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Abstract 
 

The integration of sensory signals from different modalities requires flexible 

interaction of remote brain areas. One candidate mechanism to establish local and 

long-range communication in the brain is transient synchronization of neural 

assemblies. In addition to the analysis of oscillatory power, assessment of the phase 

dynamics of multiple brain signals is a promising avenue to examine the integration 

of distributed information in multisensory networks. 

In the current study, human participants were engaged in a visual-tactile pattern 

matching task while high-density electroencephalograms (EEG) were recorded. To 

investigate the neural correlates of multisensory integration and assess effects of 

crossmodal stimulus congruence, we adapted an approach for purely data-driven 

analysis of neuronal coupling in source space that has recently been developed within 

our group. This method allows imaging of large-scale cortical networks in space, time 

and frequency without defining a priori constraints. 

We identified three clusters of interacting sources that synchronized in the beta-band 

(~ 20 Hz). The spatial and spectro-temporal profile of the first two clusters suggest an 

involvement in crossmodal sensory processing, whereas the third cluster appears to 

reflect decision-related processes. By directly relating coupling features to task 

performance, we demonstrate that the phase of neural coherence within the observed 

networks predicts behavior. Our results provide further evidence that neural 

synchronization is crucial for long-range communication in the brain and suggest a 

possible role of beta-band activity in multisensory integration.	
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Significance Statement 

 

The natural environment is rich of information, which is sampled by the different 

sensory organs, and further perceived as light, sound, smell, taste and touch etc. 

Despite being processed by spatially distinct brain areas, rather than remaining 

isolated features, they ultimately form a unified, coherent percept. How this 

integration is organized on the cortical level remains poorly understood. In this study, 

we asked participants to detect pre-defined target patterns in visual-tactile stimulus 

combinations while high-density electroencephalograms were recorded. Without a 

priori assumptions, we identified several networks across remote brain areas, which 

are responsible for multisensory perception and sensorimotor integration. 

Synchronization within the observed networks occurred in the beta-band (~ 20 Hz). 

Phase relations of these interactions predicted participants’ behavioral performance. 
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Introduction 

 

The world surrounding us is inherently multisensory and requires continuous 

processing and accurate combination of information from the different sensory 

systems. Constantly, multisensory interactions occur in the brain to evaluate 

agreement or conflict of different sensory signals. Crossmodal interplay has been 

shown to impact perception (1) as well as a broad range of cognitive processes (2-4). 

Thus, flexible interactions of spatially distributed and functionally specialized sensory 

and other areas of the brain are fundamental to perception, cognition and action. Yet, 

the neurophysiological implementation of these interactions remains a subject of 

active exploration. It has been proposed that synchronization of oscillatory signals 

might subserve the dynamic formation of task-dependent cortical networks (5-9). 

Only recently, transient synchronization of neuronal signals has also been implicated 

in establishing relationships across different sensory systems (10, 11), allowing the 

preferential routing of matching crossmodal information to downstream assemblies 

(12). There is growing evidence relating multisensory processing to changes in 

oscillatory power (12-17). In contrast, only few studies have explicitly assessed phase 

dynamics of multiple brain signals in the context of crossmodal interaction. 

Experimental evidence directly linking neural coherence and multimodal processing 

comes from invasive recordings in behaving animals (18-20) as well as a small 

number of studies in humans performed with EEG and MEG (21-24). 

In the current study, we sought to investigate global patterns of long-range 

synchronization in distributed cortical networks as observed in multisensory 

processing. To this end, we used a crossmodal matching paradigm requiring the 

identification of concurrently presented visual and tactile dot patterns in combination 
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with high-density EEG recordings. In a similar previous study (25), we found that 

congruent as compared to incongruent visual-tactile stimulation reliably led to 

improved behavioral performance in a crossmodal detection task. Here, we aimed at 

characterizing the neurophysiological correlates of these congruence effects by 

mapping the involved multisensory networks in space, time and frequency, employing 

an approach for data-driven analysis of coupling in source space that has recently 

been developed by our group (26). We investigated whether coherence of oscillatory 

signals across cortical regions is crucial for the perception and integration of 

multimodal information. Critically, we tested for the functional relevance of the 

synchronized networks observed in visual-tactile pattern matching by relating large-

scale neural coherence to crossmodal stimulus congruence and participants’ task 

performance. 
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Results 

 

