
© Oxford University Press 2005 1

SWORD - a highly efficient protein database search

Robert Vaser
1,*

, Dario Pavlovic
1
, Matija Korpar

3
 and Mile Sikic

1,2,*

1
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

2
 Bioinformatics Institute, A*STAR, #07-01 Matrix, 138671 Singapore

3
Microblink Ltd., 40 Gracechurch street IPLAN, London, EC3V 0BT, UK

ABSTRACT

Motivation: Protein database search is one of the fundamental problems in

bioinformatics. For decades, it has been explored and solved using different

exact and heuristic approaches. However, exponential growth of data in

size in recent years has brought significant challenges in improving already

existing algorithms. BLASTP has been the most successful tool for protein

database search, but is also becoming a bottleneck in many applications.

Due to that, many different approaches have been developed to comple-

ment or replace BLASTP. In this paper, we present SWORD, an efficient

protein database search implementation that runs 3-4 faster than BLASTP

in the sensitive mode and up to 18 faster in the fast and less accurate mode

and also provides guaranteed optimal alignments for candidate sequences.

SWORD is designed to be used in nearly all database search environments,

but is especially suitable for large databases. Its sensitivity exceeds that of

BLASTP for majority of input datasets.

Availability: Sword is freely available for download from

https://github.com/rvaser/sword

Contact: robert.vaser@fer.hr, mile.sikic@fer.hr

1 INTRODUCTION

Protein database search is an immensely important task in

bioinformatics and other life sciences. It is used both as a

standalone task of finding similarities between proteins and, for

example, as a part of larger metagenomical studies. However, a

large and ever-growing amount of new data being analyzed

together with an exponential increase of database sizes makes

protein similarity analysis using existing tools a dauntingly slow

and inefficient task. BLASTP (Altschul et al., 1990) is the most

popular and used software nowadays for protein database search

with tens of thousands of searches on the NCBI servers a day (Liu

et al., 2011).

 In short, BLASTP uses a so-called seed and extend

approach in four stages. Firstly, BLASTP tries to find hits. Hits are

short exact matches (usually of size 3) between query and target

sequence that score above some small threshold according to the

scoring matrix being used. In the second stage, these hits are

extended using ungapped extension. All the extensions that score

above a certain cutoff score are passed to the third and fourth

stages. These are called high-scoring segment pairs (HSPs). In the

third and fourth stage, alignment between the query and the target

is computed using HSPs as seeds. All alignments that score above

some predefined threshold are reported. Note that these alignments

are not necessarily optimal since they are based on heuristic

measures from the second stage. This process is rather time

consuming on most large databases, such as NCBI nonredundant

*To whom correspondence should be addressed.

(NCBI-NR) that is 32GB in size.

 For that reason, many new approaches and tools like

DIAMOND (Buchfink et al., 2014), BLAT (Kent, 2002) and

PAUDA (Huson and Xie, 2014) have been developed in recent

years with the goal of speeding up the search while retaining the

same or at least a comparable level of sensitivity to that of

BLAST. Many of these approaches try to make use of new and

parallel computing architectures to help cope with huge

computational demands while others present completely new ideas

and perspectives on the problem.

 One of them is DIAMOND, which is, according to its

paper, up to 20 000 faster than BLAST in a high-throughput setting

where an extremely large number of short reads needs to be

aligned to a protein database. It is targeted as a replacement for

BLASTX in such an environment. DIAMOND uses a few novel

ideas in its approach, most notable being double indexing and

spaced seeds. Double indexing helps in reducing memory load by

being more cache conscious which in turn significantly improves

the runtime, while spaced seeds were created with the intention of

locating hits in a more efficient manner by having a need to

process much less seeds than usual without losing sensitivity. Hits

are then passed to SIMD-accelerated banded Smith-Waterman

algorithm for alignment. However, being specifically designed to

be extremely fast and accurate as much as possible when aligning a

huge number of reads to a protein database, makes DIAMOND

sensitivity somewhat poor on regular, longer query data sets,

which we will examine and present later on.

 Other tools, such as BLAT, Rapsearch2 (Zhao et al.,

2012) or PAUDA propose other, different approaches which can

yield good results depending on the application, with sometimes

very big speedups over BLASTP and purely exact algorithms.

Nonetheless, efficient and sensitive protein database search still

remains a challenge to be solved. We have used BLASTP and

DIAMOND for comparison with SWORD.

