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Abstract

This article discusses problems with and solutions to performing valid permutation

tests for quantitative trait loci in the presence of polygenic effects. Although permu-

tation testing is a popular approach for determining statistical significance of a test

statistic with an unknown distribution–for instance, the maximum of multiple corre-

lated statistics or some omnibus test statistic for a gene, gene-set or pathway–naive

application of permutations may result in an invalid test. The risk of performing an

invalid permutation test is particularly acute in complex trait mapping where poly-

genicity may combine with a structured population resulting from the presence of fam-

ilies, cryptic relatedness, admixture or population stratification. I give both analytical

derivations and a conceptual understanding of why typical permutation procedures fail

and suggest an alternative permutation based algorithm, MVNpermute, that succeeds.

In particular, I examine the case where a linear mixed model is used to analyze a quan-

titative trait and show that both phenotype and genotype permutations may result in

an invalid permutation test. I provide a formula that predicts the amount of inflation

of the type 1 error rate depending on the degree of misspecification of the covariance

structure of the polygenic effect and the heritability of the trait. I validate this formula

by doing simulations, showing that the permutation distribution matches the theoreti-

cal expectation, and that my suggested permutation based test obtains the correct null

distribution. Finally, I discuss situations where naive permutations of the phenotype

or genotype are valid and the applicability of the results to other test statistics.

Keywords: Permutation test, Polygenic effect, Family studies, Population structure,

Type I error rate, QTL
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Introduction

In the search for genetic determinants of complex traits, we may be faced with the difficulty

of determining the statistical significance of a given test statistic which does not necessarily

follow any known probability distribution. This arises when correcting for the multiple

comparisons of many correlated tests—e.g. to determine genomewide significance [Abney

et al., 2002; Cheng and Palmer, 2013]—or in methods where multiple variants (e.g. rare

variants) are aggregated into an omnibus test. Methods that use weights that vary depending

on the phenotype data, for instance, typically do not have a known asymptotic distribution

and require resampling methods to estimate significance [Sha et al., 2012; Fang et al., 2012].

Even when an asymptotic distribution is known, realities of genetic data, such as population

structure or linkage disequilibrium, may result in an inflated false positive rate [Tintle et al.,

2011; Epstein et al., 2012; Liu et al., 2013]. Family based methods, though often robust to

population stratification, also can have false positive rates above the nominal level [Kazma

and Bailey, 2011; Greco et al., 2014]. Permutation tests can be a solution in such cases

[Basu and Pan, 2011; Lin and Tang, 2011], but rely on the assumption that the subjects

are independent. This assumption is violated, for instance, in the presence of population

stratification [Epstein et al., 2012; Liu et al., 2013] or familial relatedness [e.g. Abney et al.,

2002; Bourgain and Genin, 2005; Kazma and Bailey, 2011] preventing the valid application

of a permutation test.

At the heart of the invalidity of a permutation test in the presence of population stratifi-

cation or relatedness is the presence of polygenic effects and its confounding with genotypes.

As I discuss below, this may result in a lack of exchangeability between subjects, a funda-

mental requirement of a permutation test. It is worth noting that relatedness is not always a

barrier to a valid permutation test. For instance, in some model organism breeding designs,

exchangeability exists, allowing a valid permutation test [Churchill and Doerge, 1994], and

more complicated breeding designs can also, with careful thought, lead to valid permutation

tests [Churchill and Doerge, 2008; Peirce et al., 2008; Cheng et al., 2010; Cheng and Palmer,
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2013]. Similarly, given specific restrictions on the types of relatedness that is present among

the subjects (e.g. only siblings), it may be possible to formulate a valid permutation test[e.g.

Allison et al., 1999; Fang et al., 2012]. However, many forms of population structure, in-

cluding familial relatedness, can cause confounding that can invalidate a permutation test.

Although in a simple population stratification scenario—where a limited number of principal

components can adjust for the background genetic confounding—it is possible to formulate

a valid permutation test [Epstein et al., 2012], in more complicated scenarios, as often exist

in human studies—where close or distant relatedness, cryptic or otherwise, may possibly

combine with other forms of population structure—a clear statistical framework to help re-

searchers determine the applicability of a permutation test, or how precisely to do such a

test, has been lacking.

Here, I consider possible permutation approaches for quantitative traits where arbitrary

forms of population structure may exist in the sample. The presence of both population

structure and polygenicity leads me to using the linear mixed model (LMM) for multivariate

normal data as a foundation on which to build, as this is a standard model used in the

genetic analysis of quantitative traits. Although the approaches used here may be applicable

to non-normal types of data, I do not consider this issue. Certainly, permutation tests in

LMMs have been considered in the past (e.g. [Anderson and Robinson, 2001; Anderson and

Ter Braak, 2003]), however these studies consider the case where either the “treatment”

(e.g. genotypes) is assigned randomly by the researcher or the stochastic components of

the model (i.e. the random effect plus the error terms) are independent. Neither of these

situations generally holds true in the genetic analysis of a complex trait, where the researcher

is not at liberty to assign genotypes at random and the polygenic effect generally results in

non-independence of the random effect. In addition to defining the LMM, I show how

misspecification of the covariance matrix leads to an altered asymptotic distribution of the

standard test statistic, and how different permutation approaches, can be modeled through

different forms of misspecification of the covariance matrix. I discuss this issue further
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below. Finally, I also discuss what precisely should be permuted, phenotypes, residuals, or

genotypes, and provide simulation results supporting the analytical findings.

