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Abstract

Cancer poses danger because of its unregulated growth, development of resistant subclones, and me-
tastatic spread to vital organs. Although the major transitions in cancer development are increasingly
well understood, we lack quantitative theory for how preventive measures and post-excision (’reac-
tive’) treatments are predicted to affect risks of obtaining a life threatening cancer or relapse, respec-
tively. We employ analytical and numerical models to evaluate how continuous measures such as life
style changes, and certain non-targeted and targeted treatments affect both neoplastic growth and the
frequency of resistant clones. We find that preventive measures can have a negligible impact on pre-
cancerous lesions and yet achieve considerable reductions in risk of invasive cancer. Importantly, our
model, based on realistic parameter estimates, predicts that daily cancer cell arrest levels of 0.2−0.3%
produce optimal outcomes for prevention, whereas for reaction the level is 0.3−0.4%. For similar can-
cer cell populations, prevention outcomes are, on average, always beer than reactive ones. is is
because reactive measures are more likely to select for faster growing subclones with higher probabil-
ities of resistance, highlighting the difficulty in countering relapse regardless of therapeutic impact on
cancer cell populations. We discuss these results and other important mitigating factors that need to
be taken into consideration in a comparative understanding of preventive versus reactive treatments.

Keywords: evolution of resistance; chemoprevention; tumor management

Introduction

Mathematical models play an important role in describing and analyzing the complex process of car-
cinogenesis. Natural selection for increases in tumor cell population growth can be represented as
the net effect of increased fission rates and/or decreased apoptosis (e.g., [1]). Relatively rare driver
mutations confer such a net growth advantage, whereas numerically dominant passenger mutations
with initially neutral or mildly deleterious effects [2–4] can initially grow in frequency due to ge-
netic hitchhiking or subsequent selection. Amongst the many passengers in a growing tumor, some
can contribute to chemoresistance, and sufficiently large tumors could contain different clones that,
taken as a group, can resist some, if not most, possible chemotherapies (see [5] for resistance to ima-
tinib). Chemotherapeutic remission followed by relapse suggests that these resistant cells are oen
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present at low frequencies prior to therapy, either due to genetic dri or costs associated with resis-
tance. Resistant phenotypes subsequently increase in frequency during radiotherapy or chemotherapy,
and through competitive release, they may incorporate one or more additional drivers, resulting in ac-
celerated growth compared to the original tumor [6].

Previous mathematical studies have considered alternatives to aempting to minimize or eradicate
clinically diagnosed cancers with maximum tolerated doses (MTD) of chemotherapeutic drugs. is
body of work indicates that MTD is particularly prone to select for chemoresistance (e.g., [7–9], and
what lile empirical work exists supports this basic prediction [10], but see [11] for other disease sys-
tems). Numerous alternatives to the goal of cancer minimization/eradication have been investigated
(e.g., [2,7,12–14]). For example, Komarova and Wodarz [12] considered how the use of one or multiple
drugs could prevent the emergence or curb the growth of chemoresistance. ey showed that the evolu-
tionary rate and associated emergence of a diversity of chemoresistant lineages is a major determinant
in the success or failure of multiple drugs versus a single one. Lorz and coworkers [9] recently mod-
eled the employment of cytotoxic and cytostatic therapies alone or in combination and showed how
combination strategies could be designed to be superior in terms of tumor eradication and managing
resistance than either agent used alone. Foo and Michor [7] evaluated how different dosing schedules
of a single drug could be used to slow the emergence of resistance given toxicity constraints. One of
their main conclusions is that drugs slowing the generation of chemoresistant mutants and subsequent
evolution are more likely to be successful than those only increasing cell death rates.

ese and other computational approaches have yet to consider the use of preventive measures
to reduce cancer-associated morbidity and mortality, whilst controlling resistance. Prevention in-
cludes life-style changes and interventions or therapies in the absence of detectable invasive carcinoma
(e.g., [15–18]), for example reduced cigaree consumption [23] or chemoprevention [24]. In depth con-
sideration of preventive measures and their likely impact on individual risk and epidemiological trends
is important given the virtual certitude that everyone has pre-cancerous lesions, some of which may
transform into invasive carcinoma [19, 20], and concerns as to whether technological advances will
continue to make significant headway in treating clinically detected cancers [21, 22].

Here we model how continuous, constant measures affect tumor progression and the emergence
of resistant lineages. Importantly, we consider cases where the measure may select for the evolution
of resistant phenotypes and cases where no resistance is possible. Our approach is to quantify the
daily extent to which a growing neoplasm must be arrested to either eradicate a cancer cell population
or to delay a potentially lethal cancer. Several authors have previously argued for how constant or
intermient low toxicity therapies either before or aer tumor discovery could be an alternative to
maximum tolerated dose chemotherapies [18,25], but to our knowledge no study has actually quantified
the modalities (treatment start time, dose) for such approaches using empirically derived parameter
estimates [2,26,27]. Below we employ the terms ‘treatment’, ‘measure’, and ‘therapy’ interchangeably,
all indicating intentional measures to arrest cancer cells.

We first derive analytical expressions for the expected total number of cells within a tumor at
any given time. We explore dynamics of both tumor sizes at given times, and times to detection for
given tumor sizes. Specifically, we show that the expected mean tumor size in a population of subjects
can be substantially different from the median, since the former is highly influenced by outliers due
to tumors of extremely large size. We then consider constant daily preventive measures, and show
that treatment outcome is sensitive to initial conditions, particularly for intermediate sized tumors.
Importantly, we provide approximate conditions for tumor control both analytically and corresponding
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impact estimates based on our empirical parameter estimates. Finally, we apply our model to reactive
therapies following tumor discovery and excision, showing, as expected, that higher impacts on the
cancer cell population is required to achieve a level of control comparable to prevention.

Modeling framework

Previous study has evaluated the effects of deterministic and stochastic processes on tumor growth
and the acquisition of chemoresistance ( [12, 27, 28], see review [29]). We first consider both processes
through exact solutions and numerical simulations of master equations, using the mean field approach.
A mean field approach assumes a large initial number of cells [30] and averages any effects of stochas-
ticity, so that an intermediate state of the system is described by a set of ordinary differential equations
(i.e., master equations; [31]). Solutions to these are complex even in the absence of the explicit consid-
eration of both drivers and passengers [33, 34].

