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Abstract 27	
  

During the last two decades ferrets (Mustela putorius) have been established as a highly 28	
  
efficient animal model in different fields in neuroscience. Here we asked whether ferrets 29	
  
integrate sensory information according to the same principles established for other species. 30	
  
Since only few methods and protocols are available for behaving ferrets we developed a 31	
  
head-free, body-restrained approach allowing a standardized stimulation position and the 32	
  
utilization of the ferret’s natural response behavior. We established a behavioral paradigm to 33	
  
test audiovisual integration in the ferret. Animals had to detect a brief auditory and/or visual 34	
  
stimulus presented either left or right from their midline. We first determined detection 35	
  
thresholds for auditory amplitude and visual contrast. In a second step, we combined both 36	
  
modalities and compared psychometric fits and the reaction times between all conditions. We 37	
  
employed Maximum Likelihood Estimation (MLE) to model bimodal psychometric curves and 38	
  
to investigate whether ferrets integrate modalities in an optimal manner. Furthermore, to test 39	
  
for a redundant signal effect we pooled the reaction times of all animals to calculate a race 40	
  
model. We observed that bimodal detection thresholds were reduced and reaction times 41	
  
were faster in the bimodal compared to unimodal conditions. The race model and MLE 42	
  
modeling showed that ferrets integrate modalities in a statistically optimal fashion. Taken 43	
  
together, the data indicate that principles of multisensory integration previously demonstrated 44	
  
in other species also apply to crossmodal processing in the ferret.  45	
  

  46	
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Introduction 47	
  

During the last two decades ferrets (Mustela putorius) have become increasingly relevant as 48	
  
an animal model in different fields in neuroscience [1–24]. Ferrets have been domesticated 49	
  
for over 2000 years and are easy to handle and train on behavioral tasks [15,25–29]. As a 50	
  
carnivore ferrets have excellent visual and auditory sensing and are well suited for cross-51	
  
modal integration studies. An additional advantage is that the ferret brain shows substantial 52	
  
homologies with that of other animal models established in neuroscience, such as the cat 53	
  
[10,11,18–20] and the primate [26]. Extensive work has been performed to map cortical and 54	
  
subcortical regions of the ferret brain functionally and anatomically [3,11,17–20,22]. These 55	
  
mapping studies have shown that ferrets have highly complex sensory cortical systems, 56	
  
making them an interesting model for the study of sensory processing pathways, response 57	
  
properties and topographies of sensory neurons. Several studies have addressed 58	
  
multisensory response properties in anesthetized ferrets [2,4,8,14], but multisensory 59	
  
interactions have not yet been studied in a behavioral preparation in this species. 60	
  
 Substantial effort has been made to uncover principles of multisensory integration in a 61	
  
variety of species and paradigms [30–35]. Multisensory integration is crucial for animals and 62	
  
influences behavior in synergistic or competitive ways. Sensory integration can lead to faster 63	
  
reaction times, better detection rates and higher accuracy values in multi- compare to 64	
  
unimodal conditions [33,36,37]. Specifically, sensory integration increases the reliability by 65	
  
reducing the variance in the sensory estimate [36,38,39]. The consistent estimate with the 66	
  
lowest variance is the Maximum Likelihood Estimate (MLE) [40], which can be derived from 67	
  
the weighted sum of the individual sensory estimates, with weights being inversely 68	
  
proportional to the variance of the unisensory signals [36,39]. A substantial number of 69	
  
studies indicate that humans and animals indeed integrate information across sensory 70	
  
modalities in this way [33,36,38,39,41–46]. For example, Ernst and Banks [36] used a MLE 71	
  
model to predict the results of a visual-haptic experiment and showed that humans integrate 72	
  
information in a statistically optimal fashion. Similar results were obtained by application of 73	
  
MLE in a human audio-visual study [37] and in a vestibular-visual study in macaque monkeys 74	
  
[47]. These studies demonstrate that the MLE is a robust statistical model to predict the 75	
  
crossmodal response and to test whether subjects integrate information in a statistically 76	
  
optimal fashion. As a results of the sensory integration process, the accumulation of 77	
  
information in multimodal compared to unimodal conditions is faster, which in turn leads to 78	
  
decreased reaction times (RT) [48–53].  79	
  

In the present study, we investigated whether ferrets integrate sensory signals 80	
  
according to the same principles established for humans [33,54] and non-human primates 81	
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[47]. Previous studies in behaving ferrets have used either freely-moving [13,15,55] or head-82	
  
restrained [26] animals. Here, we developed a head-free, body-restrained approach allowing 83	
  
a standardized stimulation position and the utilization of the ferret’s natural response 84	
  
behavior. An additional demand was that the setup should be sufficiently flexible to allow 85	
  
combination of the behavioral protocol with electrophysiological recordings. We established a 86	
  
behavioral paradigm, requiring combination and integration in the auditory and/or visual 87	
  
modality, to investigate features of uni- and multisensory integration in the ferret and 88	
  
compare it to data reported from other species. Ferrets were tested in a 2-alternative-choice 89	
  
task requiring them to detect lateralized auditory, visual, or combined audio-visual targets of 90	
  
varying intensity. We expected the ferrets to perform more accurate and faster in the bimodal 91	
  
cases, because congruent inputs from two modalities provide more reliable sensory 92	
  
evidence. We first determined unimodal thresholds for auditory amplitude and visual contrast 93	
  
detection. Subsequently, we combined both modalities and compared psychometric fits and 94	
  
the RTs between all conditions. We used MLE to model psychometric curves and to probe 95	
  
whether ferrets integrate visual and auditory signals in an optimal manner. Furthermore, to 96	
  
test for a redundant signal effect (RSE) we pooled the RT of all animals in order to calculate 97	
  
a race model and to investigate potential intensity- and modality-dependent effects 98	
  
[49,56,57].  99	
  

  100	
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Materials and Methods 101	
  