Statistical Model

Here I define the statistical model used in the remainder of this article and the resultant

likelihood. Given this model, I propose a standard test statistic which, under the right set

of conditions, asymptotically follows a central chi-squared distribution with one degree of

freedom (χ2
1). Although it is not really necessary to use a permutation test when the distri-

bution of the statistic is known, its analytical tractability allows for insights that also apply

to more general cases. Given the model, I then define exchangeability and the conditions

that are needed to ensure that exchangeability holds.

Given n subjects with phenotype data y = (y1, . . . , yn)t, where the superscript ()t indi-

cates transpose, the n× p covariate data matrix X, which includes the intercept term, and

the predictor of interest (e.g. genotypes) g = (g1, . . . , gn)t, the LMM is

y = Xβ + gγ + e, (1)

where β is the vector of parameters for the covariates, γ is the scalar parameter for the

predictor of interest, and e ∼ MVN(0,Σσ2) is an error term. The error term encompasses

both a random effect and residual error e∗, e = u + e∗. The residual errors are distributed

as independent normals with variance σ2
e . In the genetic context the random effect u will

typically be the polygenic effect, and if we further assume that it is the sum of a large num-

ber of independent additive genetic effects in an outbred sample, the central limit theorem

dictates that u is multivariate normally distributed with correlation matrix K [Lange, 1978]

with the result extended to the case of inbreeding and dominance variance in Abney et al.

[2000]. Although I do not assume a particular structure for Σ, a common parameterization

in a genetic LMM is Σ = Kh2 +I(1−h2), where K is an additive genetic relationship matrix
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(GRM), I is the identity matrix and h2 is the narrow-sense heritability. The matrix K may

be estimated from available genotype data or determined from a pedigree, in which case it

is equal to 2Φ, where Φ is the matrix of kinship coefficients. The log likelihood given this

model is

l = −n
2

log 2π − 1

2
log |Σ| − n

2
log σ2 − 1

2σ2
(y −Xβ − gγ)tΣ−1(y −Xβ − gγ). (2)

The quantity of interest is the parameter γ, and under the null hypothesis γ = 0. To test

against the alternative γ 6= 0, the statistic T = γ̂2

Var(γ̂)
where γ̂ is the best linear unbiased es-

timator (BLUE) (equivalently the maximum likelihood estimator) of γ, has a χ2
1 distribution

under the null hypothesis when σ2 is known. In practice, we use

T̂ =
γ̂

V̂ar(γ̂)
, (3)

where the estimated variance V̂ar(γ̂) uses an estimator S2 in place of the true variance σ2.

In an LMM approach S2 = 1
n−p−1

(y − ŷ)tΣ−1(y − ŷ) and is an unbiased estimator of σ2.

This results in T̂ being asymptotically χ2
1 distributed. However, in a genetic analysis Σ

is not always known, leading to the question of what the distribution of T̂ is when Σ is

misspecified.

In genetic analyses of complex traits, using an LMM with a misspecified covariance matrix

is likely a common occurrence. Perhaps the simplest example of this is when unrelated

individuals are unknowingly sampled from two populations, with different allele frequencies

at the tested marker, but are assumed to be from a single population. If the trait is associated

with population membership, we see an inflated false positive rate. This sort of confounding

is easily corrected by including either a covariate with an indicator of population membership

or a block structured correlation matrix with elements equal to 1 when a pair is from the

same population or 0 when they are not. At the other end of the population structure scale,

misspecification may occur in family studies with a known pedigree when the pedigree is
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wrong or incomplete. In fact, even if the pedigree is known without error, misspecification

exists when the kinship matrix (as computed from the pedigree) is used as the additive GRM

because under a polygenic model the kinship coefficients give only the expected identity by

descent (IBD) sharing across the genome whereas the correlation in phenotype values will be

the result of the realized IBD sharing. In spite of this last form of misfit, the successful use

of the kinship coefficient in the GRM over many decades of pedigree studies in both humans

and animals suggests a degree of robustness to the use of the expected covariance in place

of the realized covariance.

In order to quantify the effects of covariance matrix misspecification on hypothesis testing

in the LMM, in the Appendix I derive the distribution of the test statistic T̂ in the case where

the incorrect matrix Ψ is used instead of Σ. I find that T̂ is asymptotically distributed as a

scaled chi-squared distribution, T̂
η
∼ χ2

1, where η is a constant. In the case of no covariates

and assuming that both y and g have been centered by their mean values, η takes the form

η =
n gtΨ−1ΣΨ−1g

gtΨ−1g Tr(ΣΨ−1)
.

The scalar η is, in essence, the genomic control [Devlin and Roeder, 1999; Bacanu et al.,

2002] parameter, and its general analytical form in the asymptotic limit of very large sample

sizes is in the Appendix. In any real data set we do not know Σ and, hence, cannot know η,

but having an analytical form will allow us to determine the degree of miscalibration in T̂

for hypothesized circumstances, as we will see below.