We do not explicitly model different pre-cancerous or invasive carcinoma states. Rather, our ap-
proach follows the dynamics of the relative frequencies of subclones, each composed of identical cells
[35,36]. We simulate tumor growth using a discrete time branching process for cell division [27,32,37].
For each numerical experiment, we initiate a tumor of a given size and proportion of cells resistant to
the measure under consideration within a tumor.

Briefly, the model framework is as follows. Each cell in a population is described by two charac-
teristics. e first is its resistance status to the measure, which is either “not resistant” (j = 0) or
“resistant” (j = 1). e second property is the number of accumulated driver mutations (maximumN )
in a given cell line. At each time step cells either divide or die, and when a cell divides, its daughter cell
has a probability u of producing a driver mutation and v of producing a resistant mutation. We assume
no back mutation and that cells do not compete for space or limiting resources (see Discussion).

e fitness function fij , the difference between the birth and death rates of a cell, is defined by the
number of accumulated drivers (i = 0, 1, . . . , N ) and resistance status (j = 0, 1): a sensitive cancerous
cell with a single driver has selective advantage s, and any accumulated driver adds s to fitness, while
resistance is associated with a constant cost c. Exposure to a single treatment affects only non-resistant
cells (j = 0), incurring a loss σ to their fitness. us, the fitness function is:

fij = s(i+ 1)− σ(1− j)− cj .

eassumption of driver additivity is a special case of multiplicative fitness, and both are approximately
equivalent for very small s.

We conducted numerical experiments each with the same initial states, but each using a unique set
of randomly generated numbers of a branching process. For each simulation and each time step, the
number of cells at time (t+1)was sampled from amultinomial distribution of cells at time t (see [27,37]
for details). Other methodological details can be found in Supplementary information.

Table 1 presents baseline parameter values employed in this study.
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Parameter Variable Value Reference
Time step (cell cycle length) T 4 days [27]
Selective advantage s 0.4% [27]
Cost of resistance c 0.1%
Mutation rate to acquire an additional driver u 3.4× 10−5 [27]
Mutation rate to acquire resistance v 10−6 [12]
Maximal number of drivers N 9
Initial cell population n(0) 106 cells
Pre-resistance level κ 0.01% [32]
Number of replicate numerical simulations - 106

(excl. the ones with extinction)
Detection threshold M 109 cells [62]

Table 1. Baseline parameter values.

Results

Preventive Measures

We first study mean-field dynamics by considering the distribution of tumor sizes at different times and
examine effects on themean (see Supplementary information). Numerical experiments were carried out
by assuming that tumors contained 106 cells when treatment commenced and, importantly, had neither
additional drivers nor resistance mutations (i = 0, j = 0). is is obviously an oversimplification, and
we relax these assumptions below and in the next section.

Figure 1A shows the excellent correspondence between numerical experiments and analytical re-
sults for σ on the order of s. A more detailed study of the distribution of tumor sizes reveals that
the mean n(t) diverges considerably from median behavior in the majority of cases, since the former
is strongly influenced by outliers with high tumor cell numbers (see Figure 1B and Supplementary
figure 1).

Figure 2 shows four examples of numerical experiments. An untreated tumor reaches the detection
threshold of 109 cells by c. 18 years on average, and because it is not subject to strong negative selection
(we assume low c), any emerging resistant cell-lines remain at low frequency (0.03% at the time of
detection in the example of Figure 2A). In Figure 2B, low treatment intensity delays tumor growth and
thus time of detection by c. 16 years, while an increase in dose tends to result in tumors dominated by
resistant cells (Figure 2C). Despite being unaffected by treatment, resistant cell populations sometimes
observed to go extinct due to stochasticity (Figure 2D), and this tends to occur more at high treatment
levels, because there are fewer sensitive tumor cells to seed new (mutant) resistant cell populations.

We next considered how therapies affected the distribution of tumor detection times in cases where
the cancer cell population aained the threshold of 109 cells. emagnitude of the selective advantage s
shows that tumor growth is largely driven by its non-resistant part for relatively low impact treatments
σ < 2s (Figure 3). Importantly, the tumor shis from being mainly non-resistant to resistant at σ ≈
2s, which is reflected by the inflection point in the trajectory of the median (indicated by point B in
Figure 3). Notice that detection times are also most variable at σ ≈ 2s. e median changes smoothly
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Figure 1. Mean field dynamics concord with numerical simulations. (A) Effect of treatment
level and observation time on mean tumor size. (Inset) Mean frequency of resistant cells within
tumors corresponding to three of the cases in A. Lines are analytically computed mean-field
trajectories, while dots are numerical simulations (see Supplementary information for details). (B)
Dynamics of mean and median tumor size, and percentiles around the mean (shaded areas), assuming
a fixed constant treatment of σ = 0.6%. Treatments start at t = 0, and the maximal number of
additionally accumulated drivers is 3. See Table 1 for other parameter values.

at high treatment levels (σ > 2s), tending to a horizontal asymptote. is is explained by the fact
that the sensitive part is heavily suppressed at high treatment levels, meaning that the dynamics are
strongly influenced by the actual time point at which the resistance mutation occurs.

We find, counterintuitively, that early-detected tumors are more likely to be resistant under con-
stant treatments than those detected at later times (A,B, C in Figure 3C). is is because tumors under
treatment that by chance obtain resistance early grow faster than those that do not. We find that by the
time of detection, non-resistant tumors usually accumulate up to 4 additional drivers on average, while
resistant tumors have fewer. For larger values of c, an additional non-regularity emerges (segment
DEF in Figure 3B), appearing at σ ≈ 3s and is associated with tumors having a majority of cells with
maximum numbers of drivers. is region is also characterized by a different transition to complete
resistance (compare Supplementary videos S1 and S2 for relatively low and high costs of resistance,
respectively). For example, at point D tumors with a majority of non-resistance have less variable de-
tection times than tumors with a majority of resistant cells (B and corresponding panel C in Figure 3).
Treatment levels along the segment DEF result in tumors that are more likely to be resistant as one
goes from the center to the tails of the distribution of detection times. is differs qualitatively from the
previous case of low cost of resistance, where the tumors are less resistant in the tail of the distribution
of detection times (Figure 3C).