Behavioral performance 

In this study, participants (n = 16) performed a bimodal target detection task, with 

high-density EEG being recorded simultaneously. The target was one of four spatial 

dot patterns (Figure 1A), which was introduced at the beginning of each experimental 

block in both visual (left visual field) and tactile (right finger) modalities. In each trial, 

different combinations of patterns – that could either be congruent or incongruent – 

were concurrently delivered in the two modalities and participants were instructed to 

detect the predefined target in either of them. This yielded four stimulus types: (1) 

only the tactile stimulus matched the target (T, 16.7%); (2) only the visual stimulus 

matched the target (V, 16.7%); (3) visual and tactile patterns matched the target (VT, 

16.7%); and (4) none of the two patterns matched the target stimulus (50%). In our 

analysis, we focused on correctly detected (T, V and VT) targets. Trial timing is 

depicted in Figure 1B. 

Repeated-measures ANOVAs comparing accuracy and reaction time data for the 

different target cases revealed significant differences related to crossmodal stimulus 

congruence (F2, 14 = 23.28, p < 0.0001 for accuracies; and F2, 14 = 6.59, p < 0.01 for 

reaction times) with congruent VT targets being associated with the best performance, 

followed by V and T targets in both accuracy and reaction time. Detailed analyses of 

the behavioral and oscillatory power data are reported elsewhere (27). 
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Figure 1. Schematic representation of the visual-tactile detection task. (A) The four 
pattern stimuli used in our experiment. (B) The trial sequence. After a pre-stimulus interval of 
1500 ms, visual and tactile stimuli were presented simultaneously for 300 ms, followed by a 
wait interval of 1200 ms. After that, a question mark appeared on the screen indicating that 
responses could be given. After button press, visual feedback was given (1000 ms). 
 

Identifying networks of remote cortical synchronization 

In this study, we focus on analyzing the coordination of brain activity among remote 

areas. We adopted a recently published purely data-driven method (26) to identify 

brain networks formed by cortical synchronization. Time-frequency decomposition of 

the EEG sensor data was performed using the multi-taper approach (28). Afterwards, 

the full spectrum including all time and frequency bins was projected to source space 

using beamforming (29). Since we did not want to constrain our analysis by a priori 

assumptions concerning the location of the networks involved in the crossmodal task, 

we constructed the source space as 324 evenly distributed voxels covering the whole 
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cortex. We chose coherence (30) to measure neural coupling in source space, which 

was applied to all locations pairs. Further, instead of investigating the directly 

measured values, we compared coupling measures between well-controlled conditions. 

This was done to avoid possible spatial synchronization patterns caused by irrelevant 

sources common to all conditions (e.g. heart beats). The difference in coherence was 

submitted to spatial filtering and then clustered in multi-dimensional space with 

locations, time and frequency. To account for the problem of multiple comparisons 

(see Methods section for details), permutation statistics (31) was performed to identify 

the synchronized networks. This method enabled us to investigate interactions 

between remote brain areas without any a priori assumptions about the time, 

frequency, size, location, number or structure of the involved networks.  

 

One beta network involved in target detection 

First, we applied the network identification approach to the difference in coherence 

between stimulation and baseline activity. A highly structured network associated 

with target detection was identified (permutation-test, p < 0.001, cluster 1, Figure 2), 

exhibiting stronger beta (~ 20 Hz) synchronization compared to baseline, which 

started around 600 ms, and peaked at 800 ms after stimulus onset (Figure 2B). The 

most strongly connected region in this network was intraparietal sulcus (IPS), 

accounting for 5268 of 13641 total connections, a large proportion of which (4945) 

were long-range connections to other areas, including the primary somatosensory 

cortex (S1), supramarginal gyrus (SMG), primary motor cortex (M1) and premotor 

cortex (PM, Figure 2A, Figure S1A). The left-hemispheric distribution of the network 

was in line with the location of tactile stimulation (right index finger), suggesting this 
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network was related to sensory information processing. The involvement of IPS 

suggests a similarity to findings reported previously on visual-auditory integration 

during bi-stable perception (26). This finding was also consistent with the hypothesis 

that parietal cortex constitutes a prominent hub in the human brain, as supported by 

both anatomical and functional studies on resting state connectivity (32). 