Confounding, Exchangeability and Permutations

If we expect to perform a permutation test given purely observational data, we should also

be concerned with the possibility of confounding. Consider the linear model y = µ+ x1β1 +

x2β2 + e, where e is an independent error and we wish to test the null hypothesis β2 = 0. In

a designed experiment we can ensure that x2 has no confounders by random assignment of
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its values to each subject, and we can safely permute the labels of x2 to obtain a valid test.

With purely observational data, however, x2 may be confounded with x1 (due to unknown

structure in the data), and permutations of the x2 subject labels would result in an invalid

test. Note that joint permutation of x1 and x2 would be valid, but this strategy fails when x1

is not observed. This situation arises in genetic studies when there is population structure

in the sample. In this case x2 would be genotype and x1 is a predictor that also depends on

the population structure, for example an indicator of population membership (there would

be P − 1 such indicators for P populations in the sample) with each population having a

distinct effect on the outcome y. If genotype x2 is dependent on the population structure,

we would not want to naively permute all the subject labels of x2, as this would give an

incorrect type 1 error rate. In this case, even if population membership is not recorded, it

can often be inferred if there is sufficient genetic data.

Less well appreciated is that, given structured data realized in a covariance matrix, con-

founding can occur even when the predictor x2 is independent of the unobserved structured-

population predictor x1. Note that this independence is conditional given the covariance

matrices (representing population structure) for x1 and x2 in the sense that they are vectors

drawn independently from two distinct multivariate distributions each with a given covari-

ance matrix. With observational data, x2 and x1 are effectively random vectors, and if x2

and x1 have the same, or broadly similar, covariance matrices the outcome y will be con-

founded with x2, even though x2 and x1 are (conditionally) independent. We can gain an

intuitive understanding of this by considering an example where the subjects are connected

by some pedigree with x2 being their genotypes at a marker that has no genetic effect and is

not in linkage disequilibrium with any causal locus, and with x1 representing the polygenic

effect. The genotype and polygenic effect necessarily have the same covariance matrix K

induced by the pedigree. The polygenic effect is not observed, so consider the covariance Σ

it induces on the trait y. The matrix Σ is similar to K, depending on the heritability. Thus,

even though x2 and y are independent, similar genotype values will tend to match-up with
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similar trait values simply because these random variables have a similar correlation struc-

ture. That is, consider some subjects who happen to have high genotype correlation. These

subjects will tend to have, for instance, genotype values equal to 2. They will also have high

correlation in the trait—assuming a high heritability—and, for instance, will all have low

trait values. The net effect is that the 2 genotype will appear to be associated with low trait

values, even though these random variables were generated independently. Note that this

argument does not depend on whether K is the result of population structure resulting from

a pedigree or the block diagonal form, with constant off diagonals in each block, that results

from assuming a population specific genetic effect. Every genetic trait will depend on geno-

types with some population structure covariance K, resulting in confounding when testing

a genetic marker that also has covariance K, thus altering the type 1 error away from the

expected amount unless the confounding is corrected for in the test [Newman et al., 2001].

Conversely, if the elements of either x2 or x1 are independent—hence, either one has the

identity as the covariance matrix—there will be no confounding of x2 with y. For instance,

if the x2 genotypes were independent binomials, there would neither be inflation of the test

statistic, nor any problems with permuting the values of x2. Unfortunately, with observa-

tional data verifying the absence of confounding, and the permissibility of a permutation

test, may not be possible.

Developing a permutation test for observational data requires assessing whether the per-

muted quantities are exchangeable. Quantities are exchangeable if, upon permutation of

the labels of those quantities, their distribution function is unchanged [Bernardo and Smith,

2000, Sec. 4.2]. In particular, because we want to know the distribution of the test statistic

under the null hypothesis, we require exchangeability when γ = 0. In an LMM the natural

quantities to permute are the residuals e = y − Xβ. In the Appendix I show that the

residuals are exchangeable only in the special case where Σii = a and Σij = b, i 6= j for some

scalar constants a and b, where Σij is the i, j-th element of Σ. Note that because we do not

in general know β or σ2 but must instead estimate them, even when Σ has an exchangeable
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structure permuting the residuals technically provides only an approximate permutation test,

though the approximation tends to be very accurate [Anderson and Robinson, 2001].

In general, when using an LMM to model polygenic variation the matrix Σ will not have

an exchangeable structure. Nevertheless, we might undertake a permutation test where the

residuals are permuted under the assumption that the phenotype has an exchangeable cor-

relation matrix Ψ rather than true correlation matrix Σ. The fundamental question is will

these permutations give an unbiased estimate of the threshold for rejecting the null hypoth-

esis at some specified false positive rate? To address this question exactly, we would need

to understand the properties of the order statistics T(k), k = 1, . . . , n! under permutations

of the residuals. Instead, I address this in an approximate, but more intuitive, approach

by treating the statistics T(k) as samples from a distribution with covariance matrix that

has an exchangeable structure. In the simulation results below we will see that the empiric

distribution we get by doing permutations closely matches the distribution obtained from

assuming Ψ = I.