e inflection point at σ ≈ 2s in Figure 3A is due to the accumulation of additional drivers within
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Figure 2. Treatments curb or eliminate tumors. Examples of single patient tumor growth for (A)
no treatment; (B) σ = 0.6%; (C) σ = 1.0%; (D) σ = 2.0%. e shaded area shows the change in total
tumor size, and the hatched area the resistant part of a tumor. Parameter values are as in Table 1.

tumors and associated increases the likelihood that the tumor eventually resists treatment. Since the
initial population consists of 106 cells, in the absence of treatment, a mutant cell with one additional
driver and associated fitness 2s will appear very rapidly. Such a tumor can be suppressed only if
we apply the treatment with σ > 2s. is is supported by additional numerical experiments, where
we vary the maximal number of additional driver mutations N : the inflection point σ≈2s disappears
when N = 0 (Figure 4A). e inflection points at σ = 3s, 4s emerge at treatment levels that effec-
tively suppress sensitive subclones with the most drivers before resistance mutations are obtained (cf
Figures 4A,C–D with Figure 4B and Supplementary Video S3). Specifically, the peaked distributions,
corresponding to beer therapeutic outcomes, tend to disappear when resistant subclones emerge.

e initial cell number n(0) affects both the median and distribution of detection times (Figure 4C).
For large initial tumors, growth is deterministic and exponential. As the initial size is decreased from
106 to 105, stochastic effects are increasingly manifested by greater variability in tumor inhibition
and an inflection point observed at the 95th percentile. Moreover, we find that a tumor is likely to be
eradicated under a range of constant treatments when n(0) = 105 or fewer initial cells; in contrast,
a tumor is virtually certain to persist regardless of treatment level for n(0) = 107 cells or greater
(Supplementary figure 2A,B). In other words, our model indicates that tumors that are c. 1% the size
of most clinically detectable, internal cancers will typically be impossible to eradicate.

e above analysis assumes zero initial resistance within a tumor. Given the mutation rates as-
sumed here, we can expect that many tumors with one million cells will already contain resistant cells
(38). As shown in Figure 4D larger values of existing resistance create a transition from stochastic to
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Figure 3. Treatment level affects both detection time and frequency of resistance. e median
and 90% confidence intervals (shaded areas) of detection times, measured as years beyond the
initiation of the preventive measure. Effects of: (A) the selective advantage and (B) the cost of
resistance. (C) Particular samples of the distribution of detection times for corresponding points,
indicated in A and B. Dashed black line is the mean and the doed line is the median. Boom panel
shows the mean number of additionally accumulated drivers within tumors over periods of 3 months.
Color-code indicates the level of resistance in detected tumors over 3 month intervals (see inset in B).
All cells j = 0 at t = 0. Other parameters are as in Table 1. Note that the detection time is
log-transformed in A and B. e treatment intensity σ in this an all other figures is measured per cell
cycle.
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Figure 4. Sensitivity analysis of several key parameters. e median (thick line) and 90%
confidence intervals (shaded areas with dashed boundaries) for the distribution of detection times.
Parameter values are as in Table 1 except the one being varied: (A) maximal number of additionally
accumulated drivers; (B) presence of resistant cell-lines; (C) initial cell number; (D) level of initial
partial resistance of a tumor. e color code for points indicates the average level of resistance within
tumors, analogous to Figure 3. For simplicity, only the median is indicated in C and D for the baseline
case (blue line).
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deterministic tumor growth, and worse control outcomes (Supplementary figure 2C).

Reactive measures

We numerically investigated measures starting aer tumor discovery and excision, by initiating a pri-
mary tumor with one cell (i = 0, j = 0), thereaer growing to either 109 (early detection) or 1011 (very
late detection). At detection we assume that the primary tumor is removed, leaving a small number of
residual and/or metastatic cells (104 or 106). We study how a measure (usually some form of chemoth-
rerapy or radiation therapy, but could also involve adjuvants aer an initial therapy) aer excision
affects the probability of treatment success, the distribution of times for tumor relapse and resistance
levels. We contrast these resection scenarios with prevention, and assume that the undetected tumor
(i.e., the target of prevention) grows from a single cell and accumulates drivers and resistance muta-
tions. (Recall that in the previous section we assumed that when a measure commenced, preventively
treated tumors had neither additional drivers nor resistance mutations (i = 0, j = 0)). Distributions of
driver mutations for each scenario are presented in Figure 5A and Supplementary figure 3A.

First, we examine the case where 106 cells remain aer resection. As suggested by our studies above
on prevention, onemillion cells have a very high probability of already containing, or rapidly obtaining,
resistant subclones and deterministic effects dominate subsequent dynamics of tumor growth. Com-
paring the median expectations of years from tumor excision to relapse, early discovery (at 109 cells)
yields an additional 3.4 years compared to late discovery (at 1011 cells) at σ = 1.5% (medians for low
vs high detection thresholds are 14.8 and 11.4 years, respectively; Figure 5B). Consider the following
example. 20 years aer resection and commencing treatment, the probability of tumor non-detection
(i.e., the tumor is either eradicated or does not reach the detection threshold) is close to zero, regardless
of treatment intensity (Figure 5D). Contrast this with prevention starting at the same tumor size (106

cells): the detection of potentially life-threatening tumors is substantially later than either of the exci-
sion cases (median 25.5 years for σ = 1.5%), and tumors are managed below the detection threshold
aer 20 years occurs in more than 80% of cases for any σ > 1.0% (Figure 5D).

Now consider a residual population of 1/100th the previous case, that is 104 cells. Here, stochastic
effects play a more important role in dynamics (Supplementary figure 3). Due to initial heterogeneity
(i.e., the co-occurrence of many subclones), when there are 4 and 5 (5 and 6) additional drivers in the
dominant subclones of a residual cancer from an excised tumor of 109 (1011) cells, we observe a double
peak at 4s and 5s (5s and 6s) (cf Supplementary figure 3B). ese peaks in variability of outcomes are
a result of the stochastic nature of the appearance of the first resistance mutations and of additional
driver mutations. Counterintuitively, the secondary detection times are more variable for small initial
tumors compared to larger ones (cf the median 35.8 years, 90% CIs [17.0, 70.5] years vs 22.4, [13.7, 37.0]
years for 109 vs 1011, respectively, with σ = 1.5%). is effect is due to resistance emergence in more
aggressive subclones for larger tumors, such that the tumor relapses more deterministically (i.e., with
less variability and faster on average). e distribution of the mean number of accumulated drivers
within tumors and the probability of tumor non-detection aer 20 years are shown in Supplementary
figure 3C and 3D, respectively.

