and impact of any one publication and has
the potential to greatly increase the rate of progress in our
field.
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Materials and Methods

Electrophysiological database construction.

We built a custom infrastructure for extracting neuron type-specific electrophysio-

logical measurements, such as Rinput and APhw , as well as associated metadata

(detailed in [14]). Briefly, our methods for obtaining this information are as follows.

First, we obtained thousands of full article texts as HTML files from publisher web-

sites. We next searched for articles containing structured HTML data tables; within

these tables we used text-matching tools to find entities corresponding to electrophys-

iological concepts like ”input resistance” and ”spike half-width”. Our methodology

accounts for common synonyms and abbreviations of these properties (e.g., ”input

resistance” is often abbreviated as ”Rin”).

To identify measurements from neuron types collected in control or normotypic

conditions, we used primarily manual curation. We used the listing of vertebrate neu-

ron types provided by NeuroLex [17, 18] (http://neurolex.org/wiki/
Vertebrate_Neuron_overview) to link mentions of a neuron type within

an article to a canonical, expert-defined neuron type. After identifying both neuron

type and electrophysiological concepts, we then extracted the mean electrophysio-

logical measurement (and when possible, the error term and number of replicates).

In most cases, however, our current methods were unable to extract the number of

replicates; we thus have limited our focus here to analyses using mean measurements

alone. Following application of the automated algorithms, we manually curated the

extracted information and standardized electrophysiological property measurements to

the same overall calculation methodology (e.g., Fig. S1C,D). In addition, we also used

manual curation alone to extract information from∼35 articles which did not contain

information in a formatted data table (typically older articles only available as PDFs

or articles specific to olfactory circuit physiology).

We also obtained information on article-specific experimental conditions from each

article’s methods section. Specifically, we considered the effect of: animal species,

animal strain (here we distinguished between strains of rats but not different genetic

strains of mice), electrode type (sharp versus patch clamp), preparation type (in vitro,

in vivo, cell culture), liquid junction potential correction (explicitly corrected, explic-

itly not corrected, not reported in manuscript), animal age (in days; when only animal

weight was reported, we manually converted reported weight to an approximate age

using conversion tables provided by animal vendors), and recording temperature (we

assigned reports of ”room temperature” recordings to 22
◦C and in vivo record-

ings to 37
◦C). Additional methodological details, including recording and electrode

solution contents and pipette resistances, will be considered in future iterations.

Explicit instructions and details for the quality control (QC) audit of the Neuro-

Electro database are provided in the Appendix.

Data analysis.

Data filtering and preprocessing. Before performing systematic analyses of the data

within the NeuroElectro database (i.e., data referred to following Fig. 2 onwards, un-

less otherwise specified), we performed the following filtering steps: 1) we excluded

non-brain neuron types (e.g., we excluded spinal cord neuron types); 2) we excluded

data collected from dissociated and slice cell cultures; 3) to account for large differ-

ences in animal age across species, we only used data from rats, mice, and guinea

pigs; 4) we excluded data from embryonic and perinatal (<5 days) animals; 5) due to

inconsistencies in the definition of τm, we excluded measurements of τm which devi-

ated greater than 2 standard deviations from the median measurement across articles.

Where metadata attributes were not reported or were unidentifiable within an article

(which was typically rare for the experimental conditions that we focused on), we used

mean (or mode) imputation for continuous (or categorical) metadata attributes [39].

Metadata incorporation. We used statistical models to account for the in-

fluence between experimental metadata and measured electrophysiological values.

Specifically, we modeled the relationship between electrophysiological measure-

ments and experimental metadata as ~y = βX where ~y denotes the vec-

tor of electrophysiological measurements corresponding to a single property across

all articles (e.g., Vrest); X denotes the regressor matrix where rows denote

the metadata attributes associated with a single measurement yi (e.g., ~xi =
[xNeuronType,i, xSpecies,i, xStrain,i, ...]) and β are the regression coef-

ficients denoting the relative contribution of each metadata attribute. We log10-

transformed measurements of Rinput, τm, APhw , and animal age to normalize

values because these varied across multiple orders of magnitude and/or to enforce that

these values remain strictly positive following metadata-based adjustment.