Ferrets were trained in a spatial detection paradigm, which was used to perform two 102	
  
behavioral experiments. In the first experiment, the animals’ auditory and visual unisensory 103	
  
detection thresholds were determined. In the second experiment, unimodal and bimodal 104	
  
thresholds were assessed in a combined approach, using the unimodal results from the first 105	
  
experiment to adjust the test parameters. 106	
  

Animals 107	
  

Four adult female ferrets (Mustela putorius; Euroferret, Dybbølsgade, Denmark), aged 2 108	
  
years (n=2) and 4 years (n=2), from two different litters were tested in the experiment. They 109	
  
were individually housed in a standard ferret cage with enriched environment under 110	
  
controlled ambient conditions (21°C, 12-h light/dark cycle, lights on at 8:00 a.m.). The 111	
  
animals had ad libidum access to food pellets. Access to tap water was restricted 8h before 112	
  
the experiments and the training procedure. All behavioral testing was done during the light 113	
  
cycle between 10:00 a.m. and 2:00 p.m. 114	
  

Ethics statement 115	
  

All experiments were approved by the Hamburg state authority for animal welfare (BUG-116	
  
Hamburg; Permit Number: 22/11) and performed in accordance with the guidelines of the 117	
  
German animal protection law. All sections of this report adhere to the ARRIVE Guidelines 118	
  
for reporting animal research [58]. 119	
  

Experimental setup 120	
  

The experiments were carried out in a dark sound attenuated chamber to ensure controlled 121	
  
conditions for sensory stimulation. Once per day each ferret performed the experimental task 122	
  
in a custom-build setup (Fig. 1A,D). We crafted a flat-bottomed tube to conveniently house 123	
  
the animal during the experiment. The body of the ferret was slightly restrained by fixation to 124	
  
three points in the tube via a harness, while the head remained freely movable outside the 125	
  
tube throughout the session. The semi-circular tube was fixed on an aluminum pedestal to 126	
  
level the animals’ head at 20cm distance to the center of the LED screen used for visual 127	
  
stimulation (BenQ XL2420T, Taipei, Taiwan). On the front (‘head side’), two convex 128	
  
aluminum semicircles were mounted horizontally below and above the animals’ head, 129	
  
respectively, at 150mm distance. They carried three light-barrier-fibers (FT-FM2), in the 130	
  
center, left and right, respectively, connected to high-speed (sampling interval: 250μs) 131	
  
receivers (FX301, SUNX, Aichi, Japan). This allowed the detection of the animal head during 132	
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the experiments. In addition, a waterspout was co-localized with each light-barrier source. On 133	
  
both sides of the LED screen a speaker (T1; Beyerdynamic, Heilbronn, Germany) was 134	
  
placed with a 45° angle to the screen surface and at the height of the horizontal screen 135	
  
midline. A custom made 3-channel water-dispenser was installed outside the sound 136	
  
attenuated chamber to avoid acoustical interference during the experiments. It consisted of 137	
  
three valves from SMC Corporation (Tokyo, Japan), a Perfusor syringe (Melsungen, 138	
  
Germany) as water reservoir and Perfusor tubing to connect it with the waterspouts. The 139	
  
setup was controlled by custom-made routines using the Matlab environment (The 140	
  
Mathworks Inc.; MA, USA) on a MacPro. Behavioral control (light-barriers) and reward 141	
  
application (water-dispenser) were triggered through NI-PCI-cards (NI-6259 and NI-6251; 142	
  
National Instruments GmbH, Munich, Germany). The Psychtoolbox and the custom-written 143	
  
NI-mex-function referred to the same internal clock allowing the precise timing of behavior 144	
  
and stimulation. 145	
  
Figure 1. Experimental setup and behavioral task. (A) Schematic of the components of 146	
  
the experimental setup in a top view: the LED-screen (a) with a speaker (b) on each side, the 147	
  
aluminum pedestal (d), and the three light-barrier-waterspout combinations (c). The semi-148	
  
circular acrylic tube with a ferret (e) inside was placed on the pedestal. (B) Successive 149	
  
phases in the detection task: The inter-trial window (I), the trial initialization window (II), the 150	
  
event window (III) and the response window (IV). The three circles below each frame 151	
  
represent the light-barriers (white = unbroken, red = broken). The center of the screen 152	
  
displays a static visual random noise pattern. (C) Schematic of trial timing. When the ferret 153	
  
broke the central light-barrier (II) for 500ms a trial was initialized and the event window 154	
  
started (III), indicated by a decrease in contrast of the static random noise pattern. At a 155	
  
random time between 0-1000ms during the event window the auditory and/or visual stimulus 156	
  
appeared for 100ms either left or right from the center. After stimulus offset the ferret had a 157	
  
response time window between +100-700ms (IV) to pan its head from the central position to 158	
  
the light-barrier on the side of the stimulation. Subsequently, the inter-trial screen (I) 159	
  
appeared again. During the whole session the screen’s global luminance remained 160	
  
unchanged. (D) Three-dimensional rendering of the experimental setup. Labeling of the 161	
  
components as in (A). 162	
  

 163	
  

Sensory stimulation 164	
  

Auditory and visual stimuli were created using the Psychtoolbox (V3) [59] in a Matlab 165	
  
environment (The Mathworks Inc.; MA, USA). A white noise auditory stimulus (100ms) with 166	
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 9, 2015. ; https://doi.org/10.1101/014407doi: bioRxiv preprint 

https://doi.org/10.1101/014407


Hollensteiner et al.: Crossmodal integration improves sensory detection thresholds in the ferret 6 

up to 50dB sound pressure level (SPL) was used for auditory stimulation. It was generated 167	
  
digitally at 96kHz sample rate on a high-end PCI-audio card (HDSPe AES, RME-Audio, 168	
  
Germany) and delivered through two ‘T1’ Beyerdynamic speakers (Heilbronn, Germany). 169	
  