 In this paper, we present SWORD or Smith-Waterman

On Reduced Database - a novel approach to this problem that

combines some well-known ideas with some new insights and

possibilities opened up by hardware architectures. SWORD is,

depending on parameters used, up to 18 times faster than

conventional BLASTP in the same setting while providing clients

with comparable sensitivity. It makes use of a heuristic

preprocessing phase for reducing the search space followed by the

second, optimal alignment phase. The second phase is sped-up by

Nvidia CUDA enabled GPUs that run full Smith-Waterman

algorithm, thus providing user with optimal alignments.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2015. ; https://doi.org/10.1101/014654doi: bioRxiv preprint

https://doi.org/10.1101/014654
http://creativecommons.org/licenses/by-nc/4.0/

R. Vaser et al.

2

2 METHODS

We have implemented a two-step approach to database searching

that involves a heuristic and an optimal alignment phase. In the

heuristic part, we use deterministic finite automata to eliminate

from further processing those database sequences which probably

will not produce good alignments and therefore we reduce the

number of alignments computed in the second phase, thus saving

time. In the second step, we use SW#db (Korpar et al., 2015), an

efficient Smith-Waterman algorithm library that uses CUDA GPU

programming parallel architecture. SW#db makes use of

computing power of CUDA cards paired with multithreading and

SIMD vectorization to help make running larger exact alignments

feasible.

 While BLASTP (and the similar algorithms) use the

results from the seed-and-extend phase to build final alignments,

our approach only uses the heuristic seed phase to find possible

target matches. Final alignments are independently calculated

using SW and are guaranteed to be optimal.

 The heuristic we use for determining possible matches is

based on a deterministic finite automaton (DFA). The DFA is built

to recognize equal-length k-mers extracted from the query

sequences, called seeds. The seeds need not be just the exact k-

mers from the query sequence, but can also include 'similar

enough' k-mers. The similarity between the seeds is defined by the

threshold and the scoring matrix used. The DFA is used to locate

hits: occurrences of query seeds in the target sequence. For a pair

of k-mers, one from the query and one from the target, to be

considered a hit, they have to score at least T, where T is a

predefined threshold. All seeds that score T or more with a given

seed belong to its neighborhood. Detecting not only equal, but all

seeds from a seed neighborhood greatly increases sensitivity.

SWORD supports both modes of operation. To enable detection of

similar, neighborhood seeds, we use the following technique.

While iterating through query seeds and adding them to the DFA,

for each seed we generate all seeds that score T or higher when

aligned to it, and insert them to the automaton, too. This is very

similar to how BLASTP used to detect HSPs.

 When a hit is found using the DFA, we calculate the

diagonal on which the hit is located. If a query is of length M and a

target is of length N, then a diagonal is defined as a diagonal of an

𝑀𝑥𝑁 matrix. The following formula determines the diagonal on

which a hit is located:

 𝐷ℎ𝑖𝑡 = 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑞𝑢𝑒𝑟𝑦 % 𝑁𝑑𝑖𝑎𝑔𝑠

where Dhit is the index of the diagonal for the current hit, Ptarget and

Pquery are hit positions in the target and the query respectively

while Ndiags represents total number of different possible diagonals

between the current query and the current target and is obtained by

the following expression:

𝑁𝑑𝑖𝑎𝑔𝑠 = 𝑀 + 𝑁 − 2 ∗ 𝑠𝑒𝑒𝑑𝐿𝑒𝑛 + 1

Here, seedLen is the length of seeds used while constructing the

automaton. When the diagonal is calculated, we increment the

count of the number of hits on that diagonal. In the end, after

processing the current target is done, the diagonal with the largest

number of hits is found and used as the relevance score or

probability of that target being potentially good. We use this

measure because more hits on the same diagonal indicate an

increase in the probability of a good alignment between sequences.

 The result of the heuristic is, for each target, a measure

of probability of producing a good alignment with the query.

Targets are then sorted by that measure in descending order and

only the top A are sent to the second step for further analysis and

processing, A being an input parameter of SWORD. Those A

targets are now called candidates since all of them will be aligned

to the query, but only a predefined number of them will be

reported. In the second step, an exact Smith-Waterman alignment

is performed between the query and all the candidate sequences,

after which the alignments are filtered by score and expect value

and reported in the output.

 Counting hits on diagonals is method used in original

FASTA (Pearson and Lipman, 1988) algorithm. However, FASTA

combines it with the other processing steps before moving on to

alignment/extend phase. We, on the other hand, use only hit count

as a relevant measure. This produces more targets to align against

and does not reduce the search space as much as FASTA does, but

we rely on the power and efficiency of SW#db and CUDA cards to

compensate for the expansion of the search space.