Simulations

The simulations are done in a sample of 1,415 Hutterite individuals with a known 13 gener-

ation pedigree [Abney et al., 2000]. Phenotypes for the sample are generated under the null

model to have a mean of 3.0 and covariance matrix Σσ2 with Σ = 2Φh2 + I(1 − h2), with

Φ the kinship coefficient matrix as computed from the pedigree and h2 the narrow sense

heritability. Genotypes are simulated by randomly assigning the founders of the pedigree

a genotype from a biallelic marker with minor allele frequency of 0.3 and using Mendelian

segregation to randomly determine the genotypes of all the other pedigree members.

First, I address the question of what happens when “naive” permutations are done. That

is, the residuals under the null model are permuted regardless of whether the correlation

matrix is exchangeable and the new phenotype (i.e. the covariate effects plus the permuted
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residuals) is put through the same LMM analysis as the original data. More precisely, we

assume the null model y = Xβ + e where e ∼ MVN(0, σ2Σ). That is, analyses done under

the null model use exactly the same model as that used to generate the data. Using equation

(2) with γ = 0, I first fit the null model and obtain maximum likelihood estimates for the

parameters, β̂0, ĥ
2
0, σ̂

2
0. Using generalized least squares (GLS), I test the null hypothesis γ = 0

against the alternative γ 6= 0 using the test statistic T̂ (3) computed under the alternative

model,

y = Xβ + gγ + e, where e ∼ MVN(0, σ2Σ̂0) and Σ̂0 = 2Φĥ20 + I(1− ĥ20). (4)

Note that T̂ is necessarily asymptotically distributed as a χ2
1 because Σ̂0 asymptotically

converges to the true correlation matrix Σ. Also note that σ2 in equation (4) is estimated by

the sample variance when computing T̂ . I want to compare this asymptotic distribution with

the empirical distribution one obtains by doing naive permutations. To do this I first obtain

the estimated residuals under the null, ê = y − Xβ̂0. I permute these residuals to obtain

êπ1 and a new phenotype vector yπ1 = Xβ̂0 + êπ1 . Under the alternative model of equation

(4) but with yπ1 in place of y, I obtain a test statistic T̂ vπ1 , where the v superscript indicates

the use of naive permutations. I repeat this process L = 104 times to obtain T̂ vπ1 , . . . , T̂
v
πL

.

If doing naive permutations were to provide the correct empiric distribution for our original

test statistic T̂ , then the samples T̂ vπ1 , . . . , T̂
v
πL

should follow a χ2
1 distribution.

As shown in Figure 1 the empiric distribution clearly fails to follow the desired asymptotic

distribution. The reason for this is that the permutations fail to maintain the correlation

structure of the original phenotype data. As discussed above, this form of permutation would

give an accurate distribution only when the true correlation matrix of the estimated residuals

has an exchangeable structure. We can use the methods in the Appendix to quantify the

inaccuracy of the empiric permutation distribution. We can model the statistics T̂ vπ1 , . . . , T̂
v
πL

as coming from the distribution η χ2
1 that results from assuming the incorrect correlation
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matrix Ψ = I rather than the correlation matrix Σ̂0. Using the theoretically computed value

of η, as given in the Appendix, and plotting T̂ vπ1/η, . . . , T̂
v
πM
/η against a χ2

1 in Figure 1(B) we

see that the distributions match well. From this we see that computing the significance of T̂

from {T̂ vπi} would lead to an anti-conservative estimated level of significance. For instance,

to get a nominal levels of significance of 10−4 and 10−5, the permuted distribution would

select threshold levels of 12.7 and 16.3, respectively. Because the actual distribution of the

test statistic is χ2
1, the observed type 1 error rates would be 3.7 × 10−4 and 5.4 × 10−5,

respectively, a substantial inflation.

Though it is not possible to do a exact permutation test when the residuals have a

non-exchangeable correlation matrix, it is possible to do a valid permutation-based test.

The approach (referred to here as MVNpermute) is described in Abney et al. [2002] and the

Appendix and relies on the fact that there exists a linear transformation of the residuals that

results in a vector (i.e. the transformed residuals) whose covariance matrix is proportional

to the identity matrix, and is therefore exchangeable. Because MVNpermute is based on

permutations of an invertible transformation of the phenotype residuals, all structure in

the genotype data (e.g., linkage disequilibrium, allele frequencies) is preserved. Inverting the

transformation following permutations then results in new simulated data sets that maintain

the structure in the entire original data (i.e., phenotype correlations and genotype structure).

I repeated the above simulations but with the permutations generated using MVNper-

mute. This gave statistics T̂Mπ1 , . . . , T̂
M
πL

, where the M superscript indicates the use of MVN-

permute. As shown in Figure 2, this results in statistics that follow the expected distribu-

tion. That is, by first decorrelating the residuals—ensuring exchangeability for a normally

distributed trait—permutations allow us to estimate the proper threshold for a given false

positive rate. In practice, MVNpermute is not necessary to determine the p-value at a single

SNP, but obtaining L permutation-based data sets {yπi} allows us to do an empiric multiple

testing correction to determine genomewide significance, for instance [Abney et al., 2002].

It is not unusual to realize that permuting the phenotypes (or rather the residuals) does
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not result in a valid permutation test when individuals are related. A possible alternative is

to permute the genotypes instead of the phenotypes. A rationale is that the LMM inference

is based on the conditional distribution of the phenotypes given the genotypes. As the

phenotypes remain fixed while new genotypes get assigned to individuals via permutation,

the correlation structure in the phenotypes is preserved, resulting in a valid permutation

test. In fact, many statistics used in complex trait mapping assume a distribution that is

conditional on the genotype data, even if the form of the test statistic distribution is not

known. Permuting the genotype data, then, to estimate this distribution seems a natural

approach.