When combining the influence of multiple metadata attributes into a single re-

gression model (Fig. 2C), we wished to use powerful and flexible models to capture

the relationship between metadata and measurement variance while also mitigating

the tendency of more complex statistical models to overfit the data. Thus, when

fitting statistical models, we used stepwise regression methods (implemented as Lin-

earModel.stepwise in MATLAB) to add model terms one-by-one and added terms until

the model’s Bayesian Information Criterion (BIC) was optimized. Our choice of BIC

here is based on its conservativeness relative to other approaches for model selection,

which helps protect against statistical overfitting. Furthermore, for each electrophysi-

ological property, we selected the potential model complexity from a set of candidate

models (i.e., models that included terms for only: constant, linear, purely quadratic,

interaction, interaction + quadratic). We selected model complexity using 10-fold

cross-validation and minimization of the sum of squared errors on out-of-sample data.

In reporting the variance explained by different models, we used adj. R2
to compare

between models differing in their number of parameters.

After fitting metadata regression models for each electrophysiological property, we

adjusted each electrophysiological measurement to its estimated value had it been

measured under conditions described by the population mean metadata value (or

mode for categorical metadata attributes). For example, since the majority of data

were recorded using patch clamp electrodes, we then adjusted measurements made

using sharp electrodes to their predicted value had they been recorded using patch

clamp electrodes. To assess the robustness of the fit of the regression models, we

re-ran the regression analysis on different versions of the dataset where the data were

randomly subsampled (Fig. S8). Note that the penalty that BIC imposes against

overfitting is stronger when there are fewer data points used to fit the models. Thus,

progressively subsampling the dataset penalizes away the amount of variance in the

electrophysiological data that can be explained by experimental metadata.

Electrophysiological property correlation and neuron type similarity analyses. For

analysis of electrophysiological and neuron type correlations, we first pooled data by

averaging measurements collected within the same neuron type. We then defined each

neuron type using its vector of six electrophysiological measurements. We quantified

correlations between pairs of electrophysiological properties using Spearman’s corre-

lation, which assesses the rank-correlation and allows for detection of relationships

that are monotonic but not necessarily linear. We used the Benjamini-Hochberg false

discovery rate procedure to control for multiple comparisons performed in the pairwise

correlation analysis.

To quantify how much variance across electrophysiological properties could be ex-

plained by subsequent principal components (PCs), we needed to first account for

missing or unobserved measurements within our dataset. For example, some neurons

did not have a reported measurement for τm or APthr within our dataset. To ad-

dress this issue of missing data [39], we used pPCA, a modification of traditional PCA

that is robust to missing data. To further mitigate the problem of missing data, in this

analysis we only considered neuron types that were defined by at least three different

articles and with no more than two of the six total electrophysiological properties miss-

ing; after this filtering step, less than 10% of total electrophysiological observations

were missing.

To quantify the electrophysiological similarity of neuron types, we calculated the

pairwise Euclidean distances between pairs of neuron types defined by the vector of six

electrophysiological properties and used a dendrogram analysis to sort neuron types on

the basis of electrophysiological similarity. Missing or unobserved electrophysiological

measurements were imputed using pPCA, as described above. Here, we chose to be

agnostic about the relative importance of each biophysical property and weighted bio-

physical properties based solely on their relative measurement uncertainty (defined in

Fig. 2C). Thus, properties which tend to show greater cross-study variability (such as

τm will be less down weighted in this analysis relative to more reliable measurements

like Vrest. Empirically, we found this weighting to help further mitigate unaccounted-

for measurement and methodological variability.

The dendrogram, D, denoting the hierarchical similarity among neuron types, was

constructed using linkages computed by Ward’s minimum variance method. We used

multiscale bootstrap resampling to assess the statistical significance of subtrees of D
using the pvclust package in the language R [40, 41] (referred to as the AU p-value

in Fig. 5). A detailed description of the pvclust algorithm methodology is provided in

the Appendix.

Acute slice electrophysiology.
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Animals. Hippocampal CA1 pyramidal cell recordings were conducted using post-

natal day (P)15-18 M72-GFP mice [42] and Thy1-YFP-G mice [43]. Main olfactory

bulb mitral cell recordings were conducted using P15-18 M72-GFP, Thy1-YFP-G,

and C57BL/6 mice. A subset of data from these neurons has been published previ-

ously [44]. Main olfactory bulb granule cell recordings were conducted using P18-22

C57BL/6 and albino C57BL/6 mice. Neocortical basket cell recordings were conducted

using a P26 parvalbumin reporter mouse, resulting from a cross between Pvalb-2A-Cre

(Allen Institute for Brain Science) and Ai3 [45] lines. Striatal medium spiny neuron

recordings were conducted using P14-17 M72-GFP mice. A total of 20 mice of both

sexes were used in this study. Animals were housed with litter mates in a 12/12 hr

light/dark cycle. All experiments were completed in compliance with the guidelines

established by the Institutional Animal Care and Use Committee of Carnegie Mellon

University.

