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ABSTRACT 

Motivation: Protein database search is one of the fundamental problems in 

bioinformatics. For decades, it has been explored and solved using different 

exact and heuristic approaches. However, exponential growth of data in 

size in recent years has brought significant challenges in improving already 

existing algorithms. BLASTP has been the most successful tool for protein 

database search, but is also becoming a bottleneck in many applications. 

Due to that, many different approaches have been developed to comple-

ment or replace BLASTP. In this paper, we present SWORD, an efficient 

protein database search implementation that runs 3-4 faster than BLASTP 

in the sensitive mode and up to 18 faster in the fast and less accurate mode 

and also provides guaranteed optimal alignments for candidate sequences. 

SWORD is designed to be used in nearly all database search environments, 

but is especially suitable for large databases. Its sensitivity exceeds that of 

BLASTP for majority of input datasets. 

Availability: Sword is freely available for download from 

https://github.com/rvaser/sword 

Contact: robert.vaser@fer.hr, mile.sikic@fer.hr 

1 INTRODUCTION  

Protein database search is an immensely important task in 

bioinformatics and other life sciences. It is used both as a 

standalone task of finding similarities between proteins and, for 

example, as a part of larger metagenomical studies. However, a 

large and ever-growing amount of new data being analyzed 

together with an exponential increase of database sizes makes 

protein similarity analysis using existing tools a dauntingly slow 

and inefficient task. BLASTP (Altschul et al., 1990) is the most 

popular and used software nowadays for protein database search 

with tens of thousands of searches on the NCBI servers a day (Liu 

et al., 2011). 

 In short, BLASTP uses a so-called seed and extend 

approach in four stages. Firstly, BLASTP tries to find hits. Hits are 

short exact matches (usually of size 3) between query and target 

sequence that score above some small threshold according to the 

scoring matrix being used. In the second stage, these hits are 

extended using ungapped extension. All the extensions that score 

above a certain cutoff score are passed to the third and fourth 

stages. These are called high-scoring segment pairs (HSPs). In the 

third and fourth stage, alignment between the query and the target 

is computed using HSPs as seeds. All alignments that score above 

some predefined threshold are reported. Note that these alignments 

are not necessarily optimal since they are based on heuristic 

measures from the second stage. This process is rather time 

consuming on most large databases, such as NCBI nonredundant 
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(NCBI-NR) that is 32GB in size.   

 For that reason, many new approaches and tools  like 

DIAMOND (Buchfink et al., 2014), BLAT (Kent, 2002) and 

PAUDA (Huson and Xie, 2014) have been developed in recent 

years with the goal of speeding up the search while retaining the 

same or at least a comparable level of sensitivity to that of  

BLAST. Many of these approaches try to make use of new and 

parallel computing architectures to help cope with huge 

computational demands while others present completely new ideas 

and perspectives on the problem. 

 One of them is DIAMOND, which is, according to its 

paper, up to 20 000 faster than BLAST in a high-throughput setting 

where an extremely large number of short reads needs to be 

aligned to a protein database. It is targeted as a replacement for 

BLASTX in such an environment. DIAMOND uses a few novel 

ideas in its approach, most notable being double indexing and 

spaced seeds. Double indexing helps in reducing memory load by 

being more cache conscious which in turn significantly improves 

the runtime, while spaced seeds were created with the intention of 

locating hits in a more efficient manner by having a need to 

process much less seeds than usual without losing sensitivity. Hits 

are then passed to SIMD-accelerated banded Smith-Waterman 

algorithm for alignment. However, being specifically designed to 

be extremely fast and accurate as much as possible when aligning a 

huge number of reads to a protein database, makes DIAMOND 

sensitivity somewhat poor on regular,  longer query data sets, 

which we will examine and present later on. 

 Other tools, such as BLAT, Rapsearch2 (Zhao et al., 

2012) or PAUDA propose other, different approaches which can 

yield good results depending on the application, with sometimes 

very big speedups over BLASTP and purely exact algorithms. 