To understand the consequences of a genotype permutation procedure on an arbitrary

test statistic, let us first consider the standard ordinary least squares (OLS) statistic,

T̃r =
γ̃

Ṽar(γ̃)
(5)β̃

γ̃

 = (MtM)−1My (6)

M = (X g), (7)

where ·̃ indicates estimation with a scaled covariance matrix Ψ rather than Σ (in this case

Ψ = I). That is, the statistic we use does not explicitly account for the polygenic effect.

We may be aware that relatedness in our sample will result in T̃r not being χ2
1 distributed

and, thus, perform genotype permutations to obtain the empiric distribution of T̃r. To see if

genotype permutations recover the correct distribution, I performed L = 104 permutations

of the genotype data while keeping the phenotype data constant to obtain {T̃r,π1 , . . . , T̃r,πL}

where π1, . . . , πL index the permutations. I then compare this to a sample from the true null

distribution that I obtain by performing L gene dropping simulations, T̃r,1, . . . , T̃r,L. The

results in Figure 3 show that the distribution obtained by genotype permutations is highly

deflated relative to the distribution from gene dropping. Using this approach to obtain an
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empiric threshold of significance would result in a highly inflated false positive rate.

The source of the problem with genotype permutations can be understood by returning to

the notion of confounding. Because genotypes were not randomly assigned by the researcher

to subjects, the absence of confounding is not guaranteed. In fact, the subject genotypes

are correlated as a consequence of Mendelian segregation and all markers in the genome,

whether causative or not, share the same pedigree for a given set of individuals. Hence, the

covariance of the marker being tested is equal (up to a scalar constant) to the covariance of

the polygenic effect. If genotypes are permuted, the similarity of the covariance structures

of phenotype and genotype will not be preserved. Thus, I expect that the null distribution

of an arbitrary test statistic, not just the OLS statistic, will not be correctly estimated by

genotype permutations, in general.

Although the null distribution of an arbitrary test statistic cannot be inferred from geno-

type permutations, the null distribution of the GLS statistic can be. That is, if instead of

using T̃r we use T̂ as defined in equation (3) and do the genotype permutation procedure

as described above, we find the permutation distribution of T̂ matches the gene dropping

permutation distribution (data not shown). We can understand this result by looking at the

definition of the GLS statistic T̂ . We can view the GLS statistic as the OLS statistic com-

puted on the data following a decorrelation step. That is, if we define Σ1/2 as the symmetric

square root matrix of Σ and z = Σ−1/2y,W = Σ−1/2X, f = Σ−1/2g, ε = Σ−1/2e, then we

obtain the linear model z = Wβ + fγ + ε, with ε ∼ MVN(0, Iσ2). The GLS statistic on

the original data is equivalent to the OLS statistic on the decorrelated data z. Because our

new trait data z are normally distributed and uncorrelated, they are independent and can

no longer be confounded with the genotypes under the null hypothesis. In the absence of

confounding, then, permuting the genotypes recovers the true null distribution of the test

statistic T̂ .
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Software

The MVNpermute algorithm is implemented in the R programming language and is available

for download from the Comprehensive R Archive Network (http:\\cran.r-project.org)

as the “MVNpermute” package.

Discussion

The fundamental challenge with performing a permutation test is ensuring exchangeability

in the permuted quantities. In a genetic association test it is generally not possible to do an

exact permutation test when the trait under study has a polygenic component. The reason is

that confounding due to population structure exists between the genotype being tested and

the unknown polygenic effect, both of which have similar covariance structures. Only when

all individuals are equally related, as in an F2 cross [Churchill and Doerge, 1994], will a naive

permutation approach obtain the correct type 1 error rate. Nevertheless, with an accurate

estimate of the trait covariance structure, it may be possible to remove the confounding and

perform a valid permutation test. I have described an approach we have previously proposed

[Abney et al., 2002] for removing the correlation in the phenotype residuals and shown that

it generates the correct null distribution. Strictly, the method is valid when the phenotype

data are multivariate normally distributed, where removing the correlation is sufficient to

ensure exchangeability. Another permutation approach was proposed by Aulchenko et al.

[2007]. They estimate the polygenic effect and obtain estimates of the residual error term.

Although, under multivariate normality, the residual errors in equation (1) are exchangeable,

the estimated residual errors, in general, will not be. Nevertheless, this may be a case of

“close enough,” allowing for a reasonably accurate estimate of significance thresholds, though

I have not investigated this question.

Other resampling strategies are possible, though they also have limitations. Gene drop-

ping is one such approach. In this strategy one simulates the Mendelian segregation of the
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founder genotypes through all descendents. Because Mendelian segregation is random and

independent of the phenotype, it provides a valid distribution of the test statistic under

the null hypothesis. The primary difficulties with gene dropping is the need for a complete

pedigree and knowledge of the founder genotypes. If the pedigree is known, but the founder

genotypes are not, it may be possible to reconstruct, or simply guess, them from the avail-

able data. Doing so, however, runs the risk of introducing unknown biases as the observed

genotypes may be confounded with the phenotypes. On the other hand, if the pedigree is

not known, gene dropping is simply not feasible.

