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ABSTRACT 
Summary: Cell differentiation processes are achieved through a 
continuum of hierarchical intermediate cell-states that might be 
captured by single-cell RNA seq. Existing computational approaches 
for the assessment of cell-state hierarchies from single-cell data 
might be formalized under a general framework composed of i) a 
metric to assess cell-to-cell similarities (combined or not with a 
dimensionality reduction step), and ii) a graph-building algorithm 
(optionally making use of a cells-clustering step). Sincell R package 
implements a methodological toolbox allowing flexible workflows 
under such framework. Furthermore, Sincell contributes new algo-
rithms to provide cell-state hierarchies with statistical support while 
accounting for stochastic factors in single-cell RNA seq. Graphical 
representations and functional association tests are provided to 
interpret hierarchies. Sincell functionalities are illustrated in a real 
case study where its ability to discriminate noisy from stable cell-
state hierarchies is demonstrated. 
Availability and implementation:  
Sincell is an open-source R/Bioconductor package available at 
http://bioconductor.org/packages/3.1/bioc/html/sincell.html. A de-
tailed manual and vignette describing functions and workflows is 
provided with the package. 
Contact: antonio.rausell@isb-sib.ch 
 
 

1 INTRODUCTION  
Unbiased profiling of individual cells through single-cell 

RNA-seq allows assessing heterogeneity of transcriptional 
states within a cell population (Wu et al., 2014). In the con-
text of a cell differentiation or activation process, such tran-
scriptional heterogeneity might reflect a continuum of inter-
mediate cell-states and lineages resulting from dynamic 
regulatory programs (Qiu et al., 2011; Trapnell et al., 2014; 
Bendall et al., 2014). Such continuum might be captured 
through the computational assessment of cell-state hierar-
chies, where each individual cell is placed in a relative order-
  
*To whom correspondence should be addressed.  

ing in the transcriptional landscape. Additionally, statistical 
support should be provided in order to discriminate reliable 
hierarchies from stochastic heterogeneity, arising from both 
technical (Brennecke et al., 2013) and biological factors (Raj 
et al., 2006; Rand et al., 2012; Shalek et al., 2013; McDavid 
et al., 2014; Deng et al., 2014). 

 
A number of algorithms have been used to assess cell-

state hierarchies from single-cell data (Qiu et al., 2011; Ben-
dall et al., 2014; Amir et al., 2013; Trapnell et al., 2014; Jaitin 
et al., 2014). These approaches might be formalized under a 
general framework (Supplementary Table S1). Here we 
present Sincell, an R/Bioconductor package where the vari-
ous building blocks of that general workflow are extended 
and combined (Figure 1). Notably, Sincell implements algo-
rithms to provide statistical support to the cell-state hierar-
chies derived from single-cell RNA-seq. The package is 
complemented with graphical representations and functional 
association tests to help interpreting the results. 

2 DESCRIPTION 

2.1 Integrative framework for assess-
ment of cell-state hierarchies 

As input, Sincell requires an expression matrix with user-
defined normalized gene expression levels per each single-
cell in the study (Figure 1). First, a cell-to-cell distance ma-
trix is calculated through a metric of choice. Sincell provides 
both linear and non-linear distances: Euclidean, Mutual In-
formation, L1 distance, Pearson and Spearman correlation. 
Optionally, the distance matrix may be obtained from the 
dimensions lead by a dimensionality reduction algorithm, 
performed to keep the most informative part of the data while 
excluding noise. Both linear and non-linear algorithms are 
provided: Principal Component Analysis (PCA), Independent 
Component Analysis (ICA), t-Distributed Stochastic Neighbor 
Embedding (t-SNE) and non-metric Multidimensional Scaling 
(MDS).  
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Figure 1. Overall workflow for the statistical assessment of cell-state 
hierarchies implemented by the Sincell R package. Dashed arrows 
correspond to optional steps in the analysis 
 
Second, a cell-state hierarchy is obtained by applying a 
graph-building algorithm on the cell-to-cell distance matrix. 
Graph-building algorithms may consider cells both individual-
ly or in clusters of highly similar cells. Sincell provides differ-
ent clustering methods (e.g. K-Mutual Nearest Neighbours, 
k-medoids, agglomerative clustering, etc.) as well as graph-
building algorithms (MST, SST and IMC; Figure 1 and Sup-
plementary Text). 