Nonetheless, efficient and sensitive protein database search still 

remains a challenge to be solved. We have used BLASTP and 

DIAMOND for comparison with SWORD. 

 In this paper, we present SWORD or Smith-Waterman 

On Reduced Database - a novel approach to this problem that 

combines some well-known ideas with some new insights and 

possibilities opened up by hardware architectures. SWORD is, 

depending on parameters used, up to 18 times faster than 

conventional BLASTP in the same setting while providing clients 

with comparable sensitivity. It makes use of a heuristic 

preprocessing phase for reducing the search space followed by the 

second, optimal alignment phase. The second phase is sped-up by 

Nvidia CUDA enabled GPUs that run full Smith-Waterman 

algorithm, thus providing user with optimal alignments. 
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2 METHODS 

We have implemented a two-step approach to database searching 

that involves a heuristic and an optimal alignment phase. In the 

heuristic part, we use deterministic finite automata to eliminate 

from further processing those database sequences which probably 

will not produce good alignments and therefore we reduce the 

number of alignments computed in the second phase, thus saving 

time. In the second step, we use SW#db  (Korpar et al., 2015), an 

efficient Smith-Waterman algorithm library that uses CUDA GPU 

programming parallel architecture. SW#db makes use of 

computing power of CUDA cards paired with multithreading and 

SIMD vectorization to help make running larger exact alignments 

feasible.  

 While BLASTP (and the similar algorithms) use the 

results from the seed-and-extend phase to build final alignments, 

our approach only uses the heuristic seed phase to find possible 

target matches. Final alignments are independently calculated 

using SW and are guaranteed to be optimal. 

 The heuristic we use for determining possible matches is 

based on a deterministic finite automaton (DFA). The DFA is built 

to recognize equal-length k-mers extracted from the query 

sequences, called seeds. The seeds need not be just the exact k-

mers from the query sequence, but can also include 'similar 

enough' k-mers. The similarity between the seeds is defined by the 

threshold and the scoring matrix used. The DFA is used to locate 

hits: occurrences of query seeds in the target sequence. For a pair 

of k-mers, one from the query and one from the target, to be 

considered a hit, they have to score at least T, where T is a 

predefined threshold. All seeds that score T or more with a given 

seed belong to its neighborhood. Detecting not only equal, but all 

seeds from a seed neighborhood greatly increases sensitivity. 

SWORD supports both modes of operation. To enable detection of 

similar, neighborhood seeds, we use the following technique. 

While iterating through query seeds and adding them to the DFA, 

for each seed we generate all seeds that score T or higher when 

aligned to it, and insert them to the automaton, too. This is very 

similar to how BLASTP used to detect HSPs. 

 When a hit is found using the DFA, we calculate the 

diagonal on which the hit is located. If a query is of length M and a 

target is of length N, then a diagonal is defined as a diagonal of an 

𝑀𝑥𝑁 matrix. The following formula determines the diagonal on 

which a hit is located: 

 

 𝐷ℎ𝑖𝑡 =  𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑞𝑢𝑒𝑟𝑦   % 𝑁𝑑𝑖𝑎𝑔𝑠  

 

where Dhit is the index of the diagonal for the current hit, Ptarget and 

Pquery are hit positions in the target and the query respectively 

while Ndiags represents total number of different possible diagonals 

between the current query and the current target and is obtained by 

the following expression: 

 

𝑁𝑑𝑖𝑎𝑔𝑠 =  𝑀 +  𝑁 −  2 ∗  𝑠𝑒𝑒𝑑𝐿𝑒𝑛 +  1 

 

Here, seedLen is the length of seeds used while constructing the 

automaton. When the diagonal is calculated, we increment the 

count of the number of hits on that diagonal. In the end, after 

processing the current target is done, the diagonal with the largest 

number of hits is found and used as the relevance score or 

probability of that target being potentially good. We use this 

measure because more hits on the same diagonal indicate an 

increase in the probability of a good alignment between sequences. 