Compared to the overall distribution of coherence values, those of cluster 1 were 

more pronounced (Figure S2). Follow-up analyses were conducted to test whether 

synchronization within the network differed between stimulus conditions. We 

	
  

Figure 2: Beta synchrony network related to the detection task. (A) Spatial localization of 
cortical areas involved in the network. At each location, the color indicates how many 
connections were stronger after stimulation than baseline, between this location and all other 
locations, in all time and frequency bins. (B) Spectro-temporal coherence profile of the 
network, showing between how many locations coherence was increased at a given time and 
frequency point compared with baseline. (C) Comparison of coherence for three conditions: T, 
V and VT. Black bars represent coherence values for the stimulus interval and gray bars are 
for baseline. Error bars represent standard errors (N = 16). *** p<0.001. There are significant 
differences between stimulus and baseline for all 3 conditions. 
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performed a repeated-measures ANOVA with two factors: stimulus condition (T, V 

and VT) and brain state (stimulus vs. baseline). A significant interaction (F2,14 = 

13.592, p = 0.001), as well as significant main effects were observed. Of course, we 

expected the contrast for stimulus vs. baseline (F1,15 = 33.117, p < 0.0001) to be 

significant, as the cluster itself was identified based on that comparison. Next, we 

performed post-hoc analysis to examine differences in coupling related to crossmodal 

stimulus congruence. We found significant differences between the three stimulus 

conditions in the time window of interest (F2,14 = 15.094, p < 0.001) but not in the 

baseline interval (F2,14 = 1.967, p = 0.177). This indicated that coupling changed in 

response to different crossmodal stimulus configurations, but was not different for the 

baseline period. Pairwise examination showed that the overall within-network 

coherence was stronger in the congruent VT condition than the T condition (paired t-

test, p < 0.0001); and stronger in the V condition than the T condition as well (paired 

t-test, p < 0.0001). 

 

Two beta networks that differ between conditions 

We also applied our network identification approach to the difference between 

conditions, i.e., we contrasted connections between the VT and the V condition (VT – 

V), and between the VT and the T condition (VT – T). Two networks (cluster 2 and 3, 

Figure 3) were observed for the latter comparison. 

Cluster 2 (permutation test, p = 0.017) involved the following brain areas: IPS, S1, 

PM, M1, and SMG, all located in the left hemisphere (Figure 3A, Figure S1B). IPS 

was most (106 of 219) connected, and all of its connections were long-range. As can 

be seen in Figure 3B, cluster 2 started to evolve around 600 ms and peaked at 700 ms 
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after stimulus onset. Its frequency was around 20 Hz (Figure 3B). Characteristics of 

the second cluster were similar to the first one, but spatially and temporally a bit more 

specific. Baseline coherence, as measured for the frequency and spatial distribution of 

this cluster, did not differ between condition VT and T (t1, 15 = 1.358, p = 0.195). This 

suggested that the condition difference in this cluster was not caused by variations in 

baseline connectivity. 

 

Cluster 3 (permutation test, p = 0.010) was distinct from the other two. It mainly 

distributed in the right hemisphere (Figure 3C, Figure S1C), including brain areas 

SMG, M1, S1, and supplementary motor area (SMA). The most strongly connected 

 

Figure 3. Two beta synchrony networks showing differences between VT and T conditions. 
(A) Spatial localization of cortical clusters showing coherence differences between VT and T 
conditions. In each location, the color indicates how many connections are stronger in the VT 
condition than the T condition only, between this location and all other locations, in all time and 
frequency bins. (B) Spectro-temporal coherence profile of the network, showing the number of 
locations with increased coherence at a given time and frequency bin. (C-D) are similar to (A-B) 
but for the third cluster. 
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region in this cluster was SMG (196 of 277), and all of its connections were remote. 

The key role of SMG in visual-tactile integration is consistent with a recent study (33). 

Coupling in this network emerged around 900 ms and peaked at 1200 ms after 

stimulus onset (Figure 3D). The relatively late engagement and the lateralization of 

this cluster (right hemisphere, the response hand was left) suggest that this network 

may be related to processes of response preparation and execution. Again, we 

compared coherence between the VT and the T condition also in the baseline period, 

which yielded no significance (t1, 15 = 0.927, p = 0.369).  