 
Stochastic factors -both technical and biological- may drive 

cell-state heterogeneity observed on Single-cell RNA seq 
data. Additionally, hierarchies derived from experiments with 
a low number of individual cells (e.g. 96 cells when using a 
Fluidigm C1™ Single-Cell Auto Prep System) are more sus-
ceptible to noise artifacts than experiments profiling thou-
sands of individual cells (e.g. flow cytometry data). Sincell 

implements two algorithms to discriminate reliable hierar-
chies from noise-driven ones. The first strategy relies on a 
gene resampling procedure. The second one is based on 
random cell substitution with in silico-generated cell repli-
cates. These replicates are built by perturbing observed 
gene expression levels with random noise, following patterns 
of stochasticity described in single-cell RNA-seq (Brennecke 
et al., 2013; Anders and Huber, 2010; Shalek et al., 2014). 
Either approach generates a population of hierarchies whose 
similarities to the reference one show the distribution of the 
hierarchy stability against changes in the data. Details of the 
algorithms are described in the Supplementary Text. 

2.2 Graphical representations and func-
tional association tests for interpret-
ing cell-state hierarchies 

Sincell provides graphical representations of cell-to-cell 
similarities in low-dimensional space as well as graph dis-
plays of cell-state hierarchies. The possibility of coloring cells 
by expression levels of a gene of choice helps inspecting the 
agreement of the hierarchy with selected cell markers. Fur-
thermore, Sincell implements an algorithm to determine the 
statistical significance of the association of the hierarchy with 
the expression levels of a given gene set (Supplementary 
Text). Gene lists defined by molecular signatures, Gene 
Ontology terms or by pathway databases can be systemati-
cally evaluated. 

3 APPLICATION 
Sincell R package is accompanied with a detailed vignette 
illustrating all previous functionalities in real single-cell RNA-
seq data. We use data from (Trapnell et al., 2014) quantify-
ing gene expression levels in differentiating myoblast at 0, 
24, 48 and 72 hours. The original report describes a continu-
um in the differentiation process by building a cell-state hier-
archy where individual cells from all time points were taken 
together. Here we analyze each time-point separately and 
evaluate the statistical evidence of cell-state heterogeneity 
within them (Supplementary Figure 1). Our results show 
that early times of differentiation produce unstable hierar-
chies suggesting a low degree of cell-state heterogeneity. 
However, late differentiation times produce statistically signif-
icant hierarchies that reflect cell-state diversity along the 
differentiation process. 

4 DISCUSSION 
The landscape of computational approaches to assess cell-
state hierarchies from single-cell data is far from being fully 
explored. The diversity of biological studies and rapid single-
cell technological evolution require a comprehensive toolbox 
where users may easily tailor workflows and compare alter-
native methods and assumptions. Furthermore, cell-state 
hierarchies should be statistically supported before being 
used as input in subsequent analyses. Sincell R package 
addresses these needs by providing a general analysis 
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framework, new algorithms for statistical support as well as 
tools for functional interpretation of cell-state hierarchies. 
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Method Refer-

ence 
Single-cell data Dimensionali-

ty reduction 
Metric to 
assess 

cell-to-cell 
distances 

Clustering algo-
rithm 

Graph -building 
algorithm / 

ordering repre-
sentation 

Trajectory assessment Software avail-
ability 

SPADE Qiu et al 
2011 

Mass Cytometry 
Data and Flow 
Cytometry Data 

NA L1 distance Agglomerative 
clustering 

Minimum Span-
ning Tree (MST) 

NA R/Bioconductor 

Wanderlust Bendall et 
al 2014 

Mass Cytometry 
Data 

NA Cosine 
distance 

NA K-Nearest 
Neighbours 
Graph (K-NNG) 

A single non-branching trajecto-
ry is assessed from an average 
of “shortest path”- trajectories 
over an ensemble of l-out-of-k-
nearest-neighbor graphs (l-k- 
NNGs) 

Matlab based 

viSNE Amir et al 
2013 

Mass Cytometry 
Data and Flow 
Cytometry Data 

t-Distributed 
Stochastic 
Neighbor 
Embedding (t-
SNE) 

Distance in 
low-
dimensional 
space 

NA NA NA Matlab based 

Monocle Trapnell 
et al 2014 

Single-cell RNA-
seq 

Independent 
Component 
Analysis (ICA) 

Distance in 
low-
dimensional 
space 

NA Minimum Span-
ning Tree (MST) 

Longest path through MST is 
used to define branching trajec-
tories and ordering in “pseudo-
time” 