Slice preparation. Mice were anesthetized with isoflurane and decapitated into

ice-cold oxygenated dissection solution containing (in mM): 125 NaCl, 25 glucose,

2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 3 MgCl2, 1 CaCl2. Brains were rapidly iso-

lated and acute slices (310 µm thick) prepared using a vibratome (VT1200S; Leica

or 5000mz-2; Campden). Slices recovered for 30 min in∼37
◦C oxygenated Ringer’s

solution that was identical to the dissection solution except for lower Mg
2+

con-

centrations (1 mM MgCl2) and higher Ca
2+

concentrations (2 mM CaCl2). Slices

were then stored in room temperature oxygenated Ringer’s solution until recording.

Parasagittal slices were used for hippocampal and striatal recordings. Coronal slices

were used for neocortical recordings. Horizontal slices were used for main olfactory

bulb recordings.

Recording. Slices were continuously superfused with oxygenated Ringer solution

warmed to 37
◦C during recording. Cells were visualized using infrared differential

interference contrast video microscopy. Hippocampal CA1 pyramidal cells (n=10)

and were identified by their large soma size, pyramidal shape, and position within

CA1. Neocortical basket cells (n=5) were identified by expression of YFP fluores-

cence. Main olfactory bulb mitral cells (n=10) were identified by their large cell body

size and position within the mitral cell layer. Main olfactory bulb granule cells (n=9)

were identified by their small cell body size and position within the mitral cell or

granule cell layers. Striatal medium spiny neurons (n=8) were identified by their ex-

tensively spine-studded dendritic arbors viewable under epifluorescence through Alexa

Fluor 594 cell fills. Whole-cell patch clamp recordings were made using electrodes

(final electrode resistance: 6.1±1.1 MΩ, µ ± σ; range: 4.4-8.7 MΩ) filled with

(in mM): 120 K-gluconate, 2 KCl, 10 HEPES, 10 Na-phosphocreatine, 4 Mg-ATP,

0.3 Na3GTP, 0.2-1.0 EGTA, 0-0.25 Alexa Fluor 594 (Life Technologies), and 0.2%

Neurobiotin (Vector Labs). Cell morphology was reconstructed under a 100X oil-

immersion objective with Neurolucida (MBF Bioscience). No cells included in this

dataset exhibited gross morphological truncations. Mitral cells were recorded in the

presence of CNQX (10 µM), DL-APV (50 µM), and Gabazine (10 µM) to limit the

influence of spontaneous synaptic long-lasting depolarizations [46] on measurements

of biophysical properties. Data were low-pass filtered at 4 kHz and digitized as 10

kHz using a MultiClamp 700A amplifier (Molecular Devices) and an ITC-18 acquisition

board (Instrutech) controlled by custom software written in IGOR Pro (WaveMetrics).

The liquid junction potential (12-14 mV) was not corrected for. Pipette capacitance

was neutralized and series resistance was compensated using the MultiClamp Bridge

Balance operation and frequently checked for stability during recordings. Series re-

sistance was maintained below ∼20 MΩ for all pyramidal cell, mitral cell, basket

cell, and medium spiny neuron recordings (14.0±2.7 MΩ, µ ± σ; range: 8.4-20.1

MΩ). Higher series resistance (30.7±6.2 MΩ, µ± σ; range: 23.5-43.0 MΩ) was

permitted in granule cell recordings due to their small (∼10 µm) soma sizes. After

determination of each cell’s native Vrest, current was injected to normalize Vrest to

−65, −58, −65, −70, and −80 mV for pyramidal cells, mitral cells, granule cells,

basket cells, and medium spiny neurons, respectively, before determination of other

biophysical properties. In preliminary experiments, we also recorded from layer 5/6

neocortical pyramidal cells. However, these recordings were not further pursued due

to the extensive electrophysiological and morphological heterogeneity observed within

this broad category of neuron type.