Visual stimuli consisted of concentric moving circular gratings (22.5°, 0.2cycles/°, 5Hz) up to 170	
  
0.38 Michelson contrast (Cm) shown for 100ms (6 frames @ 60 Hz monitor-refresh rate). 171	
  
The background was set to half-maximum luminance to avoid global luminance changes at 172	
  
stimulus onset. In the center of the screen, a static random noise pattern was displayed (7°, 173	
  
Cm between 0 and 1). During ‘bimodal’ trials, both visual and auditory stimuli were presented 174	
  
synchronously as described below. 175	
  

Detection task 176	
  

The ferrets were trained to solve a spatial detection task, as shown in Figure 1B and C. To 177	
  
initialize a trial the ferret had to maintain a central head position by breaking the central light-178	
  
barrier for 500ms. This caused the random noise pattern in the center of the screen to 179	
  
decrease contrast and indicate to the animal that the stimulus-window (up to 1000ms) had 180	
  
started. During this interval the animal had to further maintain a central head position. A 181	
  
stimulus was presented for 100ms on the left or on the right side, respectively, starting at a 182	
  
random time in this window. The stimulus could be a unimodal visual (circular grating), 183	
  
unimodal audio (white noise burst) or temporally congruent bimodal stimulus (further details 184	
  
see below). After stimulus offset, the animal had to respond within 600ms by panning its 185	
  
head to the respective side. If the response was correct the animal received a water reward 186	
  
(~80μl) at that position and could immediately start the next trial. If the response was too 187	
  
early (before stimulus onset or within 100ms after stimulus onset), incorrect (wrong side) or 188	
  
omitted (no response), the trial was immediately terminated, followed by a 2000ms interval 189	
  
during which no new trial start was allowed. 190	
  

General procedure 191	
  

Following the habituation to the harness, tube and setup all ferrets learned to detect 192	
  
unimodal stimuli. Two of the animals were trained in the auditory task first and then the 193	
  
visual; the other two were trained in reverse order. After completion of the training and 194	
  
reaching of sufficient performance, we presented stimuli of both modalities during the same 195	
  
sessions and determined the individual detection threshold. Twenty different stimulus 196	
  
amplitudes (0-50dB SPL; 0-0.38Cm) were chosen in a 1down/3up staircase procedure [60], 197	
  
i.e., if the animal solved the trial correctly (hits) the stimulus amplitude decreased by one step 198	
  
for the next trial, down to the minimum, whereas false responses (misses, or omitted 199	
  
responses) led to a 3 step increase. No change occurred for responses that were issued too 200	
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early (rash trials). In each trial either the auditory or the visual stimulus was presented in a 201	
  
pseudo-randomized fashion with individual staircases. To avoid a side- or modality-bias, 202	
  
each modality-side-combination was titrated to an equal number of hits within each session. 203	
  
Due to the huge combinatorics of conditions, each ferret had to complete 10-15 sessions to 204	
  
accumulate a sufficient number of trials per amplitude level. The data of each animal were 205	
  
pooled and treated as one sample, i.e., session information was discounted during further 206	
  
analysis. Sensory thresholds were determined by fitting a Weibull function to the data for 207	
  
each ferret individually. 208	
  
 In a subsequent set of measurements, we combined simultaneous stimulus 209	
  
presentation in both modalities. To this end, we fixed the stimulus in one modality at the 210	
  
amplitude where the tested animal had an accuracy of 75% during the unimodal testing and 211	
  
varied the amplitude in the other modality according to the staircase procedure described 212	
  
above. In these bimodal sessions we again included the unimodal conditions, such that we 213	
  
obtained four different stimulation classes: unimodal auditory (A), unimodal visual (V), 214	
  
auditory supported by visual (Av), visual supported by auditory (Va). These four stimulation 215	
  
conditions were presented in a pseudo-randomized fashion and separate staircases during 216	
  
the sessions. All ferrets completed 10-12 sessions and the threshold was determined for 217	
  
each ferret by fitting a Weibull function to the data. 218	
  

Data Analysis 219	
  

All offline data analysis was performed using custom written scripts in Matlab (The 220	
  
Mathworks Inc., MA, USA). 221	
  

Psychometrics 222	
  

We evaluated the accuracy values (P) for all N stimulus amplitude classes (a) with at least 6 223	
  
hit trials in total on both sides using equation (1).	
  224	
  

 
!!
Pa =

Na ,h

(Na ,o −Na ,r )
 (1) 225	
  

Here, a denotes the amplitude of the stimulus, Na,h (hit trials) was defined as the number of 226	
  
correct response trials for stimulus amplitude a, Na,o (onset trials) was the number of trials for 227	
  
stimulus amplitude a where the animal reached stimulus onset time, and Na,r (rash trials) as 228	
  
the number of trials for stimulus amplitude a were the animal gave a response before the 229	
  
response window had started (up to 100ms after stimulus onset), assuming the animal was 230	
  
guessing and not responding based on sufficiently collected sensory evidence. We estimated 231	
  
the detection threshold by fitting a Weibull function to Pa,  232	
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 !!Fa =1−exp
−(λa)k  (2) 233	
  

here k signifies the form-parameter and λ  represents the scale-parameter. The number of 234	
  

trials were used as weights during the fitting procedure. Due to the fact that every animal had 235	
  
different thresholds in the respective modalities, we calculated the standard deviation of each 236	
  
fit by using a delete-d jackknife method, were d = 20% corresponds to the number of 237	
  
sessions excluded per run, i.e. 2 or 3, respectively. 238	
  

Modeling cross-modal interaction 239	
  

In order to quantify the cross-modal interaction, we used the MLE approach. Therefore we 240	
  
utilized the audio and visual accuracy from the multimodal experiment for all existing stimulus 241	
  
intensities. Assuming a model of a hidden Gaussian representation of the sensory input in 242	
  
the brain we estimated the variance (σ ) for all points based on the Fa values form the 243	
  