R/Bioconductor 

Jaitin et al 
2014 

Jaitin et al 
2014 

Single-cell RNA-
seq 

NA Correlation Hierarchical clus-
tering + manual 
definition of seeds 

Circular projec-
tion (CAP) of 
posterior proba-
bilities of asso-
ciation with the 
model’s classes  

NA Not available 

PCA Dalerba et 
al. 2011 
Treutlein 
et al 2014 

Single-cell RNA-
seq 

Principal 
Component 
Analysis 
(PCA) 

Distance in 
low-
dimensional 
space 

NA NA NA Multiple plat-
forms 

NA: Not Applicable 
 
Supplementary Table 1: Computational methods for the assessment of cell-state hierarchies. The table shows a list of published ap-
proaches for the assessment of cell-state heterogeneity from single-cell data together with their main methodological features. The last row in-
cludes the standard Principal Component Analysis (PCA) to reflect its use in single-cell data analysis; in this case two references are provided as a 
non-exhaustive list of examples. 
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A)                                                                            B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 1. Statistical support for cell-state hierarchies obtained in differentiating myoblast sam-
ples at 4 time points (0, 24, 48 and 72h) from Trapnell et al 2014. A. Similarities of hierarchies upon random gene 
subsampling. The figure represents the distribution of similarities between a reference cell-state hierarchy and the 
100 hierarchies obtained when 100 random sets of 50% of genes are subsampled. B. Similarities of hierarchies 
upon random cell replacement with in silico cell replicates. The figure represents the distribution of similarities 
between a given cell-state hierarchy and the 100 hierarchies obtained when 100 % of individual cells are substi-
tuted by a randomly chosen in silico replicate of themselves. One thousand in silico replicates were generated for 
each cell with default parameters. Four distributions are represented in each panel corresponding to the hierar-
chies obtained at different time points: 0, 24, 48 and 72 hours (blue, green, orange and red respectively). A distri-
bution of similarities with a high median and a low variance is indicative of a cell-state hierarchy robust to varia-
tions in the data. See Supplementary Text for details. 
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SUPPLEMENTARY TEXT 

Before starting using Sincell 
 
Sincell workflow starts from an expression matrix gathering the gene expression levels for every single-cell in the 
experiment. Before starting using Sincell, quality controls to filter out individual cells from the analysis have to be 
performed by the user. Expression levels need also to be previously normalized to account for library size or tech-
nical variability (e.g. through the use of spike-in molecules). Variance stabilization through log-transformation is 
also recommended. 
 
Novel graph-building algorithms presented in Sincell: 
 
We present here two graph-building algorithms that can be used to infer the progression through a continuum of 
intermediate cell states: the Maximum Similarity Spanning Tree and the Iterative Mutual Clustering Graph (IMC). 
Both algorithms start from a cell-to-cell distance matrix as an input, and compute a connected graph where nodes 
represent cells and edges represent their kinship as intermediate cell-states. The weight of an edge connecting 
two cells corresponds to the original distance between them. The algorithms start with all nodes unconnected, 
treating them as clusters of size 1. 
 
Maximum Similarity Spanning Tree (SST) 
 
In a first iteration, the two clusters with the lowest distance are connected forming a cluster of size 2. In a new 
iteration, distances among clusters are recomputed and a new connection is added between the next two clusters 
with the lowest distance. A distance between a cluster of size higher than one and another cluster is the lowest 
distance between any of their constituent cells. The process is repeated until there are no cells unconnected. 
 
In contrast with the Minimum Spanning Tree (MST) algorithm (that minimizes the total sum of the weights of any 
possible spanning tree), the SST algorithm prioritizes the highest similarities between any two groups of cells, 
proceeding in an agglomerative way that represents intermediate cell states. In some cases, MST and SST can 
lead to the same graph. 
 
Iterative Mutual Clustering Graph (IMC) 
 
In a first iteration, a connection between two clusters A and B is added if A is among the closest k nearest clusters 
of B and B is among the closest k nearest clusters of A. This process is iterated until there are no unconnected 
cells. As for SST, the distance between a cluster of size higher than one and another cluster is the lowest distance 
between any of their constituent cells. 
 
Algorithmic strategies to provide statistical support to cell-state hierarchies from single-cell RNAseq 
 
The fact that a cell-state hierarchy is obtained by using any given algorithm (e.g. MST, SST or IMC) does not nec-
essarily imply that it reflects a true biological scenario of cell activation/differentiation. It might well be that the 
hierarchy obtained is mainly driven by noise due to either biological or technical factors. The relative contribution 
of stochastic factors to the observed differences across cells is expected to be higher if cells within a sample are 
in a homogeneous steady-state. In that case, a low cell-to-cell heterogeneity will lead to cell-state hierarchies very 
sensitive to small variations in the initial gene expression data. On the other extreme, high levels of cell-to-cell 
heterogeneity driven by a real granularity in an activation/differentiation process will translate into robust hierar-
chies that can be reproduced despite stochastic perturbations of the data.  
 