 We have implemented additional improvements to the

described algorithm to make the program even more efficient.

Firstly, we group multiple queries into one automaton. In the

default implementation, it is necessary to iterate over the whole

database for each query in order to detect hits and find the best

possible candidates. If multiple queries are grouped into one

automaton, we can detect hits for all of those queries in a single

iteration. We were careful to implement the grouping in a cache

friendly manner. The software is also optimized for multi-core

processors.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2015. ; https://doi.org/10.1101/014654doi: bioRxiv preprint

https://doi.org/10.1101/014654
http://creativecommons.org/licenses/by-nc/4.0/

SWORD - a highly efficient protein database search

3

 SWORD supports two modes of operation – fast and

sensitive. As the names suggest, the former is faster and provides

lower sensitivity rates, while the latter gives larger sensitivity at a

cost of less speedup. Users can manually set up their own preferred

way of database search with many other parameters available.1 The

sensitive mode of operation uses seeds of length 3 along with

generating and detecting neighborhoods with threshold of T = 13.

It will forward the 30000 candidates per query to the second stage.

On the other hand, fast mode uses seeds of length 5 and detects

only exact matches. Only 5000 best targets per query are

forwarded to the second stage as candidates in the fast mode.

 It is important to note that SWORD needs no additional

preprocessing of queries or the database before running. BLASTP

and DIAMOND, for example, need to create their own auxiliary

database files. SWORD requires no such files and takes up no

extra disk space.

3 RESULTS

We have tested and compared SWORD's performance to both

BLASTP and DIAMOND. We have downloaded the NCBI NR

and used it as the reference database. In order to better evaluate

and compare sensitivity and speed, we have used three different

query sets, two of them for sensitivity checks and all three to test

runtime. The three sets were HumDiv, HumVar (Adzhubei et al.,

2010), both neutral variants and the third was E.coli (Flicek et al.,

2013) from Ensembl gene annotation. HumDiv contains 315 pro-

teins of total length of 235219 amino-acids. HumVar is made of

3400 sequences of total length 2263906 acids while E.coli set

contains 4969 protein sequences of total length 1393750.

 Since SWORD and DIAMOND support fast and sensi-

tive modes, we executed both variants for them. BLOSUM62 was

the scoring matrix used in all runs. We ran BLASTP with default

parameters, except that we turned off composition based statistics.

Since we don't change the scoring matrix during or just prior to the

search and don't use composition based statistics, turning them off

makes BLASTP behave in the same manner. This enabled us to get

more comparable e-values for alignments since they are all now

calculated in the same way. All programs were run using 32

threads on a machine with 16 Intel(R) Xeon(R) E5-2640 CPUs

clocked at 2GHz with HyperThreading support, 256 GB SSD and

396GB RAM. GPU unit used for testing was Nvidia Geforce GTX

Titan. The BLASTP and DIAMOND auxiliary files for NR data-

base, which is around 32GB in size, occupied about 60GB of extra

disk space and took an extra few hours to be computed.

 To measure sensitivity we used HumDiv and E.Coli sets.

First, we ran SW#db search and stored the alignments produced.

We proceeded to run SWORD, DIAMOND and BLASTP on the

same sets. Sensitivity was measured by examining 11 different e-

values, from 1𝑥10−250 to 10. For each of those threshold e-values

and for each program we found all alignments that have e-value

less than or equal to the threshold. We then examined what percen-

tage of those produced alignments is present in the SW#db exact

output and reported the percentage as sensitivity for the given e-

value. The results of these tests can be seen on Figure for both

input sets.

1 A detailed description of SWORD parameters is available on the

download page

Figure 1. Comparison of sensitivity of SWORD against BLASTP and
DIAMOND on HumDiv (upper) and E.coli set (lower) for NR database

Horizontal axis represents e-values while the vertical axis

represents the percentage of SW#db alignments covered by an

algorithm. For every algorithm and e-value, this percentage is

plotted. From these figures, we can easily observe that SWORD in

its sensitive variant has very good overall sensitivity. It does per-

form slightly worse than BLASTP on higher e-values for E.coli,

but that is probably due to a larger number of mutations occurring

in bacteria. These mutations are harder to detect, especially since

we use larger neighborhood threshold than BLASTP (13 compared

to 11 in BLASTP) Also, SWORD-fast performs quite well, al-

though its sensitivity drops more after a certain point. The reason

for this is that we are only looking at exact matches of length 5

without checking seed neighborhoods. On very similar sequences

with low e-value alignments this works well since they probably

share at least one

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2015. ; https://doi.org/10.1101/014654doi: bioRxiv preprint

https://doi.org/10.1101/014654
http://creativecommons.org/licenses/by-nc/4.0/

R. Vaser et al.

4

Figure 2. Comparison of speedup over BLAST for all algorithms on three

sets for NR database

exact seed of size 5. However, when sequences are more distant, in

many cases they share no exact seed matches of that size and

SWORD-fast does not discover any hits between them.