 

Synchrony within the networks was correlated with performance 

In addition to the analysis of long-range coupling, we also tested for local power 

effects in the involved brain areas at the corresponding time and frequency. We found 

significant power differences between conditions in all three networks, with power 

being stronger for VT and V compared to the T condition (Figure 4A). To make sure 

that the observed connectivity differences represent genuine changes in coupling 

rather than consequences of power-related variations in signal to noise ratios, we 

conducted additional analyses and related behavioral performance to specific coupling 

features. For each subject, we first took the average phase angle of all correct trials for 

each connection as the optimal angle. Subsequently, for each trial and connection we 

computed the phase delay to the optimal angle and then averaged across all 

connections as an index of how close this trial was to an optimal coupling state. Then 

all trials (including wrong trials) were split into two groups with identical sizes, one 

with smaller delay to the optimal phase and the other with larger delay. The 

performance of each group was calculated and statistical analysis was performed 
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across subjects. For all clusters, the group with smaller phase delay to the optimal 

state had higher accuracy (Figure 4B). Similarly, we split trials according to power 

values and related them to behavioral performance. We found no significant 

difference between the larger power and smaller power groups in any of the 3 clusters. 

This suggested that phase coupling within the observed networks effectively 

facilitated performance on the task, which could not be explained by power effects. 

 

  

	
  

Figure 4. Examination of power confounds and behavioral relevance of long-range coupling. 
(A) Comparison of local power change in brain areas involved in the three beta-band networks. 
Power values were normalized to the mean of each subject. (B) Comparison of performance with 
trials being either grouped by phase delay to average phase, or power strength; black bars 
represent smaller and gray bars represent larger phase delays, or differences to average power, 
respectively. Error bars represent standard errors (N = 16). * - p< 0.05, ** - p< 0.01, *** - p 
<0.001.	
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Discussion 

 

In the current study, we applied a set of purely data-driven methods for the analysis of 

complex brain dynamics to high-density EEG recordings from a multisensory 

paradigm. Throughout the experiment, participants were presented with bimodal 

visual-tactile stimulation and were instructed to detect predefined target patterns that 

could appear in either of the two modalities. Three clusters of interacting sources 

were identified, which showed task- and condition-specific coherence effects in the 

beta frequency range. Further, the coupling phases within these networks were 

correlated with the subjects’ behavioral performance. 

 

Synchronous beta-band networks for multisensory detection 

Our results strongly support the claim that neural synchronization is vital to long-

range coordination in the brain, facilitating perceptual organization of sensory 

information and sensorimotor integration. This adds to growing evidence showing 

that large-scale cortical synchronization plays an important role in various cognitive 

functions, including selective attention (34, 35), learning (36), and cross-modal 

integration (19). The networks observed in the current study synchronized their 

activity in the beta-band, suggesting central importance of these frequencies for the 

interaction between remote brain areas (37). This is in line with predictions from 

computational modeling (38, 39), evidence from invasive recordings in monkeys (34, 

40, 41), and clinical studies in different patient groups (42-44).  
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The networks identified as cluster 1 and cluster 2 in our study (Figure 2, Figure 3 A, 

B) are likely to be one network obtained with two different procedures. Coupling 

within this network was enhanced for the condition where crossmodal information 

was congruently matching the target stimulus (VT), compared to the incongruent case 

where only the tactile pattern matched the target (T). This could be interpreted in 

terms of the recent hypothesis that beta-band synchronization is more pronounced for 

the maintenance of the current status (45). In the natural environment, humans rely 

more on vision than the other sensory modalities (46, 47); tactile information is often 

congruent to the visual input and, thus, provides complementary information (e.g. 

when we pick apples in the supermarket). In this sense, perceptual experience might 

have shaped the communication pattern between brain areas to a default pattern of 

high functional connectivity between multisensory parietal and somatosensory 

cortices. However, in the T condition of our study, information was conflicting 

between modalities. In this condition, the usually dominant visual modality was not 

task-relevant but, rather, processing resources needed to be directed to the tactile 

modality. This might then require a reduction of functional connectivity with parietal 

cortex in order to decrease the impact of multisensory top-down influences on 

somatosensory processing. This line of argument draws upon an analogy to the 

observation that multimodal signals in parietal cortex are processed in a visually 

dominated reference frame (48, 49). Thus, in the V condition, although bimodal 

inputs were also incongruent, solely relying on the usually dominant visual modality 

was still sufficient to accomplish the task. Thus, the need to deviate from the default 

interaction pattern may be less critical, which would not yield significant change in 

beta synchrony compared to the VT condition – as observed in our data. 
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Whereas the first two clusters likely reflected crossmodal sensory processing, cluster 

3 (Figure 3 C, D) might be related to sensorimotor integration, decision making and 

response preparation. Similar to cluster 2, synchronization was stronger for the VT 

condition as compared to the T condition. Again, reduced beta coherence for the T 

condition could signal the deviation from the default state of multisensory congruence. 