Importantly, for both thresholds of tumor excision, subsequent treatment levels beyond c. σ = 1.5%
make lile difference in terms of tumor growth (Figure 5D), since virtually all of the sensitive cells post-
excisionwill be arrested or killed by themeasure beyond this level, leaving uncontrollable resistant cells
to grow and repopulate the primary tumor site and/or metastases. Moreover we find that for reactive
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Figure 5. Effects of preventive and reactive measures. erapeutic outcomes when 106 cancer
cells remain aer tumor resection. (A) e distribution of mean sizes of subclones (hatched bars =
before removal and solid bars = post removal). (B) e distribution of detection times (thick line =
median, filled area with dashed boundaries = 90% CIs) for different constant treatment intensities. (C)
e mean number of accumulated drivers within a tumor at the time of detection. (D) e percentage
of cases when a tumor consists of less than 100 resistant cells at 4 years post-resection (solid lines)
and the percentage of cases when tumor sizes are below the detection threshold (dashed-and-doed
lines). Maximal number of additional drivers is 9, other parameter values as the same as in Table 1.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2015. ; https://doi.org/10.1101/014589doi: bioRxiv preprint 

https://doi.org/10.1101/014589
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

measures, data on time to clinical discovery (a proxy for age at discovery) and driver number are less
predictive of therapeutic outcome as treatment intensity increases (Supplementary figure 4–7). We see
in particular that knowledge about the number of drivers at the time of tumor discovery is a beer
predictor of therapeutic outcome than information about the time from tumor initiation to discovery
(cf Supplementary figure 4, 5 and 6, 7).
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Figure 6. Hypothetical process of preventive and reactive measures. A tumor is initiated by
one cell, and grows to size M0 (104 or 106 cells). It is then either treated constantly with intensity σ
(Prevention: A) or continues to grow (σ = σ̂ = 0) to 109 cells (Reaction: B), whereupon it is resected
to M = M0 cells and then treated with intensity σ. A treatment fails should the tumor aain 109 cells
a second time, by 50 years aer the initial lesion of size M0; otherwise the treatment is deemed a
success.

e above results consider prevention and reaction as independent rather than alternative ap-
proaches. us, although prevention delays tumor growth for longer times on average than does re-
section followed by treatment, because prevention is always initiated before resection, the actual time
gained (in terms of age rather than time) by the former versus the laer will be less than the differ-
ences reported in Figure 5B and Supplementary figure 3B. Figure 6 presents a comparative scenario of
prevention versus resection. Prevention may either succeed without recurrence, or should the measure
initially fail and a tumor be clinically detected, the patient has a second chance, whereby the tumor is
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resected and treatment continued (assumed at the same σ), either to a further relapse (failure) or non-
detection and success (Figure 6A). Compare this scenario with the more standard resection followed
by treatment, which either results in relapse (and failure), or detection-free life (Figure 6B).

Figure 7 presents the comparative outcomes. We see that when prevention starts at (or reactive
resection results in) relatively large cancer cell populations (one million cells), prevention is superior
to reaction, should relapse occur (Figure 7A), but only results in small comparative gains in outright
treatment success (Figure 7E). Resected tumors in both the prevention and reaction scenarios contain
abundant resistant cells (Figure 7C). In contrast, when prevention is started very early or the efficiency
of resection is high, such that both events are associated with lower cancer cell populations (10000
cells), both prevention and reaction equally delay cases of relapse (Figure 7B). Because the number of
residual cells following resection is much lower than the first scenario, some resected tumors in the
sample will be initially resistance free (Figure 7D). is, together with the smaller residual population
and fewer subclones in the highest driver classes contribute to improved outcomes should relapse occur
(Figure 7B) and overall treatment success at sufficiently high intensities (Figure 7F).

Discussion

Maximum tolerated dose chemotherapies present numerous challenges, a major one being the selection
of resistant phenotypes, which are possible precursors for relapse [39]. Wemathematically investigated
how the intensity of an anti-cancer measure, modeled as the arresting effect on a cancer cell popula-
tion, resulted in success (i.e., either eradication or long-term tumor control) or failure (tumors growing
beyond a threshold indicative of a life threatening cancer). Our central result is that beyond low im-
pact thresholds, no additional control is achieved, and resistant subclones are selected. We find that
maximal control occurs at surprisingly low daily levels of arrest: approximately 0.2% and 0.3% for pre-
ventive and reactive therapies, respectively. An important result of our study is that prevention almost
invariably results in greater treatment success than comparable preventive control (Figures 5,7).

We considered two contrasting scenarios. In the first, people at high risk of contracting a life
threatening cancer make life-style changes or receive continuous, chemopreventive therapies, and in
the second, more usual situation, a tumor is discovered, removed and the patient treated with specific
cytotoxic or cytostatic chemicals and/or with radiation. We found that, as expected, prevention requires
smaller effects on tumor populations of a given size than do measures post-excision, the laer having
smaller probabilities of complete cure and shorter times to tumor relapse. at resistant cell lines
accumulate drivers through time suggests that second-line measures following relapse are less likely
to be successful in excision scenarios compared to preventive ones. (is is despite residual cancer
cell populations that are likely to manifest higher frequencies of resistance in preventive scenarios
(Figures 7C,D).) is prediction depends on the untested, but reasonable assumptions that multi-driver
resistant cell populations grow faster and are more genomically unstable than early primary tumors,
and that the former thus accumulate a larger number and diversity of resistant mutations. Our results
suggest that adopting slightly lower treatment levels than optimal for delaying tumor growth would
be an important strategy to manage resistance, for example, if the resistant phenotype were refractory
to multiple drugs [40]. Below we discuss challenges to cancer management for both preventive and
reactive scenarios.
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Figure 7. Comparison of preventive and reactive strategies. Tumors are either treated at
M0 = 106 cells (le panels) or M0 = 104 cells (right panels). Prevention (blue lines and shading)
versus reaction (red lines and yellow shading). (A,B) Distribution of times to relapse for treatment
failures. (C,D) Resistant cell populations aer initial failure (red line and yellow shading = population
just aer resection). (E, F) Probability of treatment success, defined as the proportion of cases where
the tumor remains undetected (either extinct or below 109 cells) by 50 years aer the initial lesion.
Parameters as in Table 1. See Figure 5 for details.
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Preventive approaches