 The result of the heuristic is, for each target, a measure 

of probability of producing a good alignment with the query. 

Targets are then sorted by that measure in descending order and 

only the top A are sent to the second step for further analysis and 

processing, A being an input parameter of SWORD. Those A 

targets are now called candidates since all of them will be aligned 

to the query, but only a predefined number of them will be 

reported. In the second step, an exact Smith-Waterman alignment 

is performed between the query and all the candidate sequences, 

after which the alignments are filtered by score and expect value 

and reported in the output. 

 Counting hits on diagonals is method used in original 

FASTA (Pearson and Lipman, 1988) algorithm. However, FASTA 

combines it with the other processing steps before moving on to 

alignment/extend phase. We, on the other hand, use only hit count 

as a relevant measure. This produces more targets to align against 

and does not reduce the search space as much as FASTA does, but 

we rely on the power and efficiency of SW#db and CUDA cards to 

compensate for the expansion of the search space. 

 We have implemented additional improvements to the 

described algorithm to make the program even more efficient. 

Firstly, we group multiple queries into one automaton. In the 

default implementation, it is necessary to iterate over the whole 

database for each query in order to detect hits and find the best 

possible candidates. If multiple queries are grouped into one 

automaton, we can detect hits for all of those queries in a single 

iteration.  We were careful to implement the grouping in a cache 

friendly manner. The software is also optimized for multi-core 

processors.   
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 SWORD supports two modes of operation – fast and 

sensitive. As the names suggest, the former is faster and provides 

lower sensitivity rates, while the latter gives larger sensitivity at a 

cost of less speedup. Users can manually set up their own preferred 

way of database search with many other parameters available.1 The 

sensitive mode of operation uses seeds of length 3 along with 

generating and detecting neighborhoods with threshold of T = 13. 

It will forward the 30000 candidates per query to the second stage. 

On the other hand, fast mode uses seeds of length 5 and detects 

only exact matches. Only 5000 best targets per query are 

forwarded to the second stage as candidates in the fast mode. 

 It is important to note that SWORD needs no additional 

preprocessing of queries or the database before running. BLASTP 

and DIAMOND, for example, need to create their own auxiliary 

database files. SWORD requires no such files and takes up no 

extra disk space. 

3 RESULTS 

We have tested and compared SWORD's performance to both 

BLASTP and DIAMOND. We have downloaded the NCBI NR 

and used it as the reference database. In order to better evaluate 

and compare sensitivity and speed, we have used three different 

query sets, two of them for sensitivity checks and all three to test 

runtime. The three sets were HumDiv, HumVar (Adzhubei et al., 

2010), both neutral variants and the third was E.coli (Flicek et al., 

2013) from Ensembl gene annotation. HumDiv contains 315 pro-

teins of total length of 235219 amino-acids. HumVar is made of 

3400 sequences of total length 2263906 acids while E.coli set 

contains 4969 protein sequences of total length 1393750. 

 Since SWORD and DIAMOND support fast and sensi-

tive modes, we executed both variants for them. BLOSUM62 was 

the scoring matrix used in all runs. We ran BLASTP with default 

parameters, except that we turned off composition based statistics. 

Since we don't change the scoring matrix during or just prior to the 

search and don't use composition based statistics, turning them off 

makes BLASTP behave in the same manner. This enabled us to get 

more comparable e-values for alignments since they are all now 

calculated in the same way. All programs were run using 32 

threads on a machine with 16 Intel(R) Xeon(R) E5-2640 CPUs 

clocked at 2GHz with HyperThreading support, 256 GB SSD and 

396GB RAM. GPU unit used for testing was Nvidia Geforce GTX 

Titan. The BLASTP and DIAMOND auxiliary files for NR data-

base, which is around 32GB in size, occupied about 60GB of extra 

disk space and took an extra few hours to be computed.  