Analysis. Vrest was determined immediately after cell break in. τm was cal-

culated from a single-exponential fit to the initial membrane potential response to a

hyperpolarizing step current injection. Rinput was calculated as the slope of the

relationship between a series of hyperpolarizing step current amplitudes (that evoked

negligible membrane potential ”sag”) and the steady-state response of the membrane

potential to injections of those step currents. In a subset of recordings, Rinput was

also calculated as the steady state response of the membrane potential to a single

step current injection (evoking a∼5 mV hyperpolarization) averaged across 50 trials.

Both methods yielded equivalent results. To determine action potential properties

of each neuron, a series of 2 s-long depolarizing step currents was injected into the

neuron. The first action potential evoked by the weakest suprathreshold step current

(i.e., the rheobase input) was used to determine the action potential properties of

the neuron. APthr was calculated as the first point where the membrane potential

derivative exceeded 20 mV/ms. APamp was measured from the point of threshold

crossing to the peak voltage reached during the action potential. This amplitude was

then used to determine APhw , calculated as the full action potential width at half

maximum amplitude of the action potential.

For the confusion matrix analysis (Fig. 3), we used a Euclidean distance approach

identical to that used in the analysis of electrophysiological neuron type similarity.

Specifically, we represented each recorded single-cell via its measurements along the

six major electrophysiological properties. We then compared the similarity of each

recorded neuron to the mean electrophysiological measurements of each of the five

corresponding ”canonical” neuron types from NeuroElectro, after either: first ad-

justing the filtered NeuroElectro data to the methodological conditions used in our

laboratory; or using the raw and unfiltered data values from NeuroElectro, unnormal-

ized for methodological differences. We classified each recorded single-cell to the most

similar of the canonical NeuroElectro neuron types by finding the NeuroElectro neuron

type with the smallest Euclidean distance to the single-cell, forming the basis for the

confusion matrix.

Data and code availability.

The NeuroElectro dataset and spreadsheets listing mined publications, neuron

types, electrophysiological properties are provided at http://neuroelectro.
org/static/src/ad_paper_supp_material.zip. The analysis

code used here is available at http://github.com/neuroelectro.
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Appendix

Electrophysiological database quality control assessment. To validate and quality control (QC) the accuracy of our semi-
automated data extraction methods, we conducted a systematic audit of a randomly chosen 10% of the algorithmically-mined
articles (n = 27 articles) which had curated electrophysiological data obtained from a structured data table within an article.

Specifically, four curators (two pairs of two curators, each working independently) were each tasked with validating the
accuracy of concept identification, data extraction, and data standardization. The curators (S.J.T., S.D.B., M.G., and R.C.G.),
each had extensive experience reading literature and designing and performing electrophysiology experiments. Curators were
split into pairs of two curators each, where each member of each pair independently curated the same manuscripts, allowing
an assessment of inter-curator consistency.

Below are listed the explicit instructions provided to each curator during the 10% article QC audit to independently validate
the accuracy of the NeuroElectro database.

1. Assess whether each neuron type mentioned within a HTML data table had been mapped correctly (”yes”, ”no”, or ”ambigu-
ous”), based on the provided listing of canonical neuron types and their definitions. ”Ambiguous” responses and notations
were used in cases where the neuron type was not included in the provided neuron type list.

2. Assess whether electrophysiological property concepts had been identified and mapped correctly (”yes”, ”no”, or ”ambigu-
ous”). In addition, curators were asked to explicitly describe how each electrophysiological property had been calculated,
and evaluate whether the electrophysiological measurement could be in principle replicated based on the provided method-
ological details. For example, for APthr, if the article defined how threshold was computed (e.g., voltage derivative threshold
criterion) but did not describe how spikes were evoked (e.g., rheobase current injection), then the APthr measurement was
judged as non-replicable. Curators were instructed to attempt to find such electrophysiological definitions if they were
referenced within a previous manuscript. Curators were not allowed to report ”ambiguous” for evaluations of replicability.

3. Extract the electrophysiological data corresponding to each neuron type-electrophysiological property pair as it directly
appears in the formatted data table. Following this extraction, standardize the data value to the common calculation
methodology (e.g, measurements of input resistance reported in GΩ were standardized to MΩ).

4. Assess whether methodological metadata concepts were identified and mapped correctly. In addition, curators were asked
to curate information for a small number of additional metadata concepts (extracellular Mg2+ and Ca2+ concentrations,
slice thickness, etc.) as seed data for future metadata extraction algorithms.