Weibull function, 244	
  

 
!!
σ =

σ 0

inverf (Fa)
 (3) 245	
  

where ‘inverf’ equates to the inverse error function and !σ 0  an unknown scale factor. As in 246	
  

the following calculation of !σ bi  it drops out we can set it arbitrarily to a value of 1. The next 247	
  

step was to combine both unimodal variances to derive the bimodal variance (!σ bi ) according 248	
  

to 249	
  

 

!!
σ bi =

σmod ⋅σ fix

σmod
2 +σ fix

2
  (4) 250	
  

where !σmod  represents the variance for the modality which intensity were modulated and 251	
  

!
σ fix  for the modality that was fixed at 75% threshold. Subsequently, we used the inverse 252	
  

value of the bimodal variance in an error function (erf) to determine the bimodal accuracy (5). 253	
  

 
!!
accuracybi = erf (

1
σ bi

)   (5) 254	
  

Reaction time 255	
  

The RT was defined as the time difference between stimulus-onset and the time point when 256	
  
the animal panned its head out of the central light-barrier. Only intensity classes with at least 257	
  
6 successful responses (hits) were included in the RT analyses. To quantify the RT 258	
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differences between the corresponding amplitudes from uni- and bimodal stimulation we 259	
  
computed the Multisensory Response Enhancement (MRE) [49] as follows:  260	
  

 
!!
MRE =

min(RTA ,RTV )−RTAV
min(RTA ,RTV )

  (6) 261	
  

with !RTA  and !RTV  referring to the observed mean RT for the auditory and visual stimuli, 262	
  

respectively. !RTAV  is the mean RT for the corresponding bimodal stimulus.  263	
  

 We calculated a race model [56] to evaluate potential RSE. In our study, accuracy 264	
  
varied across subjects and sensory conditions. In order to compare reaction times across 265	
  
subjects and compute the race model for all related modality combinations we introduced 266	
  
‘subjective intensity classes’ (SIC) as determined by the accuracy fit in different unimodal 267	
  
conditions (0-74%, 75-89% and 90-100% indicating low, medium and high performance 268	
  
accuracy, respectively). This ensured a sufficient number of trials per SIC and additionally 269	
  
normalized for inter-individual differences in the range of stimulus amplitudes. Intensity and 270	
  
modality effects on the RT were tested applying the same grouping approach and computing 271	
  
a two-way ANOVA. 272	
  

  273	
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Results 274	
  

Four ferrets were trained in a lateralized audiovisual spatial detection task until they 275	
  
accomplished to solve the detection task in both modalities at high supra-threshold stimulus 276	
  
amplitudes (audio = 50dB SPL, visual = 0.38 Cm). The training was discontinued once the 277	
  
animals showed a stable baseline performance (>90%) across 5 consecutive days with high 278	
  
accuracy levels (audio = 92±1%, visual = 92±1%; mean±SEM). Two of the animals learned 279	
  
first the auditory (26 and 16 days training, respectively) and then the visual task (training for 280	
  
28 days in both animals). The two other ferrets acquired the modalities in the opposite 281	
  
sequence (11 and 19 days for the visual and 14 and 14 days for the auditory modality, 282	
  
respectively). All animals achieved high performance levels demonstrating the viability of the 283	
  
training paradigm. 284	
  

In all experiments for the determination of sensory thresholds we pooled results from 285	
  
left and right stimulation sides to calculate the accuracy values for all amplitudes. Testing for 286	
  
a laterality bias by comparing hit performance on both sides with a paired t-test revealed no 287	
  
significant bias (unimodal experiment: all animals = p >0.05; bimodal experiment: all animals 288	
  
= p >0.05). 289	
  

Determination of unimodal thresholds 290	
  

In the first experiment we determined the 75% accuracy threshold for detection of visual and 291	
  
auditory stimuli in a unimodal setting for each individual ferret (Fig. 2), with an individual 292	
  
range of stimulus amplitudes for each animal. Ferrets performed on average 12 (±2) 293	
  
sessions (104±26 trials±SEM/session) in the unimodal experiment. Before pooling the 294	
  
sessions, we tested each ferret for non-stationarity effects across sessions by comparing the 295	
  
variance of the first three sessions at 84% accuracy threshold against the one of the last 296	
  
three sessions. We used three sessions as a minimum to ensure a sufficient number of trials 297	
  
for a proper Weibull function fit. No animal showed a non-stationarity in any modality (p >0.05 298	
  
Two-sample t-test, 2-sided). The pooled data could well be described by a Weibull function 299	
  
(r2 = 0.56 - 0.92, Fig. 2). 300	
  

Figure 2. Detection task performance of the unimodal experiment. (A) Data for 301	
  
performance in the unimodal auditory detection task. (B) Data for the unimodal visual 302	
  
detection task. Each row represents one animal (1-4). Each dot represents the average 303	
  
performance of N trials (diameter) for the tested auditory amplitudes (dB SPL) or visual 304	
  
contrasts (Cm). The data are fitted by a Weibull function. Numbers within the panels indicate 305	
  
the amplitude values corresponding to the 75% and 84% thresholds, respectively. The blue 306	
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shaded area around the fit indicates the standard deviation. The unmasked parts of the 307	
  
graphs indicate the range of the actually tested stimulus amplitudes. 308	
  

Determination of uni- and bimodal thresholds 309	
  

In the second experiment, the two crossmodal stimulation conditions were added to the 310	
  
sessions. One modality’s intensity was fixed at 75% threshold, as determined from the 311	
  
unimodal experiment (Fig. 2) while the other modality was varied in amplitude according to a 312	
  
staircase procedure. All ferrets participated in 12 (±1) multimodal sessions (111±37 313	
  
trials±SEM/session). Like for the unimodal sessions, we again tested for non-stationarity 314	
  
effects between the first and the last sessions by comparing the 84% accuracy threshold 315	
  
variance as determined by the Weibull fit. Since the introduction of bimodal classes reduced 316	
  
the relative number of unimodal stimulus presentations during each session, we had to pool 317	
  
minimum across the first and last 5 sessions, respectively, to generate a proper Weibull fit. 318	
  