 To measure sensitivity we used HumDiv and E.Coli sets. 

First, we ran SW#db search and stored the alignments produced. 

We proceeded to run SWORD, DIAMOND and BLASTP on the 

same sets. Sensitivity was measured by examining 11 different e-

values, from 1𝑥10−250  to 10. For each  of those threshold e-values 

and for each program we found all alignments that have e-value 

less than or equal to the threshold. We then examined what percen-

tage of those produced alignments is present in the SW#db exact 

output and reported the percentage as sensitivity for the given e-

value. The results of these tests can be seen on Figure for both 

input sets. 

 

  
1 A detailed description of SWORD parameters is available on the 

download page 

 
Figure 1.  Comparison of sensitivity of SWORD against BLASTP and 
DIAMOND on HumDiv (upper) and E.coli set (lower) for NR database 

Horizontal axis represents e-values while the vertical axis 

represents the percentage of SW#db alignments covered by an 

algorithm. For every algorithm and e-value, this percentage is 

plotted. From these figures, we can easily observe that SWORD in 

its sensitive variant has very good overall sensitivity. It does per-

form slightly worse than BLASTP on higher e-values for E.coli, 

but that is probably due to a larger number of mutations occurring 

in bacteria. These mutations are harder to detect, especially since 

we use larger neighborhood threshold than BLASTP (13 compared 

to 11 in BLASTP) Also, SWORD-fast performs quite well, al-

though its sensitivity drops more after a certain point. The reason 

for this is that we are only looking at exact matches of length 5 

without checking seed neighborhoods. On very similar sequences 

with low e-value alignments this works well since they probably 

share at least one  
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Figure 2. Comparison of speedup over BLAST for all algorithms on three 

sets for NR database 

 

exact seed of size 5. However, when sequences are more distant, in 

many cases they share no exact seed matches of that size and 

SWORD-fast does not discover any hits between them. 

DIAMOND, on the other hand, performs somewhat poorly com-

pared to SWORD and BLASTP, which is expected since it was 

designed for different scenarios. Figures also demonstrate that  

SWORD, in both variants, can be used to efficiently retrieve very 

similar proteins from the database with equal or better sensitivity 

than BLASTP but with speedup of 3 or more times. This usually is 

the primary task when searching a database. 

 During execution speed testing, we tested how much 

speedup DIAMOND and SWORD provide compared to BLAST. 

These results can be seen on Figure 2. A few things can be read  

from the graph. As expected, when the query set increases in the 

number of queries and/or their size, the speedup of SWORD over 

BLASTP becomes larger. This means that it scales well with the 

data set size and is well suitable for large sets. SWORD was able 

to surpass both DIAMOND counterparts on the HumDiv set. 

DIAMOND is very fast on all sets, but we are not sure how it 

scales. Its performance seems to dip significantly on HumDiv set 

and it is hard to conclude why.  

 In addition, we have compared SWORD to DIAMOND 

and BLASTP with SW#db as reference on the Astral/SCOP com-

pendium database, version 2.04 (Fox et al., 2014). For this testing, 

we created a query set from the subset of Astral sequences. The 

query set was created by sorting the SCOP domains in lexico-

graphic order and selecting even numbered sequences as queries. 

The database consisted of 13042 sequences while the query set 

contained 6114 sequences. Curves denoting the number of true 

positives vs. the number of false positives for each algorithm are 

plotted on Figure 3. DIAMOND results are poor and it finds only a 

fraction of all alignments. SWORD-sensitive performance is drawn 

using red dashed line that almost covers the curve of SW#db com-

pletely. From this, it is obvious that SWORD-sensitive performs 

almost exactly like SW#db in this case, while other algorithms are 

significantly less accurate.  
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Figure 3. Comparison of sensitivity of SWORD, BLASTP and SW#db on 
Astral/SCOP database 
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