Whereas primary prevention is becoming an increasingly significant approach to reducing risk of cer-
tain cancers such as breast cancers [41], chemopreventive therapies more generally are uncommon,
despite empirical support for their effects [15]. Several theoretical and in vitro experimental stud-
ies support the potential for chemoprevention to reduce risks of life threatening cancers. For example,
Silva and colleagues [42] parameterized computational models to show how low doses of verapamil and
2-deoxyglucose could be administered adaptively to promote longer tumor progression times. ese
drugs are thought to increase the costs of resistance and the competitive impacts of sensitive on resis-
tant cancer cell subpopulations. However, some of the most promising results have come from studies
employing non-steroidal anti-inflammatory drugs (NSAIDs), including experiments [43], investigations
of their molecular effects [44, 45], and their use [46]. For example, Ibrahim and coworkers [43] studied
the action of NSAIDs and specifically sodium bicarbonate in reducing prostate tumors in male TRAMP
mice (i.e. an animal model of transgenic adenocarcinoma of the mouse prostate). ey showed that
mice commencing the treatment at 4 weeks of age had significantly smaller tumor masses, and that
more survived to the end of the experiment than either the controls or those mice commencing the
treatment at an older age. Kostadinov and colleagues [44] showed how NSAID use in a sample of peo-
ple with Barre’s esophagus is associated with reductions in somatic genomic abnormalities and their
growth to detectable levels. It is noteworthy that it is not known to what extent reductions in cancer
progression under NSAIDs is due to either cytotoxic or cytostatic effects, or both. Although we do
not explicitly model cytotoxic or cytostatic impacts, therapies curbing net growth rates, but maintain-
ing them at or above zero, could be interpreted as resulting from the action of either cytotoxic and/or
cytostatic processes. In contrast, therapies reducing net growth rates below zero necessarily have a
cytostatic component. Our model, or modifications of it to explicitly include cytotoxic and cytostatic
effects, could be used in future research to make predictions about optimal dose and start times to
achieve acceptable levels of tumor control, or the probability of a given tumor size by a given age.

Decisions whether or not to employ specific chemopreventive therapies carry with them the risk of
a poorer outcome than would have been the case had another available strategy, or no treatment at all,
been adopted [47]. is issue is relevant to situations where alterations in life-style, removal or treat-
ment of pre-cancerous lesions, or medications potentially result in unwanted side effects or potentially
induce new invasive neoplasms (e.g., [48]). Chemopreventive management prior to clinical detection
would be most appropriate for individuals with genetic predispositions, familial histories, elevated lev-
els of specific biomarkers, or risk-associated behaviors or life-styles [15,17,18,49,50]. Importantly, our
approach presupposes that the danger a nascent, growing tumor presents is proportional to its size and
(implicitly, all else being equal) a person’s age. Due caution is necessary in applying our results, since
studies have argued that metastatic potential rather than tumor size may be a beer predictor of future
survival [51–53].

Reactive approaches

Over the past decade, several alternative approaches to MTD have been proposed, where the objective
is to manage rather than eradicate tumors (e.g., [8,12–14,54,55]). Tumor management aempts to limit
cancer growth, metastasis, and reduce the probability of obtaining resistance mutations through micro-
environmental modification or through competition with non-resistant cancer cell populations or with
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healthy cells. ese approaches usually involve clinically diagnosed cancers: either inoperable tumors
or residual cancers aer tumor excision. In the former situation tumors are typically large enough in
size to contain numerous resistance mutations. In many, if not most, cases these neoplasms will have
metastasized, meaning greater variability both in terms of phenotypes and hence potential resistance
to chemotherapies, and in penetrance of therapeutic molecules to targeted tumor cells [56, 57]. e
laer situation involves smaller, residual cancer cell populations, but composed of high frequencies of
resistant variants or dormant cells [56]. According to our results, both scenarios are likely to involve
populations with large numbers of accumulated driver mutations (or fewer driver mutations, but each
with larger selective effect), which ostensibly contribute to the speed of relapse. us, management of
clinically detected tumors need not only limit the proliferation and spread of refractory subpopulations
(Figures 3–4), but should also aim to control the growth of multi-driver subclones (Figure 4B).

We suggest that the frequency distribution of driver mutations and the distribution of resistant
subclones within a heterogeneous cancer cell population could be used to instruct decisions of the
time course of treatment levels, with the aims of curbing tumor growth, metastasis, and resistance. We
found that tumors typically achieve several additional driver mutations by the time they reach detection
(Figure 5A,C; Supplementary figure 3A,C), which approximates certain estimates [58], but falls short
of others [59].