No animal showed non-stationarity across the bimodal sessions (2-sided two-sample t-test; p 319	
  
>0.05). Subsequently, we calculated the accuracy for each amplitude where at least 6 trials 320	
  
had been performed and the psychometric curves were fit using a Weibull function (Fig. 3). 321	
  
The pooled data could well be described by a Weibull function (r2 = 0.39 - 0.90, Fig. 3). 322	
  

Figure 3. Detection task performance of the bimodal experiment. (A) Data for the 323	
  
stimulus conditions auditory-only (A) and auditory stimulation supported by a visual stimulus 324	
  
(Av). (B) Data for the stimulus conditions visual-only (V) and visual stimulation supported by 325	
  
an auditory stimulus (Va). Each row represents one ferret (1-4). Each dot represents the 326	
  
average performance of N trials (diameter) at a given auditory amplitude (dB SPL) or visual 327	
  
contrast (Cm). The data are fitted by a Weibull function. The uni- and bimodal fit is 328	
  
represented by the blue and red line, respectively. The shaded area around the fit indicates 329	
  

the standard deviation. !Δ84  displays the relative amount of threshold shift of the bimodal 330	
  

compared to the unimodal psychometric function at a performance of 84%. A positive shift 331	
  
indicates a threshold decrease. The black curve represents the MLE model. The unmasked 332	
  
parts of the graphs indicate the range of the actually tested stimulus amplitudes. 333	
  

The comparison of the unimodal 75% thresholds between both experiments revealed a slight 334	
  
increase from the uni- to the multimodal experiment, except in animal 2 which showed a 335	
  
decrease (Table 1). However, the differences were smaller than one of the respective 336	
  
amplitude steps in the staircase procedure. Furthermore, two of the animals (1 and 4) did not 337	
  
reach a performance above 90±5% in the highest intensities in one modality (audio and 338	
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visual, respectively). These findings indicate that the bimodal experiments were slightly more 339	
  
demanding, presumably because four stimulation conditions were presented compared to the 340	
  
unimodal experiment with only two stimulation conditions. 341	
  

Table 1. Comparison of threshold values for uni- and bimodal experiments. 342	
  

  Amplitude values @ 75% Amplitude values @ 84% 
  unimodal Exp. bimodal Exp. unimodal Exp. bimodal Exp. 
  A A A A Av 
1 39 40 42 45 41 
2 27 30 29 32 26 
3 25 28 27 33 31 
4 31 31 33 34 25 
  V V V V Va 
1 0.08 0.08 0.10 0.10 0.09 
2 0.09 0.08 0.11 0.09 0.09 
3 0.07 0.10 0.09 0.18 0.12 
4 0.15 0.19 0.19 0.25 0.10 

The amplitude values at the 75% and 84% thresholds (in dB SPL for A and Av; Cm for V and 343	
  
Va) in the unimodal and bimodal experiments (columns) for all animals (rows 1-4). 344	
  

Because different values were used for the lower bounds in uni- (50%) and crossmodal 345	
  
(75%) fitting, we employed the 84% threshold for comparison of performance between uni- 346	
  
and crossmodal settings. All fits to the bimodal psychometric functions showed a left shift 347	
  
compared to their unimodal complements, except for animal 2 in the V-Va comparison 348	
  
(amplitude decrease ±SEM: A-Av = 5.3±1.5; V-Va = 0.06±0.03; for absolute values see Table 349	
  
1). This demonstrates a decrease in detection thresholds in all ferrets, except for animal 2 in 350	
  
the Va condition where the auditory stimulus had no augmenting effect. For quantification we 351	
  
calculated the relative shifts at the 84% performance-level between the uni- and bimodal 352	
  

psychometric fit (!Δ84  in Fig. 3). A positive number indicates a lower threshold as determined 353	
  

by the bimodal fit, i.e., an increase in bimodal detection performance. On average, there was 354	
  
a shift (±SEM) of 15±5%, indicating an effective bimodal integration. 355	
  

Maximum likelihood estimates 356	
  

To investigate whether ferrets integrate the two sensory modalities in a statistically optimal 357	
  
fashion, we computed a MLE model and compared the r2-difference between the empirical 358	
  

data (Fig. 3, red) and model (Fig. 3, black). The range of the difference !Δbimodal−MLE  was -1 to 359	
  

49% (mean difference ±SEM 14±6). In four cases the MLE matched the bimodal 360	
  
psychometric function and the difference of the explained variance between the empirical fit 361	
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(Fig. 3) and the MLE was 10% or less (A1: !ΔVa−MLE  = 8%; A2: !ΔVa−MLE = 2%; A3: !ΔAv−MLE  = 362	
  

1% and !ΔVa−MLE = -1%). For one condition (animal 1: !ΔAv−MLE
= 11%) the MLE underestimated 363	
  

the empirical fit at the highest stimulus amplitudes (Fig. 3A). This may be caused by the low 364	
  
unimodal performance at high stimulus amplitudes, since the MLE model depends on the 365	
  

unimodal performance. This argument also holds true for the Va case (!ΔVa−MLE = 15%) of 366	
  

animal 4 (Fig. 3B, bottom panel). If the animal had shown a unimodal performance 367	
  
comparable to that previously measured in the unimodal experiment, the MLE model would 368	
  
be similar to the empirical bimodal fit. In the other two cases the MLE underestimated the 369	
  

empirical fit in the intermediate amplitude ranges (animal 2: !ΔAv−MLE = 25% and animal 4: = 370	
  