To help discriminating reliable cell-state hierarchies from noisy rearrangements, Sincell implements two algo-
rithms: i) a strategy relying on a gene resampling procedure and ii) an algorithm based on random cell substitution 
with in silico-generated cell replicates. 
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A. Gene resampling  
 
This algorithm performs “s” times a random subsampling of a given number “n” of genes in the original gene ex-
pression matrix. For each subsampling, a new connected graph of cells is computed using the same method as 
for the hierarchy being tested. In each subsampling, the similarity between the resulting graph and the original one 
is assessed as the Spearman rank correlation between the two graphs of the shortest distance for all pairs of 
cells. The distribution of Spearman rank correlation values of all subsamplings can be interpreted as the distribu-
tion of similarities between hierarchies that would be obtained from small changes in the data. A distribution with a 
high median and small variance would indicate a well-supported cell-state hierarchy. On the contrary, a distribu-
tion with a low median of similarities and/or a wide variance would indicate a hierarchy very sensitive to changes 
in the data, and therefore not well statistically supported. 
 
B. Random cell substitution with in silico-generated cell replicates 
 
Gene expression levels detected by single-cell RNA seq are subject to stochastic factors both technical and bio-
logical. This means that, if it were possible to profile multiple times the same cell in the same cell-state (or, more 
realistically, a population of individual cells in a highly homogeneous state), the detected expression levels of a 
gene would randomly fluctuate within a distribution of values. In the ideal scenario where that distribution was 
known for each gene, individual cell replicates could be produced in silico, leading to variations in gene expres-
sion levels similar to what would be obtained from in vivo replicates. The generation of in silico replicates would 
then permit testing the reproducibility of the cell-state hierarchy upon random replacement of a fraction of the orig-
inal cells with them. 
 
B1. Generation of in silico cell replicates 
 
The distribution of the expression levels of a gene can be described by a measure of variability such as the vari-
ance or the coefficient of variation. It is known that the expected variation is dependent on the mean expression 
values of the gene (Anders and Huber 2010; Brennecke et al 2013). Based on this, we can simulate a stochastic 
fluctuation of the expression of a gene by perturbing the observed level in a given cell with an error term whose 
magnitude is consistent with the mean-variance relationship observed in the data. By doing that in all genes from 
an individual cell Ci, we can produce an in silico replicate of it.  
 
Sincell implements this strategy as follows: first, the mean m and variance v of all genes in the original gene ex-
pression matrix is computed. Genes are assigned to classes according to the deciles of mean they belong to. 
Next, for a given gene g, a variance v is randomly chosen from the set of variances within the class of the gene. 
Then, a random value drawn from a uniform distribution U(0,v) of mean zero and variance v is added to the ex-
pression value of a gene g in a cell c. By perturbing in such a way all genes in a reference cell c, we obtain an in 
silico replicate c’. Redoing the process n times, n stochastic replicates are generated for each original cell. Alter-
natively, a squared coefficient of variation cv2 can be randomly chosen from the set of coefficient of variation val-
ues within the class of the gene. Then, the variance v for the uniform distribution is assessed by v= (cv2 x m2). 
 
Stochasticity in gene expression at the single-cell level has also been described as following a lognormal distribu-
tion log(x)~N(m,v) of mean m and variance v (Bengtsson et al 2005; Raj et al 2006). More recently, Shalek et al 
2014 described gene expression variability in single-cell RNA-seq through a log normal distribution with a third 
parameter alpha describing the proportion of cells where transcript expression was detected above a given 
threshold level. Authors found that the majority of genes in their study (91%) showed distributions well described 
by the three-parameter model (p < 0.01, goodness of fit test; Shalek et al 2014). Sincell can use this “three pa-
rameter” model estimation to generate random perturbations of gene expression levels and produce in silico cell 
replicates accordingly. 
 