Timing and spatial distribution of the third cluster are compatible with recent studies 

(50, 51), which have linked beta-band activity to decision making in visual motion 

detection. 

Computational modeling (39, 52) suggests that top-down processing in beta network 

functions can be maintained in the absence of sensory input and may involve 

modulation of inhibitory interneurons in the target area. The results of our study seem 

to agree with these proposals showing that beta-band synchronization between 

parietal and somatosensory cortex decreased when tactile information was needed to 

successfully perform on the task – possibly leading to a reduction of inhibition. 

Similar findings were reported in monkey studies (34, 53, 54). The mechanism could 

be that, as an adaption to regular input patterns, default beta-band networks are 

established through long-range inhibition across brain areas, facilitating sensory 

processing, sensorimotor integration and ultimately performance. Whenever 

deviations from constellations predicted as most likely occur (e.g. conflicting 

crossmodal stimulation is detected), beta-band coupling decreases to recalibrate 

performance. 
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Methodology and critique 

In this study, we applied a recently published data-driven method for the 

identification of long-range networks of cortical synchronization (26). To our best 

knowledge, this is the first study investigating source space connectivity in a setting 

requiring multisensory interaction in a purely data-driven way. In general, statistical 

examination of experimental effects can prevent us from biasing results in favor of a 

priori hypotheses. However, it cannot correct the bias of data pre-selection with 

regards to time, space or frequency. The methodology employed in the current study 

allowed exploring neuronal dynamics in source space covering most of the cortex 

with a wide range of time and frequency being examined. This provided a quite 

objective evaluation of our data without a priori constraints. 

However, this method has its limitations, too. Investigating a multi-dimensional space, 

it has to account for a massive multiple-comparison problem, making it less sensitive. 

It is therefore possible that networks involved in early interaction between sensory 

areas (i.e. between visual and tactile areas), failed to be identified with our approach. 

Another limitation of this high-dimensional data space is that in order to avoid 

extensive computational effort we used a relatively coarse resolution for analysis in 

source space. However, it was compatible with our anatomical data, i.e., template 

MRIs and averaged sensor locations.  

In this study, only coherence between location pairs in the same frequency range was 

considered. For future studies, it would be promising to include cross-frequency 

coupling as well. For example, it would be of interest to investigate the relation of 

beta phase and gamma power, and its modulation depending on crossmodal 

congruence. 
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Importantly, in addition to the data-driven methods, we employed a phase analysis 

approach inspired by invasive studies (9). By directly relating coupling features, i.e., 

phase angle, to behavior we showed that neural coherence within the observed 

multisensory networks effectively facilitated performance on the task. 

 

Power and coupling 

Analyses of the behavioral effects and oscillatory power in the same dataset are 

detailed elsewhere (27). Summing up, we found power differences related to visual-

tactile stimulus congruence in the theta- (2-7 Hz), alpha- (8-13 Hz) and beta-band 

(13-25 Hz). We positioned these findings within a recent framework suggesting that 

integrative functions involving long-range interactions are predominantly mediated by 

lower frequencies(20, 55) and proposed that the observed differences in oscillatory 

dynamics might relate to distinct subcomponents of multisensory integration, such as 

multisensory gating and crossmodal perceptual decision making. Here, we extend 

these findings by explicitly assessing phase dynamics of multiple brain signals and 

mapping the multisensory networks mediating visual-tactile integration in space, time 

and frequency. Unlike previous work (26), we did not observe a dissociation between 

local oscillatory activity and long-range synchronization but in contrast found parallel 

condition differences in power and coherence in the beta-band. However, our 

additional analysis minimized the risk that the observed coupling patterns were trivial 

effects of power differences: phase delays calculated on single trial basis were 

predictive of behavioral performance – in contrast to power. Thus, coupling within 

the observed networks effectively facilitated performance on the task. These results 

support the notion that local activation as measured with oscillatory power and remote 

coupling are complementary to each other in multi-modal tasks. 
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Summary 

In the current study, we provide evidence for a functional role of beta-band coherence 

in integrating distributed information in multisensory networks. Our data suggest that 

functional networks defined by beta-band synchrony may be involved in crossmodal 

sensory processing as well as decision-related processes. Additionally, we 

demonstrated the functional relevance of inter-areal synchronization for behavior by 

directly relating phase dynamics to task performance. 
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Materials and Methods 

	
  
Participants 

Sixteen right-handed volunteers (12 female, mean age 25.4, range 21-33) participated 

in the current experiment and were compensated in monetary form. Participants had 

normal or corrected to normal vision and reported no history of neurological or 

psychiatric illness. The study was approved by the Ethics Committee of the Medical 

Association Hamburg and conducted in accordance with the Declaration of Helsinki. 