Instead of gene dropping we might try to permute genotypes, leaving the covariance

structure of the phenotype intact. As discussed above, for an arbitrary test statistic this

does not necessarily result in a valid test as permutations of the genotypes will not preserve

their covariance structure. In addition, applying a “decorrelating” transformation to the

genotypes is not sufficient to ensure their exchangeability because, unlike the multivariate

normal distribution of the phenotype, the joint distribution of the genotypes has higher

order dependencies. Nevertheless, in the case of a multivariate normal phenotype being

analyzed with a linear mixed model, the standard test statistic T̂ naturally transforms the

trait data to being independent. Once independent, any sets of dependent or independent

genotypes, including permutations of the original ones, can be used to recover the correct

null distribution of the test statistic. This approach has been used in mouse cross data to

obtain proper genomewide significance levels [Cheng et al., 2010; Cheng and Palmer, 2013],

and more recently in humans [Zhang et al., 2014]. It seems likely that any test statistic that

removes the correlation in the phenotype data and does not depend on Mendelian segregation

under the null hypothesis, would allow genotype permutations to be valid, though I have not

investigated this further. An additional caveat arises, however, with genotype permutations

when there are other covariates. In particular, if any of the covariates are associated with the

genotype, genotype permutations may estimate the incorrect null distribution. That is, it

will give the null distribution for when the covariate and genotype are not associated rather
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than for when they are. This may arise, for instance, when a covariate is itself a genetic trait,

or when it is a principal component vector obtained from a population structure analysis. It

may also arise when testing effects such as gene by environment interaction. In this situation

the null model has a nonzero genetic main effect. In general, an approximate permutation

test of interaction effects is done by computing and permuting outcome residuals [Anderson

and Ter Braak, 2003] as done by MVNpermute. Additional work is needed to understand

this effectiveness and validity of MVNpermute and genotype permutations in the presence

of genetic interaction terms and of genotype permutations when other genetic predictors are

in the null model.

Another resampling strategy is the parametric bootstrap. In this approach one assumes

the phenotypes follow a particular parametric distribution with parameter values equal to

those estimated from the observed data under the null hypothesis. Samples are then drawn

from this distribution and a test statistic computed for each sample, thus obtaining an em-

piric null distribution. For instance, one might assume the phenotype follows a multivariate

normal distribution with fixed effect parameters and variance components estimated by max-

imum likelihood under the null model. Drawing many phenotypes from this distribution and

testing the genotype at a SNP against each randomly drawn phenotype provides a null dis-

tribution for the test statistic. This approach relies on the parametric distribution accurately

representing the observed data. Insofar as the data deviate from the assumed distribution,

biases in the estimated significance threshold may ensue. A true permutation test has the

advantage of not needing to make such parametric assumptions. The MVNpermute method

also relies on certain distributional assumptions. Namely, that exchangeability under the

null is determined by the structure of the correlation matrix. Intuitively, this assumption

appears weaker than those used in a parametric bootstrap, suggesting that there may be

greater robustness to the permutation based approach, though I have not investigated this

question.

The analyses I performed here were based on using a statistic known to asymptotically
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follow a χ2
1 distribution. This allowed me to easily show the invalidity of particular permu-

tation procedures. In practice, one would not need a permutation test for such a statistic,

but the lessons extend to other statistics as well. For instance, we might want to deter-

mine statistical significance after correcting for multiple correlated tests, as when doing a

genomewide scan or a scan over a smaller region. In this case the statistic of interest would

be the maximum over all statistics in the scan. Similarly, statistics that jointly combine

information across SNPs or use phenotype dependent weights, for which there may not be

a clear generative model, may not have a known distribution under the null hypothesis.

Situations such as these would benefit from a permutation test, if one exists. The presence

of polygenic variation may make a true permutation test difficult or impossible, but a per-

mutation based test may be achievable by carefully considering the sources of correlation,

or non-exchangeability, in the data. Hopefully, the examples and discussion I provided here

will help bring insight into the development of such tests.
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Appendix

Distribution with a misspecified covariance matrix

The LMM of the main text is y = Xβ + gγ + e, where e ∼ N(0,Σσ2). The asymptotic

distribution of the test statistic T̂ = γ̂2/V̂ar(γ̂) is χ2
1 under the null hypothesis, but only if
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we use the correct scaled covariance matrix Σ in our estimate of γ̂ and its variance. If we

misspecify this matrix, the distribution of T̂ becomes a scaled chi-squared distribution η ·χ2
1

with the scalar η depending on the amount of misspecification. To determine η we can derive

T̂ and its distribution assuming that we have used the incorrect covariance matrix Ψσ2 in

place of the correct Σσ2. First, we obtain the BLUE for γ. If we let Ψ1/2 be the symmetric

positive definite square root matrix of Ψ and define

z = Ψ−1/2y

W = Ψ−1/2X

f = Ψ−1/2g

ε = Ψ−1/2e

HW = W(WtW)−1Wt

(8)

then the BLUE for γ is

γ̃ = [f t(I−HW)f ]−1f t(I−HW)z,

where ·̃ indicates an estimate using Ψ rather than Σ. The variance of this estimator is