To evaluate the outcome of the QC audit, we quantified agreement between curators and between curators and NeuroElectro
using a simple percentage agreement measure. Concepts which were labelled as ambiguous by the curator were not considered
in the quantification. Because we quantify NeuroElectro accuracy in comparison to the human curators, the inter-curator
agreement measure sets a rough upper bound on the potential maximum accuracy of NeuroElectro. Specifically, the aggregate
intercurator consistency measure of 95% sets the upper bound of NeuroElectro accuracy at 97.5%.

QC results. We found close agreement between the manually curated QC data and NeuroElectro, with 96% accuracy of the
NeuroElectro database overall (specifically: 93% for neuron types, 99% for electrophysiological concepts, 96% for experimental
conditions, and 95% for correctly extracted and standardized electrophysiological data). Inter-curator agreement was also high,
with 95% of concepts and data identified and extracted identically across each pair of two curators. Moreover, ”mistakes” or
miscurated entries within the NeuroElectro database usually represented cases where the underlying concept or data were truly
ambiguous (e.g., a neuron type which did not explicitly exist within the NeuroLex list of neuron types).

Within the QC sample, we also analyzed how often authors use different definitions for similar electrophysiological properties
and whether sufficient details were provided to independently replicate each measurement. Strikingly, we found that sufficient
methodological details were provided to replicate only 42% of reported electrophysiological measurements. While this measure
of replicability is inherently subjective and dependent on electrophysiological experience (yielding an inter-curator agreement
of only 65%), our results nevertheless parallel other aggregate measures of methodological rigor, such as antibody reporting
[12].

Description of dendrogram bootstrap resampling. We used multiscale bootstrap resampling to assess the statistical significance
of subtrees of D using the pvclust package in the language R[40]. The pvclust dendrogram multiscale bootstrap resampling
algorithm proceeds as follows: specifically, given an n × p data matrix M (here, n refers to neuron types and p refers to
the six electrophysiological properties), pvclust first generates a number of bootstrapped versions of M through randomly
sampling columns from M with replacement (10,000 bootstrap samples were used). For each bootstrapped data matrix, Mi,
a dendrogram Di was generated through hierarchical clustering. Next, for each subtree in the original dendrogram D, the
analysis assesses how often the same subtree appears across the bootstrapped dendrograms D1:10,000. Here, subtree equality is
defined by subtrees that share identical tree topology and neuron membership but does not assess equality of branch lengths.
Lastly, because the bootstrap probability is known to be a downwardly biased measure for determining subtree probability [41],
pvclust corrects for this downward bias by performing the entire bootstrap procedure multiple times at a number of scales by
resampling M to have differing numbers of columns (here, we use 3 through 9 columns in M). This allows for the bootstrap
probability to be corrected, yielding the approximately unbiased p-value for each subtree.
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Supp. Fig. 1. Distribution of neuron types and electrophysiological properties represented in NeuroElectro and illustration of elec-
trophysiological property standardization. A) Frequency histogram of distribution of neuron types versus number of articles containing information about each

neuron type. B) Count of unique measurements of the six electrophysiological properties explored in this manuscript. C,D) Illustration of manual electrophysiological property

standardization for NeuroElectro measurements extracted from literature. Example afterhyperpolarization (AHP) amplitude measurements before (C) and after standardization

(D) to a common calculation definition. Neurons plotted are cerebellar Purkinje cells, CA1 pyramidal cells, cortical basket cells, ventral tegmental area dopaminergic cells, and

striatal medium spiny neurons (abbreviated as Purk; CA1, pyr; Ctx, bskt; VTA, DA; and Str, MSN; respectively). Each circle denotes the value of the mean electrophysiological

measurement reported within an article.
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Supp. Fig. 2. Histograms of methodological variability in neurophysiology literature reflected within the NeuroElectro database.

Supp. Fig. 3. Quantification of Mg2+ and Ca2+ recording solution concentrations among articles in quality control subset. A) 2-

dimensional histogram of Mg2+ and Ca2+ recording solution concentrations, reported in mM. The most commonly reported concentration pair is 1mM Mg2+ and 2 mM

Ca2+. B) Same as A, but reported as ratio of Mg2+ to Ca2+ concentration. n = 27 articles quantified; 2 articles not shown since in vivo recording conditions were

used and no external recording solution was reported.
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Supp. Fig. 4. Compilation of different overall methods for calculating electrophysiological properties from the sample of curated articles
in the QC audit. A-F) Pie charts and labels indicate breakdown of electrophysiological calculation methodology and n indicates number of property measurements found

in sample. Label ’unreported’ indicates that no specific methodological description could be found. n = 27 articles quantified in QC subset. A) Resting membrane potential

(Vrest), label ’spontaneously active pseudo-Vrest method’ indicates methodology for quantifying Vrest in spontaneously active neurons. B) Input resistance (Rinput),

label ’leak method’ indicates method for calculating Rinput based on leak current. C) Membrane time constant (τm), label ’peeling method to mitigate Ih’ indicates method

calculating τm that corrects for sag current influence, label ’Cs+ indicates the use of cesium ions in the electrode pipette solution.; D) Action potential half width (APhw).