Prior to the recordings, all participants provided written informed consent. 

 

Task design 

In the current experiment, we employed a setup similar to the one realized in a 

previous behavioral study (25). Figure 1 provides an overview of events and timing of 

the visual-tactile matching paradigm used here. The stimulus set consisted of four 

spatial patterns, each of them formed by three dots (Figure 1A). Stimulation was 

always bimodal, with visual and tactile patterns being presented concurrently on a 

computer screen and to participants’ index fingertip via a Braille stimulator 

(QuaeroSys Medical Devices, Schotten, Germany). Visual stimuli appeared left of a 

central fixation cross and were embedded in a noisy background while tactile patterns 

were delivered to the right index finger. Stimulus duration was 300 ms for both 

patterns. 

To familiarize participants with the tactile stimuli, we conducted a delayed-match-to-

sample training task prior to the actual experiment (for details see (27)). One 

participant was excluded after the training procedure due to insufficient performance. 
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Participants were instructed to detect predefined target stimuli that could appear in 

both modalities. At the beginning of each experimental block, one of the four patterns 

was defined as the target stimulus (the other three patterns were non-targets, 

respectively) by simultaneously presenting it on the computer screen and by means of 

the Braille stimulator (four times). During the experimental block, the target could 

appear in the visual or the tactile modality alone, in both or in neither of the two. 

Participants were asked to decide whether the presented stimuli matched the 

previously defined target or not and press one of two response buttons accordingly. 

Participants responded with their left hand via button press on a response box 

(Cedrus, RB-420 Model, San Pedro, USA) and visual feedback (a green ‘+’ or a red 

‘–’) was given in every trial. The timing of events is displayed in Figure 1B. 

In two sessions happening within three days, we recorded 1536 trials from each 

participant. The design was counterbalanced with respect to crossmodal stimulus 

congruence, target definition and presentation frequency of each of the four patterns 

(for details see (25)). Data from the two recording sessions were pooled and trials 

grouped according to target appearance, resulting in the following conditions: tactile-

matching only (a tactile target presented with a visual non-target; labeled as T), 

visual-matching only (a visual target appearing with a tactile non-target; V), and 

visual-tactile targets (VT) as well as non-target congruent or incongruent pairs. In our 

cluster identification analysis, we focused on correctly detected (V, T and VT) trials. 

For each of these conditions, 192 trials were presented across the two recording 

sessions. 

Key mapping (for ‘target’ and ‘non-target’-buttons) was counterbalanced across 

participants and sessions. Sounds associated with pin movement in the Braille cells 

were masked with pink noise administered via foam-protected air tube earphones at 
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75 dB sound pressure level (Eartone, EAR Auditory Systems, AearoCompany). We 

used Presentation software (Neurobehavioral Systems, version 16.3) to control 

stimulus presentation and to record participants’ response times (RT) and accuracies. 

 

EEG data collection and preprocessing 

Electroencephalographic data were acquired from 126 scalp sites using Ag/AgCl ring 

electrodes mounted into an elastic cap (EASYCAP, Herrsching, Germany). Two 

additional electrodes were placed below the eyes to record the electrooculogram. EEG 

data were recorded with a passband of 0.016-250 Hz and digitized with a sampling 

rate of 1000 Hz using BrainAmp amplifiers (BrainProducts, Munich, Germany). 

During the recordings, the tip of the nose served as a reference but subsequently we 

re-referenced the data to common average. Preprocessing of the EEG data was carried 

out in Matlab 8.0 (MathWorks, Natick, MA) using custom-made scripts, as well as 

routines incorporated in EEGLAB 11.0 ((56); http://sccn.ucsd.edu/eeglab/). Offline, 

the data were band-pass filtered (0.3-180 Hz), downsampled to 500 Hz and epoched 

from – 400 to + 1400 ms around stimulus onset. Next, all trials were inspected 

visually and those containing EMG artifacts were rejected. To remove artifacts related 

to eyeblinks, horizontal eye movements and electrocardiographic activity, we applied 

an independent component analysis (ICA) approach. Furthermore, we employed the 

COSTRAP algorithm (correction of saccade-related transient potentials; (57)) to 

control for miniature saccadic artifacts. This algorithm has been used in previous 

studies (e.g. (58, 59)) to suppress ocular sources of high frequency signals. 