DIAMOND, on the other hand, performs somewhat poorly com-

pared to SWORD and BLASTP, which is expected since it was

designed for different scenarios. Figures also demonstrate that

SWORD, in both variants, can be used to efficiently retrieve very

similar proteins from the database with equal or better sensitivity

than BLASTP but with speedup of 3 or more times. This usually is

the primary task when searching a database.

 During execution speed testing, we tested how much

speedup DIAMOND and SWORD provide compared to BLAST.

These results can be seen on Figure 2. A few things can be read

from the graph. As expected, when the query set increases in the

number of queries and/or their size, the speedup of SWORD over

BLASTP becomes larger. This means that it scales well with the

data set size and is well suitable for large sets. SWORD was able

to surpass both DIAMOND counterparts on the HumDiv set.

DIAMOND is very fast on all sets, but we are not sure how it

scales. Its performance seems to dip significantly on HumDiv set

and it is hard to conclude why.

 In addition, we have compared SWORD to DIAMOND

and BLASTP with SW#db as reference on the Astral/SCOP com-

pendium database, version 2.04 (Fox et al., 2014). For this testing,

we created a query set from the subset of Astral sequences. The

query set was created by sorting the SCOP domains in lexico-

graphic order and selecting even numbered sequences as queries.

The database consisted of 13042 sequences while the query set

contained 6114 sequences. Curves denoting the number of true

positives vs. the number of false positives for each algorithm are

plotted on Figure 3. DIAMOND results are poor and it finds only a

fraction of all alignments. SWORD-sensitive performance is drawn

using red dashed line that almost covers the curve of SW#db com-

pletely. From this, it is obvious that SWORD-sensitive performs

almost exactly like SW#db in this case, while other algorithms are

significantly less accurate.

ACKNOWLEDGEMENTS

We would like to give special thanks to Ana Bulović for proo-

freading the manuscript and providing valuable suggestions.

Funding: This work was supported in part by Croatian Science

Foundation under the project 7353 Algorithms for Genome Se-

quence Analysis.

REFERENCES

Korpar,M. et al. (2015) SW#db: GPU-accelerated exact sequence similarity database

search. bioRxiv, doi: http://dx.doi.org/10.1101/013805

Liu,W. et al. (2011) CUDA-BLASTP: accelerating BLASTP on CUDA-enabled

graphics hardware. IEEE/ACM Trans. Comput. Biol. Bioinform., 8, 1678–1684.

Altschul,S.F. et al.(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–

410.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucl. Acids Res., 25, 3389–3402.

Zhao,Y. et al. (2012) RAPSearch2: a fast and memory-efficient protein similarity

search tool for next-generation sequencing data. Bioinformatics, 28, 125–126.

Buchfink,B. et al. (2014) Fast and sensitive protein alignment using DIAMOND. Nat.

Methods, 12, 59–60.

Kent,W.J. (2002) BLAT-The BLAST-like Alignment Tool. Genome Res., 12, 656–

664.

Huson,D.H. and Xie,C. (2014) A poor man's BLASTX - high-throughput metagenom-

ic protein database search using PAUDA. Bioinformatics, 30, 38–39.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence com-

parison. Proc. Natl. Acad. Sci. USA, 85, 2444–2448.

Adzhubei,I.A. et al. (2010) A method and server for predicting damaging missense

mutations. Nat. Methods, 7, 248-249.

Flicek,P. et al. (2013) Ensembl 2013. Nucl. Acids Res., 41, D48-D55.

Fox,N.K. et al. (2014) SCOPe: Structural Classification of Proteins - extended,

integrating SCOP and ASTRAL data and classification of new structures. Nucl.

Acids Res., 42, D304-D309.

Figure 3. Comparison of sensitivity of SWORD, BLASTP and SW#db on
Astral/SCOP database

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted February 2, 2015. ; https://doi.org/10.1101/014654doi: bioRxiv preprint

https://doi.org/10.1101/014654
http://creativecommons.org/licenses/by-nc/4.0/