In conclusion, our results indicate that the single most important variable in determining therapeu-
tic outcome is the size of the initial cancer cell population (i.e. when prevention commences and/or
following resection). is highlights the importance of biomarkers as accurate proxies of otherwise un-
detectable malignancies [60], and the accurate assessment of micro-metastases [61]. We suggest that
if order-of-magnitude estimates are possible, then low dose, continuous, constant approaches could be
optimized. According to our model such options will always be superior to more aggressive chemother-
apies.
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Supplementary figure 1. Tradeoff between growth and resistance under different treatment
regimes. (A) Analytically-derived times for a tumor to reach 109 cells (see equation (S11)). (B) and
(C) Sample distributions for corresponding points B and C , shown in plot A. e boom panel shows
the mean number of additionally accumulated drivers for all detected tumors over intervals of 3
months. e color-code indicates the level of resistance in detected tumors over these intervals.
Parameters otherwise as in Table 1.
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Supplementary figure 2. Effects of initial neoplasm size. (A,B) and resistance level (C) on
preventive measure success. (B) e median (black line) and 90% confidence intervals (hatched area)
for the distribution of extinction times. Red dashed line indicates the probability of tumor extinction,
depending on initial cell number. Treatment level is 1.0% per cell cycle, and we assume no
pre-resistance. Other parameters as in Table 1.
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Supplementary figure 3. Preventive versus reactive measures. erapeutic outcomes of
prevention starting at 104 cancer cells, versus resection leaving 104 cells. (A) e distribution of mean
sizes of subclones for different constant treatment intensities (hatched bars = before removal and solid
bars = post removal). (B) e distribution of detection times (thick lines = medians, shaded areas with
dashed boundaries = 90% CIs). (C) e mean number of accumulated drivers within a tumor at the
time of detection. (D) e percentage of cases where the tumor consists of less than 100 resistant cells
at 4 years aer treatment commences (solid lines), and the percentage of cases where tumor size is
below the detection threshold 20 years aer the measure begins (dashed-and-doed lines). Maximal
number of additional drivers is 9, other parameter values as in Table 1.
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Supplementary figure 4. Time to first discovery as a predictor of treatment success. Time to
tumor relapse following resection as function of the time it takes for the initial cancer cell to aain
109 cells (i.e., the point at which the tumor is discovered, resected and treatment begins). Each dot
represents a numerical simulation from the yellow distribution in Figure 5B. Four different treatment
levels are considered. Black solid line is a simple linear regression and grey area with dashed
boundaries indicates extrapolation of high and low bounds accounting for 95% of observations
(prediction interval). Maximal number of additional drivers is 9. Other parameter values as in Table 1.
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Supplementary figure 5. Time to tumor discovery is predictive of therapeutic outcome for
low treatment levels. e slopes of regressions from numerical experiments for different treatment
levels of time to tumor relapse following resection as function of the time it takes for the initial cancer
cell to aain 109 cells. See Supplementary figure 4 for details.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2015. ; https://doi.org/10.1101/014589doi: bioRxiv preprint 

https://doi.org/10.1101/014589
http://creativecommons.org/licenses/by-nc-nd/4.0/


26

Supplementary figure 6. Mean number of drivers in resected tumor as a predictor of
treatment success. See Supplementary figure 4 for other details.
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Supplementary figure 7. Time to tumor discovery is predictive of therapeutic outcome for
low treatment levels. e slopes of regressions from numerical experiments for different treatment
levels of time to tumor relapse following resection as function of the mean number of drivers in a
resected tumor. See Supplementary figure 4 for details.
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Supplementary videos

Supplementary videos 1–3. Please visit: http://tiny.cc/AkhmHoch15VideoS123.
Treatment level affects both detection time and frequency of resistance. (A) e median (thick
line) and 90% confidence intervals (shaded areas with dashed boundaries) for the distribution of detec-
tion times. Parameter values are as in Table 1 except the one being varied (see additional information
before each video). (B) Particular samples of the distribution of detection times and distribution of the
mean number of accumulated drivers. Color-code indicates the level of resistance in detected tumors
over 3 month intervals.

Supplementary videos 4, 5. Please visit: http://tiny.cc/AkhmHoch15VideoS45.
Comparison of preventive and reactive strategies. (A)emedian (thick line) and 90% confidence
intervals (shaded areas with dashed boundaries) for the distribution of detection times. Parameter
values are as in Table 1. (B,C) Particular samples of the distribution of detection times for preventive
and reactive treatments respectively. e rectangle on the top of B or on the boom of C shows
the 5th and 95th percentiles, the blue circle indicates the median, while the red line - the mean of the
distribution of detection times. Color-code indicates the mean number of additionally accumulated
drivers for a period of 1 year.
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Supplementary information

Mean-field approach

We use the mean-field approach, see e.g. [30], which approximates the behavior of a system consisting
of many cells, so that the effects of stochasticity are averaged and an intermediate state is described by
a set of ordinary differential equations.

Master equations

Wewrite master equations to track the probabilityPij(t) that a randomly chosen cell from a population
of tumor cells is of type (i, j) at time t.

e temporal dynamics of probabilities Pij(t), i = 0, 1, . . . , N , whereN is the maximal number of
additionally acquired drivers and j = 0, 1, are described by

dPij(t)

dt
= Pij + uP(u)

ij + vP(v)
ij .

Here, the right-hand side is a superposition of probabilistic in- and out-flows from different mutational
states to the current one (i, j). e function Pij describes the growth of subclone (i, j) and is propor-
tional to the probability Pij(t), multiplied by the difference between fitness fij and its average value

over the whole population f̄(t) =
∑

i,j fijPij(t). Functions P(u)
ij and P(v)

ij represent the probabilistic

flows of mutations. For P(u)
ij , a driver is added from class (i − 1, j) to (i, j) in proportion to the prob-

ability Pi−1,j(t), the probability of cell birth bi−1,j , and the probability of a zero locus being chosen
from N total loci consisting of (N − (i− 1)) other zero loci. A similar approach is used to define the
outflow term for the probability from class (i, j) to (i + 1, j). e second term P(v)

ij is the probability
of mutating to therapeutic resistance (i, j = 0) to (i, j = 1), and is proportional to Pi0(t) and birth
rate bi0. Finally, all terms are summed, taking into account the initial conditions: P00(0) = 1 − κ,
P01(0) = κ and Pij = 0 for any other i or j.

e above elements lead to the following system of ordinary differential equations (ODEs):

dPij(t)

dt
= (fij − f̄(t))Pij(t) + u

[(
1− i− 1

N

)1 + fi−1,j

2
Pi−1,j(t)−

(
1− i

N

)1 + fij
2

Pij(t)

]
− v(1− 2j)

1 + fi0
2

Pi0(t) , (S1)

where some probabilities Pij(t) could, theoretically, take on negative values, e.g. P−1,j(t), when i = 0,
in which case, they are set to zero.

A simple transformation

pij(0) = Pij(0) pij(t) = Pij(t) exp
(∫ t

0
f̄(r) dr

)
,

allows omiing the term f̄(t) from Eq. (S1) and to linearize the laer with respect to the new “trans-
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formed” probabilities pij(t). is gives

dpij(t)
dt

= fijpij(t) + u

[(
1− i− 1

N

)1 + fi−1,j

2
pi−1,j(t)−

(
1− i

N

)1 + fij
2

pij(t)

]
+ v

1 + fi0
2

(jpi,j−1(t) + (j − 1)pij(t)) , (S2)

where, for convenience, we write (jpi,j−1(t) + (j − 1)pij(t)) instead of (1− 2j)pi0(t) (j = 0, 1).