Employing this multilevel artifact correction procedure, 88% of all recorded trials 

(range: 75% to 95% for individual participants) were retained. The number of trials 
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for all three conditions was stratified before applying the cluster identification 

approach based on differences between conditions. 

 

EEG time-frequency decomposition 

All spectral estimates were performed using the multitaper method (28, 60). Spectral 

estimates were computed across 21 logarithmically scaled frequencies from 4 to 128 

Hz with 0.25 octave steps; and across 17 time points from -300 to 1300 ms in 100 ms 

steps. The temporal and spectral smoothing was performed as follows. For 

frequencies larger or equal to 16 Hz, we used temporal windows of 250 ms and 

adjusted the number of slepian tapers to approximate a spectral smoothing of 3/4 

octave; for frequencies lower than 16 Hz, we adjusted the time window to yield a 

frequency smoothing of 3/4 octaves with a single taper (26). In case the window 

extended outside of the full data range (-400 – 1400 ms), zeros were padded. We 

characterized power and coherence responses relative to the prestimulus baseline 

using the bin at -200 ms. The employed time frequency transformation ensured a 

homogenous sampling and smoothing in time and frequency, as required for 

subsequent clustering within this space. 

 

Source estimation of frequency-specific activity 

We first constructed our source space based on the template brain ICBM152 from the 

Montreal Neurological Institute (61). The cortex was segmented using freesurfer 

software (62, 63). After that, we employed the MNE software package (64) to define 

our source space as 324 locations homogeneously covering the whole cortex. Then, 

we computed leadfields with these source locations, and averaged sensor locations 

from ~ 30 subjects whose data were registered in previous studies in our laboratory. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 27, 2015. ; https://doi.org/10.1101/014423doi: bioRxiv preprint 

https://doi.org/10.1101/014423


	
   24	
  

Leadfield calculation was realized as described in a previous paper (65) with a 3-shell 

head model based on the same brain template. We used the beamforming method (29) 

to estimate the spectral amplitude and phase of neural population signals at the 

cortical source level. For each time point, frequency, and source location, we 

computed three orthogonal filters (one for each spatial dimension) that passed activity 

from the location of interest with unit gain, while maximally suppressing activity 

from all other sources. We then linearly combined the three filters into a single filter 

in the direction of maximal variance (26). To derive the complex source estimates, we 

multiplied the complex frequency domain data with the real-valued filter. We used all 

data trials to compute the filter common to all conditions in order to avoid spurious 

effects resulting from unequal filters. It should be noted that high source correlations 

can reduce source amplitudes estimated with beamforming due to source cancelation 

(66). This may, in turn, affect the magnitude of cortico-cortical coherence estimates. 

However, within the range of physiological source-correlations (67), this does not 

prevent the identification of cortico-cortical coherence using beamforming (68). 

Moreover, although source-cancelation may affect the magnitude of, and reduce the 

sensitivity to detect coherence, it may not lead to false positive results.  

 

Coupling analysis 

We estimated coherence to quantify the frequency-dependent synchronization 

between pairs of signals X (f, t) and Y (f, t) according to the following equation: 

𝐶!"(𝑓, 𝑡) =
!(!,!)!   !∗(!,!)

( !(!,!)!∗(!,!))( !(!,!)!∗(!,!))!!
       (1) 

Since coherence is positively biased to 1 with decreasing number of independent 

spectral estimates (degrees of freedom), we stratified the sample size and used the 
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same number of trials for the comparison between conditions. We also performed a 

nonlinear transform (69) to render the coherence distribution to approximately 

Gaussian before clustering with the following equation: 

𝐶! = 𝛽 𝑞 − 𝛽 ,              𝑞 =    − 𝜐 − 2 log  (1− 𝐶 !)     (2) 

 Here β is a constant 23/20; ν is the degree of freedom; C is coherence. 