B2. Random cell substitution with in silico-generated cell replicates 
 
Once cell-replicates have been generated, a Sincell algorithm performs “s” times a random replacement of a given 
number “n” cells on the original gene expression matrix with a randomly selected set of in-silico replicates. For 
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each set of substitutions “s”, a new connected graph of cells is assessed using the same method as for the hier-
archy being tested. In each “s”, the similarity between the resulting graph and the original one is assessed as the 
Spearman rank correlation between the two graphs of the shortest distance for all pairs of cells. The distribution of 
Spearman rank correlation values of all replacements might be interpreted as the distribution of similarities be-
tween hierarchies that would be obtained from stochastic perturbations of a proportion of cells. A distribution with 
a high median and small variance would indicate a well-supported cell-state hierarchy. On the contrary, a distribu-
tion with a low median of similarities and/or a wide variance would indicate a hierarchy very sensitive to changes 
in the data, and therefore not well statistically supported. 
 
C. Application of Sincell algorithms to provide cell-state hierarchies with statistical support on a real single-cell 
RNA seq data set 
 
We applied Sincell algorithms to provide cell-state hierarchies with statistical support on a publicly available sin-
gle-cell RNA-seq dataset from Trapnell et al 2014. The authors generated single-cell RNA-seq libraries for differ-
entiating myoblasts at 0, 24, 48 and 72 hours. Original data can be accessed at GEO database accession number 
GSE52529 (ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE52nnn/GSE52529/suppl/GSE52529_fpkm_matrix.txt.gz). 
Following Trapnell et al 2014 and the vignette of its associated Bioconductor package Monocle 
(http://www.bioconductor.org/packages/devel/bioc/html/monocle.html), the expression matrix is restricted to 575 
genes differentially expressed between cells from time 0 and the ensemble of cells of times 24, 28 and 72 hours 
of differentiation. Here, we analyze each time-point separately and evaluate the statistical evidence of cell-state 
heterogeneity within them.  
 
Four cell-state hierarchies were assessed for each time point separately (0, 24, 48 and 72h) on their log-
transformed FPKM values using the first two dimensions of a dimensionality reduction with Independent Compo-
nent Analysis (ICA) and a Minimum Spanning Tree (MST). To evaluate the statistical support of the arrangements 
obtained, two Sincell algorithms were applied: i) a gene resampling procedure and ii) a random cell substitution 
with in silico-generated cell replicates. Supplementary Figure 1A represents the distribution of similarities be-
tween a reference cell-state hierarchy and the 100 hierarchies obtained when a random set of 50% of genes are 
subsampled 100 times. Supplementary Figure 1B represents the distribution of similarities between a reference 
cell-state hierarchy and the 100 hierarchies obtained when 100% of the cells are replaced by a randomly chosen 
in silico replicate of themselves 100 times.   
 
In both cases, late time points lead to hierarchies with a high median while early time points had a lower median 
and a higher variance. Results suggest that at early time points homogeneity of cell states is high, leading to hier-
archies more sensitive to perturbations of the data and therefore less statistically supported. However, late time 
point showed hierarchies more robust to both gene subsampling and replacement with in-silico replicates, reflect-
ing a marked heterogeneity in cell-states. Indeed, a gradient can be observed in both panels (from 0 to 24, 48 and 
72h) suggesting that heterogeneity in cell-states increased as a function of time. 
 
Functional association tests to help interpreting cell-state hierarchies 
 
Once a cell-state hierarchy has been assessed and its statistical support checked, the next step is interpreting the 
hierarchy in functional terms. Sincell allows different graphical representations that can help interpreting the hier-
archies in terms of the features of the samples (e.g. differentiation time) or the expression levels of markers of 
interest. In this section, we propose an analytical approach to test whether the cell-state hierarchy associates with 
a given functional gene set, that is: whether the relative similarities among the individual cells in the hierarchy are 
driven by the expression levels of a subset of genes with a common functional feature. 
 
Sincell implements an algorithm to evaluate this association. First, a new cell-state hierarchy is assessed where 
only the expression levels of the genes in a given functional gene set are considered. Second, the similarity of that 
hierarchy with the reference hierarchy (the one assessed on the initial gene expression matrix) is calculated. The 
similarity between the two hierarchies is computed as the Spearman rank correlation between the two graphs of 
the shortest distance for all pairs of cells. Third, an empirical p-value of the observed similarity between the two 
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hierarchies is provided. The empirical p-value is derived from a distribution of similarities resulting from random 
samplings of gene sets of the same size. 
 
This Sincell algorithm is particularly suited to evaluate associations with gene set collections such as those from 
the Molecular Signatures Database (MSigDB) of the Broad Institute 
(http://www.broadinstitute.org/gsea/msigdb/collections.jsp), gene lists representing Gene Ontology terms of func-
tional pathways, and in general, any gene set collections that might be of particular interest for the user. 
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