Probability generating function approach

With the master equations (S2), we apply the probability generating function (p.g.f.) method (31,66) to
transform the system of (2N +1) ODEs to a Hamilton-Jacobi (HJ) equation, that is, a first order partial
differential equation.

We define the p.g.f. as the polynomial over all modified probabilities pij(t) of the form

G(ξ, η, t) =

N∑
i=0

1∑
j=0

ξiηjpij(t) , (S3)

where ξ and η are variables that can be viewed as the momentum of an auxiliary Hamiltonian system
governing the leading-order stochastic dynamics of the system [67]. Notice that the functionG(ξ, η, t)
is linear with respect to η.

Suppose that the functionG(ξ, η, t) is defined, one can then obtain all characteristics of the stochas-
tic process such as the average tumor size n(t) and the average frequency nres(t)/n(t) of resistant cells
within a tumor. e former quantity is

dn(t)
dt

= n(t)f̄(t) .

Using the normalization condition for the probability:
∑

i,j Pij(t) = 1, we obtain

G(ξ = 1, η = 1, t) = exp
(∫ t

0
f̄(r)dr

)
,

and then

n(t) = n(0) exp
(∫ t

0
f̄(r)dr

)
= n(0)G(ξ = 1, η = 1, t) , (S4)

where the initial tumor size n(0) is sufficiently large. e frequency of resistant cells is defined as
follows

nres(t)

n(t)
=

N∑
i=0

Pi1(t) =
N∑
i=0

pi1(t) exp
(∫ t

0
f̄(r)dr

)
=

∂G/∂η

G(ξ, η, t)

∣∣∣∣
ξ=1,η=1

. (S5)

Initial conditions yield p00(0) = 1 − κ, p01(0) = κ and pij(0) = 0 for any other i and j, so that
G(ξ, η, t = 0) = 1− κ+ κη.
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To obtain the HJ equation related to the p.g.f. G(ξ, η, t), we multiply (S2) on ξiηj and sum up all
equations for i = 0, 1, . . . , N and j = 0, 1. Aer some algebra, we obtain

∂G

∂t
=

[
s
(
ξ
∂

∂ξ
+ 1
)
− σ

(
1− η

∂

∂η

)
− cη

∂

∂η
+

u(ξ − 1)

2

(
1− ξ

N

∂

∂ξ

)
+

v(η − 1)

2

(
1− η

∂

∂η

)]
G , (S6)

where only terms of order greater than or equal to u, v are retained, meaning that terms composed of
the products s, c and u, v are omied.

Equation (S6) is solved by the method of characteristics such that the HJ equation is transformed
into a system of ordinary differential equations (i.e., the system of characteristics, see e.g. [68]).

Time-varied treatment schedule

We find the characteristics for the variables ξ and η using (S6):

dξ(t)
dt

= −sξ(t) +
uξ(t)(ξ(t)− 1)

2N
,

dη(t)
dt

= (c− σ(t))η(t) +
vη(t)(η(t)− 1)

2
, (S7)

where σ(t) is a given function of time.
e p.g.f. G(ξ, η, t) changes along the characteristic (S7) according to the following ODE

dG(t)

dt
=

(
s− σ +

u(ξ(t)− 1)

2
+

v(η(t)− 1)

2

)
G(t) ,

which is straightforward to integrate. Indeed, if we use (S7), this yields: d lnG = (s(N + 1)− c)dt+
Nd ln ξ + d ln η. us,

G(ξ, η, t) exp[−(s(N + 1)− c)t−N ln ξ − ln η] = const . (S8)

Recall that the quantity on the le hand side remains constant only along the characteristic curve (S7).
To obtain G(ξ = 1, η = 1, t), we need to solve (S7) subject to ξ(t) = η(t) = 1 and find ξ(0) and

η(0). en, given the initial conditionG(ξ(0), η(0), 0) = 1−κ+κη(0), κ is a level of resistance within
a tumor (κ ∈ [0, 1]), and we can finally define G(ξ, η, t) using (S8).

Finally, we use (S4) to derive the dynamics of n(t). To obtain the mean frequency of resistant cells
within a tumor, we first write ∂G/∂η, using (S8) with the right hand side implicitly dependent on η.
(Note that time t is measured in cell cycles, which are assumed to be of 4 days on average. To derive all
necessary equations with respect to the actual time, we need to divide t by the length of the cell-cycle
T and substitute it in the equations.)

Constant treatment

We study the case for constant σ. Notice that this includes the case of no treatment (σ = 0).
First, we find the characteristics for the variables ξ and η. Namely, solution of (S7) gives

ξ(0) =
s+ u/(2N)(

s+u/(2N)
ξ(t) − u

2N

)
e−(s+u/(2N))t + u

2N

, η(0) =
σ − c+ v/2(

σ−c+v/2
η(t) − v

2

)
e−(σ−c+v/2)t + v

2

. (S9)
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e subsequent substitution of (S9) into (S8) leads to

G(ξ, η, t) = G(ξ(0), η(0), 0) exp

[(
s− σ − u+ v

2

)
t+N ln

(
1 +

ξu

2N

e(s+u/(2N))t − 1

s+ u/(2N)

)
+ ln

(
1 +

ηv

2

e(σ−c+v/2)t − 1

σ − c+ v/2

)]
.