49%, Fig. 3). Overall, the MLE modeling results support the conclusions drawn from the 371	
  
comparison of the 84% performance threshold between uni- and bimodal conditions. The 372	
  
results indicate that ferrets integrated the two modalities as good or even better than 373	
  
predicted by the MLE estimator (Fig. 3). 374	
  

Reaction time analysis 375	
  

One of the most important benefits of multisensory integration is the reduction of RTs for 376	
  
bimodal stimuli compared to unimodal stimulation. The measured RT varied during the 377	
  
multisensory experiment with target amplitude in all modality types. In all stimulus conditions 378	
  
and all animals, RT showed a significant negative correlation with stimulus amplitude (range 379	
  
A: r = -0.17 to -0.41; V: r = -0.25 to -0.45; Av: r = -0.21 to -0.44; Va: r = -0.34 to -0.46; all 380	
  
correlations: p < 0.01; Fig. 4). RT significantly increased with decreasing amplitude (ANOVA 381	
  
p < 0.05) in all but one condition (animal 1: audio-alone, ANOVA p > 0.05). This is an 382	
  
expected finding, because the signal-to-noise ratio (SNR) decreases with decreasing 383	
  
stimulus amplitude and the internal signal processing is slower for low SNR. 384	
  

Figure 4. Reaction time data from the bimodal experiment. (A) Data for the stimulus 385	
  
conditions auditory-only (A) and auditory stimulation supported by a visual stimulus (Av). (B) 386	
  
Data for the stimulus conditions visual-only (V) and visual stimulation supported by an 387	
  
auditory stimulus (Va). Each row represents one ferret (1-4). RT ± SEM are shown as a 388	
  
function of stimulus amplitude (red = bimodal, blue = unimodal). Each data point represents 389	
  
the RT average for all hit trials recorded at that amplitude. Asterisks indicate significant 390	
  
differences between uni- and bimodal conditions (t-test: * = p < 0.05, ** = p < 0.01, *** = p < 391	
  
0.001). Below each pair of uni- and bimodal RTs the Multisensory Response Enhancement 392	
  
(MRE) is shown as numerical values. In each panel, Pearson correlation coefficient and 393	
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regression line for both data sets are shown. The two vertical lines mark the borders between 394	
  
the subject intensity classes (left of first line: 0-74%, between the lines 75-89%; right of the 395	
  
second line 90-100% performance).  396	
  

To reduce the dimensionality and compare reaction times across subjects we used 397	
  
‘subjective intensity classes’ (SIC) (see Material and Methods). To quantify RT changes 398	
  
reflecting potential multimodal enhancement effects, we calculated the MRE for all uni- and 399	
  
bimodal stimulus pairs and summed these according to the SICs. The average MRE of both 400	
  
modalities was slightly positive (Av  = 3.59%; Va = 0.06%). However, about one-third of the 401	
  
cases (7 out of 24, Table 2) showed a negative MRE. Such negative MRE values, which 402	
  
indicate that the average unimodal RT is faster than the average RT of the bimodal condition, 403	
  
occurred only in the low and medium SIC. In the highest SIC, the MRE was consistently 404	
  
positive. Overall, the MRE results suggest a multimodal enhancement effect in the high and 405	
  
medium and an interfering effect in the lower SIC. 406	
  
Table 2. Reaction time: average MRE.  407	
  

  0-74% 75-89% 90-100% 0-74% 75-89% 90-100% 
  MRE Av MRE Va 
1 -6.00 4.33 8.00 1.00 -0.67 2.22 
2 5.50 6.33 5.50 -20.50 -19.00 4.40 
3 -9.40 -3.00 3.63 -18.75 3.00 8.50 
4 15.00 4.00 9.20 10.00 12.50 18.00 

 408	
  
Multisensory Response Enhancement (MRE) computed for the RTs from all animals (rows) 409	
  
and stimulus conditions of the bimodal experiment according to equation 6. (see Methods). 410	
  
The MRE’s were sorted by the subjective intensity classes (SIC; columns from left to right). 411	
  
Av: auditory supported by visual; Va: visual supported by auditory. 412	
  

To investigate a potential RSE we calculated a race model on the pooled RTs 413	
  
according to the SICs. The race model assumes that during multimodal stimulation no 414	
  
modality integration happens, but that signals of either modality are processed 415	
  
independently. Whichever of the two leads to a result first triggers and determines the 416	
  
response, i.e., the head movement towards the detected stimulus. Therefore, the bimodal 417	
  
cumulative distribution function (CDF) of the RT can be modeled by sampling from the 418	
  
unimodal RT CDFs. Afterwards the modeled bimodal RT CDF can be compared with the 419	
  
empirical bimodal RT CDF (see Fig. 5). If the empirical RT CDF is faster in 20-50% of the 420	
  
percentiles compare to the modeled RT CDF the race model can be rejected and modality 421	
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integration is suggested [61]. For a detailed explanation of the race model see Ulrich et al. 422	
  
[56]. 423	
  

Figure 5. Race model example. Analysis of RT CDFs from animal 4. High visual SIC CDFs 424	
  
are shown for unimodal visual stimulation (V, blue), auditory stimulation at 75% (A75%, 425	
  
green), auditory stimulus supported by visual stimulation (Av, red) and the combination of 426	
  
both unimodal CDFs (V+A75%, black). In this case the race model gets rejected, because 427	
  
the empirical bimodal CDF (red) is ‘faster’ than the modeled CDF (black). 428	
  

We computed the relative (%) deviation from the linear unimodal combination for all 429	
  
stimulus conditions (Fig. 6) for each SIC. If this difference for the empirical bimodal CDF is in 430	
  
20-50% of the cases negative the race model can be rejected (Miller and Ulrich, 2003). The 431	
  
biggest effect of the supportive value occurred in the highest intensity group, because there 432	
  
the change was negative compare to the combined unisensory CDF in the lower percentiles 433	
  