Var(γ̃) = [f t(I−HW)f ]−1f t(I−HW)Θ(I−HW)f [f t(I−HW)f ]−1σ2. (9)

where Var(z) = Θσ2 = Ψ−1/2ΣΨ−1/2σ2. The statistic

T =
γ̃2

Var(γ̃)
=

(f t(I−HW)z)2

f t(I−HW)Θ(I−HW)fσ2
(10)

is χ2
1 because z is multivariate normal. The statistic T , however, is not an adequate test

statistic because it depends on the unknown matrix Σ and the unknown parameter σ2. In

practice we use the test statistic

T̃ =
γ̃2

Ṽar(γ̃)
=

(f t(I−HW)z)2

f t(I−HW)f S2
, (11)
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where in place of σ2 we have the sample variance

S2 =
1

n− p− 1
(z− z̃)t(z− z̃)

where z̃ = HAz = A(AtA)−1Atz and A = (W f) = Ψ−1/2M, M = (X g). It is straight-

forward to show that if Ψ = Σ then the expectation E(S2) = σ2. In general, however, we

have,

E(S2) =
1

n− p− 1
Tr((I−HA)Θ)σ2

=
σ2

n− p− 1

[
Tr(ΣΨ−1)− Tr([MtΨ−1M]−1MtΨ−1ΣΨ−1M)

]
.

(12)

The result of misspecifying the covariance matrix is given by the following lemma.

Lemma 1. Let y ∼ N(Xβ + gγ,Σσ2) with Σ non-negative definite and Ψ be some

symmetric non-negative definite matrix. Define Θ = Ψ−1/2ΣΨ−1/2, M = (X g), with

z, f ,HW,Θ as in equation (8) and T̃ as in equation (11). If λ1(ΣΨ−1) = o(n1/2), where

λ1(ΣΨ−1) is the largest eigenvalue of matrix ΣΨ−1 (equivalently the largest eigenvalue of

Θ), then as n→∞

T̃

η
→ χ2

1 in distribution, where

η =
(n− p− 1)f t(I−HW)Θ(I−HW)f

f t(I−HW)f [ Tr(ΣΨ−1)− Tr([MtΨ−1M]−1MtΨ−1ΣΨ−1M)]
.

(13)

Proof We can write T̃ = (γ̃2/Var(γ̃)) × (Var(γ̃)/Ṽar(γ̃)), which is the product of a χ2
1

random variable, as given in equation (10), and the ratio of the true to estimated variance

of γ̃. The true variance is given by equation (9), but the estimated variance is

Ṽar(γ̃) = [f t(I−HW)f ]−1S2, where

S2 =
1

n− p− 1
zt(I−HA)z.
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Thus, the test statistic is

T̃ =
γ̃2

Var(γ̃)
× f t(I−HW)Θ(I−HW)f

f(I−HW)f
× σ2

S2
,

the product of a χ2
1 random variable and the quantity

η =
f t(I−HW)Θ(I−HW)f

f(I−HW)f
× σ2

S2
.

If as n → ∞ Var(S2) → 0, then σ2

S2 → σ2

E(S2)
in probability, where E(S2) is given by equa-

tion (12). Thus, we obtain equation (13) of Lemma 1 when Var(S2)→ 0. We can obtain a

sufficient condition for Var(S2)→ 0 by considering

Var(S2) =
1

(n− p− 1)2
Var(zt(I−HA)z)

=
2σ4

(n− p− 1)2
Tr(Θ(I−HA)Θ(I−HA)).

Thus, Var(S2)→ 0 when Tr(Θ(I−HA)Θ(I−HA)) = o(n2).

Now, consider the following eigenvalue result [Zhang, 2011, Theorem 8.12, p. 274]. Let

λi(P) be the ith eigenvalue for some n × n matrix P ordered such that λ1(P) ≥ λ2(P) ≥

· · · ≥ λn(P). Then, for any n× n non-negative definite, Hermitian matrices P,Q

λi(P)λn(Q) ≤ λi(PQ) ≤ λi(P)λ1(Q).

It follows that λi(Θ[I −HA]) ≤ λi(Θ) because Θ is symmetric, non-negative definite and

I − HA is symmetric and idempotent with all eigenvalues equal to 0 or 1. Furthermore,

Θ[I−HA] is non-negative definite because λi(Θ[I−HA]) ≥ λi(Θ)λn(I−HA) ≥ 0, and thus

λi(Θ[I−HA])2 ≤ λi(Θ)2. Recalling that the trace of a matrix is the sum of the eigenvalues

we have Tr[Θ(I−HA)Θ(I−HA)] ≤ Tr[Θ2]. If we define B = ΣΨ−1, then Tr(Θ2) = Tr(B2).
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Hence,

Var(S2) =
2σ4

(n− p− 1)2
Tr(Θ(I−HA)Θ(I−HA))

≤ 2σ4

(n− p− 1)2
Tr(B2)

≤ 2σ4

(n− p− 1)2
n[λ1(B)]2.

Thus, a sufficient condition for Var(S2) → 0, and hence σ2/S2 → σ2/E(S2) in probability,

is λ1(ΣΨ−1) = o(n1/2). �

Note that a possibly tighter sufficient condition is Tr(B2) =
∑n

i=1 λi(B)2 = o(n2).