Taking into account u, v ≪ s, c and assuming v ≪ σ−c, we simplify further and write its approximate
form

G(ξ, η, t) ∼=

(
1− κ+

κηe(σ−c)t

1 + ηv
2

e(σ−c)t−1
σ−c

)
×

exp

[
(s− σ)t+N ln

(
1 +

ξu

2N

est − 1

s

)
+ ln

(
1 +

ηv

2

e(σ−c)t − 1

σ − c

)]
,

which can be also wrien in the form

G(ξ, η, t) ∼=

(
(1− κ)

(
1 +

ηv

2

e(σ−c)t − 1

σ − c

)
+ κηe(σ−c)t

)
×

exp
[
(s− σ)t+N ln

(
1 +

ξu

2N

est − 1

s

)]
. (S10)

As expected (S10) is linear with respect to η.
us, we derive an analytical expression for the dynamics n(t). Namely, we use (S4), (S10) and

substitute ξ = η = 1, to obtain

n(t) =

(
(1− κ)

(
1 +

v

2

e(σ−c)t − 1

σ − c

)
+ κηe(σ−c)t

)
×

exp
[
(s− σ)t+N ln

(
1 +

u

2N

est − 1

s

)]
. (S11)

Equation (S11) is simplified for two limiting cases. In the early stages of tumor growth, the value
n(t) changes according to a hyper-exponential law

n(t) =

(
(1− κ)

(
1 +

v

2

e(σ−c)t − 1

σ − c

)
+ κηe(σ−c)t

)
exp
(
(s− σ)t+

u

2

est − 1

s

)
,

while at later stages the most aggressive subclone persists, being sensitive if σ < c (n(t) ∝ es(N+1)t)
and resistant otherwise (n(t) ∝ e(s(N+1)−c)t).

To compute the frequency of resistant cells within a tumor (S5), we derive ∂G/∂η using (S10):

∂G

∂η
=

(
(1− κ)

v

2

e(σ−c)t − 1

σ − c
+ κe(σ−c)t

)
exp
[
(s− σ)t+N ln

(
1 +

ξu

2N

est − 1

s

)]
, (S12)
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so that
nres(t)

n(t)
=

(1− κ)v2
e(σ−c)t−1

σ−c + κe(σ−c)t

(1− κ)
(
1 + v

2
e(σ−c)t−1

σ−c

)
+ κe(σ−c)t

.

Distribution of subclones within an exponentially growing tumor

e p.g.f. G(ξ, η, t) is used to derive expressions for all Pij(t), which are the probabilities of selecting
a cell of type (i, j) from a tumor at time moment t. Namely, we need to differentiate the p.g.f. with
respect to ξ and η, so that

Pij(t) =
1

i!G(ξ = 1, η = 1, t)

∂i+jG(ξ = 0, η = 0, t)

∂ξi∂ηj
,

where i = 0, 1, . . . , N and j = 0, 1. us, we write

P00(t) =
G(0, 0, t)

G(1, 1, t)
=

1− κ

(1− κ)
(
1 + v

2
e(σ−c)t−1

σ−c

)
+ κe(σ−c)t

(
1 +

u

2N

est − 1

s

)−N

,

P01(t) =
∂G(0, 0, t)/∂η

G(1, 1, t)
=

(1− κ)v2
e(σ−c)t−1

σ−c + κe(σ−c)t

(1− κ)
(
1 + v

2
e(σ−c)t−1

σ−c

)
+ κe(σ−c)t

(
1 +

u

2N

est − 1

s

)−N

,

then

P10(t) =
∂G(0, 0, t)/∂ξ

G(1, 1, t)
=

1− κ

(1− κ)
(
1 + v

2
e(σ−c)t−1

σ−c

)
+ κe(σ−c)t

u

2

est − 1

/
s

(
1 +

u

2N

est − 1

s

)−N

,

P11(t) =
1

G(1, 1, t)

∂2G(0, 0, t)

∂ξ∂η

=
(1− κ)v2

e(σ−c)t−1
σ−c + κe(σ−c)t

(1− κ)
(
1 + v

2
e(σ−c)t−1

σ−c

)
+ κe(σ−c)t

u

2

est − 1

s

(
1 +

u

2N

est − 1

s

)−N

.

e general formula is wrien as follows

Pi0(t) =
1

i!G(1, 1, t)

∂iG(0, 0, t)

∂ξi
=

1− κ

(1− κ)
(
1 + v

2
e(σ−c)t−1

σ−c

)
+ κe(σ−c)t

Pi∗(t) ,

Pi1(t) =
1

i!G(1, 1, t)

∂i+1G(0, 0, t)

∂ξi∂η
=

(1− κ)v2
e(σ−c)t−1

σ−c + κe(σ−c)t

(1− κ)
(
1 + v

2
e(σ−c)t−1

σ−c

)
+ κe(σ−c)t

Pi∗(t) ,

where i = 0, 1, . . . , N and the function

Pi∗(t) =

(
N

i

)(
u

2N

est − 1

s

)i(
1 +

u

2N

est − 1

s

)−N

(S13)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2015. ; https://doi.org/10.1101/014589doi: bioRxiv preprint 

https://doi.org/10.1101/014589
http://creativecommons.org/licenses/by-nc-nd/4.0/


34

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30

time after initial lesion (years)

fr
eq

ue
nc

y

Driver #

0
1

2
3

4
5

6

Supplementary figure 8. Maximal tumor heterogeneity in terms of driver subclones occurs
at intermediate times aer initial lesion.

defines the probability to pick a cell with i drivers independently of resistant status, Pi∗(t) ≜ Pi0(t) +
Pi1(t),

(
N
i

)
denotes a binomial coefficient, equal N !

i!(N−i)! .
e distribution Pi∗(t) for a particular case of N = 6 is shown in Supplementary figure 8.
We now derive themean time periodwhen a given subclonewith i additionally accumulated drivers

dominates within a tumor.
Defining the time moments t = ti for which Pi−1,∗(ti) = Pi∗(ti) (i = 0, 1, 2, . . . , N ) gives

ti =
1

s
ln
(
1 +

2sNi

u(N − i+ 1)

)
≈ 1

s
ln

2sNi

u(N − i+ 1)
,

where we assume u ≪ s.
e time period when the subclone with i drivers prevails in a cell population is defined by the

following expression

∆ti = ti+1 − ti =
1

s

[
ln
(
1 +

2sN(i+ 1)

u(N − i)

)
− ln

(
1 +

2sNi

u(N − i+ 1)

)]
≈ 1

s
ln

(N − i+ 1)(i+ 1)

(N − i)i
,

where i ̸= 0. For i = 0, we have

∆t0 =
1

s
ln
(
1 +

2s

u

)
≈ 1

s
ln

2s

u
.

e laer formula has been previously reported (see Eq. (S7) in reference [27]).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2015. ; https://doi.org/10.1101/014589doi: bioRxiv preprint 

https://doi.org/10.1101/014589
http://creativecommons.org/licenses/by-nc-nd/4.0/