(upper row, Fig. 6). In the 75-89% SIC no percentile of the crossmodal combinations was 434	
  
negative (middle row Fig. 6) and in the lowest intensity-group the bimodal and the supportive 435	
  
value RTs were similar (bottom row Fig. 6), i.e., the benefit of the redundant signal seems to 436	
  
diminish with decreasing intensity group. However, in the medium and high performance 437	
  
classes the bimodal RT seemed to be closer to the combined CDF than each of the unimodal 438	
  
distributions. For the high SICs, the distributions suggest that the race model can be rejected 439	
  
at a descriptive level. Overall, these results are compatible with the notion that, for higher 440	
  
SICs, multisensory integration processes are leading to RT gains beyond what can be 441	
  
predicted from the fastest unimodal responses. 442	
  

Figure 6. Reaction time: race model results. The RTs were sorted by the SICs (rows) and 443	
  
both modalities (A: audio, B: visual) pooled across all animals. The X-axis displays the 444	
  
cumulative reaction time differences to the race model for each modality (± SEM). A value of 445	
  
0 at the X-axis corresponds to the prediction from the combination of both unimodal CDF’s. 446	
  
The blue curve displays the unimodal condition, the green curve the RTs at the supportive 447	
  
value and the red curve the bimodal class, respectively. 448	
  

To investigate intensity, modality and interaction effects on a more global scale we 449	
  
pooled the RT of all animals according to subjective intensity classes and calculated a two-450	
  
way ANOVA, with modality and intensity as main factors (Fig. 7). This revealed main effects 451	
  
in both factors (Modality: F(3, 4632) = 18.84 (p < 0.001); Intensity: F(2, 4633) = 310.65 (p < 452	
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0.001)) and an interaction effect (Modality*Intensity: F(6, 4624) = 3.93 (p < 0.01)). A post hoc 453	
  
t-test (Holm-Bonferroni corrected) revealed significant differences between and within 454	
  
performance classes (Fig. 7), respectively. The post hoc t-tests between the intensity groups 455	
  
and modalities were all highly significant (p < 0.001). This result suggests that the ferrets’ 456	
  
RTs increase as the intensity of the stimulus gets weaker and significantly decrease in the 457	
  
multimodal compared to the unimodal classes. 458	
  

Figure 7. Reaction time: two-way ANOVA results. The reaction times (RT) pooled by 459	
  
subjective intensity classes (0-74%, 75-89%, 90-100%). The X-axis displays the three 460	
  
performance classes and the Y-axis shows the RT in milliseconds ± SEM. The solid lines 461	
  
represent the unimodal, the dashed lines the bimodal, red indicates the audio and blue the 462	
  
visual modalities (*: p < 0.05; **: p < 0.01; ***: p < 0.001; Holm-Bonferroni corrected). +++, 463	
  
significant differences between performance classes within each modality (Holm-Bonferroni 464	
  
corrected); red and blue asterisks, significant differences between uni- and bimodal 465	
  
conditions in one performance class (Holm-Bonferroni corrected); green asterisk, significant 466	
  
difference between the two unimodal conditions. 467	
  

  468	
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Discussion 469	
  

How information from different modalities is integrated has been a subject of intense 470	
  
research for many years. Here we asked if ferrets integrate sensory signals according to the 471	
  
same principles established for other species [31,33,35–39,47,62,63]. We expected the 472	
  
ferrets to perform more accurately and with lower RTs in the bimodal cases, because 473	
  
congruent inputs from two modalities provide more reliable sensory evidence [62,64–66]. As 474	
  
predicted, bimodal detection thresholds were reduced and RTs were faster in the bimodal 475	
  
compared to unimodal conditions, demonstrating multimodal integration effects. Furthermore 476	
  
our results on MLE modeling suggest that ferrets integrate modalities in a statistically optimal 477	
  
fashion. 478	
  

Methodological considerations 479	
  

Previous studies in behaving ferrets have used either freely-moving [1,13,15,55] or head-480	
  
restrained [26] animals. Here, we developed a head-free, body-restrained approach allowing 481	
  
a standardized stimulation position and the utilization of the ferret’s natural response 482	
  
behavior. The setup is especially suited for psychometric investigations because the distance 483	
  
between animal and the stimulus sources remains constant across trials. The high inter-trial-484	
  
consistency and the fixed animal position allow the combination of behavioral protocols with 485	
  
neurophysiological recordings comparable to head-restrained approaches [26]. An additional 486	
  
advantage is the usage of a screen instead of a single light-source for the visual stimulation 487	
  
[1,31], enabling the spatially flexible presentation of a broad variety of visual stimuli. Similar 488	
  
to other ferret studies [13,55], one limitation of our approach lies in the relatively low number 489	
  
of trials collected per session. We therefore had to pool data from different sessions to obtain 490	
  
a sufficient number of trials for the fitting of psychometric functions. Merging of sessions was 491	
  
justified by the absence of non-stationarity effects and the high amount of variance explained 492	
  
by the fits. This also indicates a low day-to-day variability of perceptual thresholds. Our 493	
  
results complement that of an earlier study in ferrets demonstrating that measured thresholds 494	
  
were not affected by trial-to-trial fluctuations in the animals’ decision criterion [1]. Overall, 495	
  
these findings suggest that the experimental design presented in this study is well suited for 496	
  
psychophysical investigations.  497	
  

Establishing links across species, our behavioral paradigm was inspired by previous 498	
  
human psychophysical studies which showed that temporally congruent crossmodal stimuli 499	
  
enhance detection [62,64–66]. Frassinetti et al. [62] adopted an animal approach [51] to 500	
  
humans and obtained similar results in terms of multisensory enhancement effects. Another 501	
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study form Lippert and colleagues [64] showed that informative congruent sounds improve 502	
  
detection rates, but this gain disappears when subjects are not aware of the fact that the 503	
  
additional sound offers information about the visual stimulus. They concluded that cross-504	
  
modal influences in simple detection tasks are not exclusively reflecting hard-wired sensory 505	
  
integration mechanisms but, rather, point to a prominent role for cognitive and contextual 506	
  
effects. This contrasts with more classical views suggesting that information form different 507	
  