 

Identification of Synchronized Networks 

The general approach of our network identification followed the method described in 

a previous study (26), which is summarized below. An interaction between two 

cortical areas could be extended from a point in a two-dimensional space to that in a 

four-dimensional space when time and frequency were involved. Thus, identifying 

networks of significant interaction would be equivalent to identifying continuous 

clusters within this high-dimensional space. In our approach, we first computed 

coherences for all pairs of locations in all time and frequency bins and conditions with 

equation (1), which were later transformed with equation (2) to be Gaussian. Then t-

statistics was performed across subjects, contrasting either between data after stimulus 

onset to baseline in all trials, or between data of condition pair VT vs. V or VT vs. V 

with stratified trial numbers. The 4-D (location by location by frequency by time) 

matrix was then thresholded with a t-value equivalent to p < 0.01 to be 1 (connected) 

or 0 (not connected). Further, the resulting matrix was spatially filtered by a threshold 

of 0.5 to remove spurious connections, i.e. if the average neighboring connection 

value of a connection was less than 0.5, this connection would be set to 0. This 

procedure removed spurious bridges between connection clusters. Then the remaining 

networks linked by direct neighbor connections were identified as clusters, which 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 27, 2015. ; https://doi.org/10.1101/014423doi: bioRxiv preprint 

https://doi.org/10.1101/014423


	
   26	
  

corresponded to networks of cortical regions with different synchronization status 

among comparisons, and were continuous across time, frequency, and pairwise space. 

We defined their sizes as the integral of the t-scores across the volume of the cluster. 

To evaluate their significance, random permutation statistics was performed to 

account for multiple comparisons across the interaction space; i.e. the network-

identification approach was repeated 2000 times with shuffled condition labels to 

create an empirical distribution of cluster sizes under the null-hypothesis of no 

difference between conditions (31). The null-distribution was constructed from the 

largest clusters (two-tailed) of each resample, and only clusters with sizes ranked top 

5% in these null distributions were considered as significant. 

 

Illustration of identified networks	
  

To visualize the identified networks, we projected them onto two subspaces 

separately. We computed for each location the integral of the corresponding cluster in 

the connection space over time, frequency, and target locations. The result was then 

displayed on the template brain surface and revealed the spatial extent of the network 

independent of its intrinsic synchronization structure and location in time and 

frequency. Complementary to this, we integrated the connections over all spatial 

locations for each time and frequency bin to illustrate when and at which frequencies 

a cluster was active irrespective of the spatial distribution. 

 

Further analyses of identified networks	
  

To analyze the spatial patterns within the observed clusters, we defined several 

regions of interest (ROIs) according to a cortex-based atlas (70, 71). The connections 
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from each ROI were summed as an index of how much this ROI was involved in the 

network. To analyze further properties of the network identified by coherence 

differences between stimulus and baseline, we averaged coherence values across all 

location pairs, times and frequencies for the three conditions separately, and their 

corresponding values in baseline as well. These data for all subjects were submitted to 

a 3 x 2 repeated-measures ANOVA, with two within-subject factors: stimulus 

condition (VT, V and T) and brain state (stimulus and baseline). Post-hoc analysis 

was performed for simple effects. The aggregated power of each cluster was also 

compared in a similar manner to check whether the local changes were correlated 

with the remote ones. To test further the independency of the latter, we classified the 

trials according to the phase relations, inspired by previous work in monkeys (9). The 

average phase angle across all correct trials, for each pair of locations in a certain time 

and frequency was taken as the optimal phase angle. For each trial, we measured the 

deviation of the phase angles from this optimal one and averaged across all location 

pairs, times and frequencies, as an index of how close this trial was to the optimal 

coupling state. Then, for each subject, trials were classified into two groups with 

identical trial numbers, one with smaller phase delay from the optimal and the other 

with lager phase delay, irrespective of stimulus type. To test whether the phase delay 

was functionally relevant for behavior, performance in either group was compared 

across subjects. A similar approach was performed for the power data at the 

locations/times/frequencies involved in the network of interest.	
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Supporting information 

 
SI Figures 

 

 

 

 

	
  
	
   	
  

 

	
  

Figure S1. Brain regions involved in the 
clusters. (A) The brain areas involved in 
cluster 1; (B) The brain areas involved in 
cluster 2; (C) The brain areas involved in 
cluster 3. Abbreviations: IPS - intraparietal 
sulcus; S1 - primary somatosensory cortex; 
SMG -supramarginal gyrus; M1 - primary 
motor cortex; PM - premotor cortex; CS - 
central sulcus; SMA - supplementary 
motor area 
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Figure S2. Distribution of coherence values. For this figure, the coherence values were computed 
on all the trials for all subjects (N = 16). Each curve illustrates the coherence values’ distribution in 
100 bins, which extends from 0 to 1. The blue curve represents all subjects in all location pairs, time 
and frequency bins. The orange curve also represents all subjects but only location pairs, time and 
frequency bins involved in cluster 1. The x-axis is for the bins of coherence values; y-axis is for 
percentage of overall connections for each bin.  
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