Exchangeability of the multivariate normal distribution

Given a random vector y = (y1, . . . , yn) distributed as a multivariate normal f(y) = N(µ,Σ),

under what conditions are the elements of y exchangeable? If we let P be a permutation

matrix so that Py is a permutation of the elements of y, then y is exchangeable when

f(y) = f(Py) for every permutation matrix P [Bernardo and Smith, 2000, Sec. 4.2]. Taking

the log of both sides, this reduces to,

(y − µ)tΣ−1(y − µ) = (Py − µ)tΣ−1(Py − µ),

which implies the condition,

yt(PtΣ−1P−Σ−1)y + 2µtΣ−1(Py − y) = 0. (14)

In order for equation (14) to hold for every y and P, each of the two terms must be zero. If

the first term is to be zero for all y and P, then PtΣ−1P = Σ−1. This condition is met if

and only if all the diagonal elements Σii = v, for some constant v, and all the off-diagonals

Σij = vρ, for some constant ρ. To set the second term to zero we first note that for some
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vector w, the condition wt(Py − y) = 0 implies w = α1, for some constant α and where

1 = (1, . . . , 1)t. Hence, given the structure of Σ we already determined, the second term is

zero whenever µ = (µ, . . . , µ)t for some constant µ.

In the text, the null model corresponds to y ∼ N(Xβ,Σ). Let us assume the Σ has an

exchangeable structure. In general, however, the vector Xβ 6= µ1 for some fixed µ and y is

still not exchangeable. The vector e = y − Xβ, though, does satisfy the requirements for

exchangeability, and a permutation test can be based on permutations of the residuals. In

practice, the vector β is unknown and must be estimated, resulting in estimated residuals ê.

Permuting the estimated residuals, then, results in only an asymptotically exact permutation

test when Σ has an exchangeable structure.

MVNpermute algorithm

The permutation based algorithm was originally presented in Abney et al. [2002, pp926–

927] and I review it here for completeness. Assume the outcome y follows the model as

given in equation (1) in the main text, and let the errors e have known covariance matrix

Ω = Σσ2. In practice, this matrix may not be known, in which case a consistent estimator

will maintain the asymptotic properties of the permutation based procedure. For instance,

a maximum likelihood estimate under the null model (γ = 0) could be used. The residuals

under the null model ê0 = y − Xβ̂0, where β0 = (XtΩ−1X)−1XtΩ−1y, have covariance

matrix V∗ = Ω−X(XtΩ−1X)−1Xt.

The goal, then, is to transform the residuals, which are not exchangeable, to a new vector

whose elements are exchangeable. We can accomplish this by pre-multiplying equation (1)

by C−t where C is given by the Cholesky decompostion Ω = CtC. The resulting model

under the null hypothesis γ = 0 is z = Wβ+ε where z = C−ty, W = C−tX, and ε = C−te.

The covariance matrix of the residuals ε̂ = z−Wβ̂0 is V = I−W(WtW)−1Wt. Note that

V is symmetric and idempotent (i.e., V2 = V) and if X is of rank p then V has rank n− p.

By the spectral theorem we can make the decomposition V = UΛUt, where Λ is a diagonal
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matrix with the first n− p elements equal to the eigenvalue 1 and the last p elements equal

to the eigenvalue 0, and U is the matrix whose columns are eigenvectors. Let U = (U1 U0),

where U1 is the matrix whose n− p columns are the eigenvectors associated with eigenvalue

1. Then, we have V = U1U
t
1 and Ut

1U1 = In−p. The vector ξ = Ut
1ε̂ has covariance matrix

Ut
1VU1 = In−p and its elements, under the assumption of multivariate normality of the

residuals, are exchangeable. The elements of ξ are now permuted to obtain ξπ = Pξ where

P is a permutation matrix, and then transformed by U1 to get ε̂π = U1ξ
π. Note that I use

the convention that “π” used as a superscript denotes the variable is permuted, whereas “π”

used as a subscript denotes that the variable is derived from permuted and non-permuted

quantities. A new shuffled data set obtained from the permutation is

yπ = Xβ̂0 + Ctε̂π

= Xβ̂0 + CtU1PUt
1C

−tê0.

The MVNpermute algorithm is coded as an R function that takes as input the outcome

vector y, matrix of covariates X, assumed covariance matrix Ω and the desired number of

permutations. The output is a matrix with columns being the permutation-based outcome

vectors. The MVNpermute function is available as a download from CRAN.
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Figure 1: QQ plots under naive phenotype residual permutations. In both plots the expected
quantiles are for a χ2

1 distribution and the shaded area is the 95% confidence region. (A)
The observed quantiles are the values of the test statistic under permutations of the trait
values. (B) The observed quantiles are the values in (A) divided by the theoretical inflation
factor.
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Figure 2: QQ plot of the MVNpermute method. The observed quantiles are the values of the
test statitic from 10,000 MVNpermutations, while the theoretical quantiles are those from a
χ2
1 distribution. The shaded region is the 95% confidence bounds.
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Figure 3: QQ plot of the empiric null distribution for the ordinary least squares statistic
against the expected null distribution. The expected null distribution is a sample obtained
by doing gene dropping. The solid line is the y = x line.
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