Labels indicate different protocols for eliciting spikes from which APhw is calculated. By definition, all APhw measurements have been quantified as AP full width at half

maximal amplitude, usually from the first evoked AP in train. E) Action potential amplitude (APamp). Pie charts indicate methodology for quantifying APamp (left) or

protocol used to elicit action potentials (right). Quantification labels indicate whether APamp is defined as the difference between AP threshold and peak or Vrest and AP

peak. F) Action potential threshold (APthr), label ’max inflection point’ indicates identification of action potential threshold via 2nd derivative of voltage.
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Supp. Fig. 5. Validation of NeuroElectro database measurements with collection of raw data. A) Representative targeted recording of a

hippocampal CA1 pyramidal cell (”CA1, PC”), showing anatomical position and morphological reconstruction (left), response to hyperpolarizing and depolarizing rheobase and

suprathreshold step current injections (middle), and action potential waveform (right). Anatomical scalebar: 200 µm. B-D) Same as A for: main olfactory bulb mitral cell (B;

”MOB, MC”), main olfactory bulb granule cell (C; ”MOB, GC”), neocortical basket cell (D; ”Ctx, BC”), and striatal medium spiny neuron (E; ”Str, MSN”). F) Summary of

targeted in vitro recordings and comparison to text-mined, metadata-adjusted values from NeuroElectro. Abbreviations: dorsal (D), posterior (P), medial (M), anterior (A).

Morphological reconstructions (except the representative granule cell) have been moderately thickened to aid visualization of thinner processes.

.International license
CC-BY-NC 4.0peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was not certified bythis version posted February 4, 2015. ; https://doi.org/10.1101/014720doi: bioRxiv preprint 

https://doi.org/10.1101/014720
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


i
i

“neuroelectro˙bioarxiv” — 2015/2/3 — 11:27 — page 15 — #15 i
i

i
i

i
i

Supp. Fig. 6. Expanded analysis of correlations among electrophysiological properties. A) Benjamini-Hochberg adjusted P-values for pairwise

electrophysiological property correlation matrix shown in Fig. 4. B,C) Coefficients corresponding to the first (B) and second (C) probabilistic principal component (pPC).

D) Projection of neuron types onto space defined by first and second pPCs. Note that the first pPC qualitatively reflects the axis of electrotonically small (left) vs. large

(right) neuron types, while the second pPC qualitatively reflects the axis of basal excitability of neuron types, separating hyperpolarized (bottom) from depolarized (top) resting

membrane potentials.
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Supp. Fig. 7. Hierarchical clustering of neuron types, without first normalizing for differences in experimental metadata. Same as Fig. 5,

but computed for biophysical data without first adjusting for differences in experimental conditions. Neuron types sorted in order of biophysical similarity (similiarity indicated by

levels of dendrogram; dendrogram linkages computed using Ward’s method and Euclidean distances). Heatmap values indicate observed neuron type-specific electrophysiological

measurements, red (blue) values indicate large (small) values relative to mean across neuron types. Only neuron types with measurements defined by at least three articles and

with at least four (of the six total) biophysical properties reported were used in this analysis. Probabalistic PCA was used to impute unobserved measurements, indicated via

green dots on heatmap.
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Supp. Fig. 8. Influence of dataset size versus predictive power of metadata for explaining electrophysiological measurement variability.
Panels show different electrophysiological properties and lines show explanatory power of statistical model when using neuron type information only (black) or neuron type

plus all metadata (red) as a function of randomly subsampling the original dataset to smaller sizes (on abscissa). Original dataset size indicated by subsample fraction = 1.0.

Shaded lines indicate standard deviations when resampling the dataset 25 times per subsampling size. Note that as dataset is subsampled to smaller sizes, explanatory power

of the model that includes metadata is not greater than the model which includes neuron type information only.
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