sensory modalities may be integrated pre-attentively and substantially rely on automatic 508	
  
bottom-up processing [35]. Our observation of the inter-experiment threshold increase for the 509	
  
unimodal conditions might suggest possible contextual effects. A possibility is that, in the 510	
  
second experiment, the inclusion of the bimodal conditions may have created a contextual, or 511	
  
motivational, bias of the animals towards solving the bimodal trials because more sensory 512	
  
evidence was provided. This could also explain why the performance in the unimodal 513	
  
conditions of the bimodal experiment did not reach 95-100% accuracy even at the highest 514	
  
intensities, unlike in the unimodal experiment. 515	
  

Taken together, our study demonstrates that the implemented behavioral paradigm is 516	
  
suitable to determine uni- and bimodal thresholds and to operationalize multisensory 517	
  
integration processes. Possible contextual and attention-like effects seem hard to elucidate 518	
  
by pure psychometrics, but simultaneous electrophysiological recordings could provide 519	
  
valuable insights into the underlying brain processes during the task. 520	
  

Optimal modality integration 521	
  

This is the first study on behaving ferrets to quantify multimodal enhancement effects and to 522	
  
test for optimal modality integration. The results of our bimodal experiment show clear 523	
  
multisensory enhancement effects. The left shift of the psychometric function and the 524	
  
variance reduction, derived at 84% accuracy, demonstrate increased detection rates and 525	
  
enhanced reliability for lower test-intensities in the bimodal stimulation conditions, indicating 526	
  
that the ferrets indeed integrate information across modalities as shown for other species 527	
  
[31,35,37,47,54,63–65]. MLE modeling is typically used in multisensory integration to test the 528	
  
hypothesis that the integrative process is statistically optimal by fitting the parameters of the 529	
  
model to unisensory response distributions and then comparing the multimodal prediction of 530	
  
the model to the empirical data. Studies on humans have shown that different modalities get 531	
  
integrated in a statistical optimal fashion. For example, Battaglia et al. [37] found that human 532	
  
subjects integrate audio and visual modalities as an optimal observer. The same is true for 533	
  
visual and haptic integration [36], and integration of stereo and texture information [39,67]. 534	
  
Furthermore, Alais and Burr [38] could show that the ventriloquist effect is based on near-535	
  
optimal sensory integration. Rowland and colleagues showed statistical optimal integration in 536	
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the cat for audio-visual perception [63] and Gu et al. [47] could demonstrate the same 537	
  
principle in macaques for visual and vestibular sensory integration. Similar to the 538	
  
abovementioned studies, our results on MLE modeling suggest that ferrets integrate 539	
  
modalities in a statistically optimal fashion. Surprisingly, in two of our cases the MLE 540	
  
underestimates the empirical fit, which is counterintuitive because the MLE provides already 541	
  
the maximum estimate. A potential explanation might be that multisensory benefit is larger 542	
  
for some modalities compared to others, as suggested by the modality precision hypothesis 543	
  
by Welch and Warren [68]. These hypotheses states that discrepancies are always resolved 544	
  
in favor of the more precise modality, i.e. the modality with the highest SNR gets weighted 545	
  
higher in the final sensory estimate. Battaglia and coworkers [37] showed that humans have 546	
  
a bias towards the visual modality in a multisensory spatial detection task. Finally, it could be 547	
  
caused by a low unimodal performance in the intermediate intensities since the MLE model 548	
  
depends on the unimodal performance. In summary, the MLE model provides evidence that 549	
  
ferrets merge modalities in a near-optimal fashion, similar to other species [36–38,47,67]. 550	
  

Multisensory response enhancement  551	
  

In a second analysis approach we compared RTs of the uni- and bimodal stimulation 552	
  
conditions and computed a race model to test a RSE. Our main results are in line with 553	
  
findings from other species. Previous work in humans revealed that subjects respond faster 554	
  
to bimodal compared to unimodal stimuli [49,64]. Miller [53] showed that this RT gain is a 555	
  
result of a modality integration effect and not only a product of the fastest processed 556	
  
modality. Gleiss and Kayser [31] demonstrated that additional non-informative white noise 557	
  
decreases RT in a visual detection task in rats. The effect size of the RT gain increased 558	
  
when the light intensity decreased. In our study the influence of amplitude on RT is directly 559	
  
related to the SNR, i.e., the internal signal processing is faster for high SNR. For high 560	
  
intensities of the varying modality (>75% unimodal performance), the SNR should be higher 561	
  
compared to the fixed supporting modality. Decreasing the intensity of the variable modality 562	
  
leads to a continuous decrease of its SNR (until 0), such that for low intensities the RT is 563	
  
completely determined by the amplitude of the supporting modality. Interestingly, some MRE 564	
  
values were negative in the lower and intermediate subjective intensity classes. This is due 565	
  
to the fact that the MRE model uses the fastest unimodal RT for calculation and the RT of the 566	
  
supporting values is faster than the average bimodal RT. The variable modality seems to 567	
  
have a competitive effect on the RT at low intensities, because the average bimodal RT is 568	
  
slower than the RT of the supportive value. 569	
  
 In addition to the MRE analysis, we computed a race model for the RT data. The race 570	
  
model tests RT effects in a more sophisticated way, by comparing a modeled bimodal RT 571	
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CDF with the empirical bimodal RT CDF. In our dataset, the benefit of the redundant signal 572	
  
increased from low to high SIC. Data reached the criterion to reject the race model only in the 573	
  
high SIC. In the intermediate and low SIC the linear unimodal combination was faster 574	
  
compared to the empirical bimodal conditions. Nevertheless, in the intermediate SIC the 575	
  
bimodal percentiles were closer to the linear combination than the unimodal groups, 576	
  
indicating a minor gain of the supportive value and therefore a multisensory enhancement 577	
  
effect. In contrast, in the low SIC the bimodal group matches the supporting value group, 578	
  
implying that the supportive value is the driving modality in the sensory process [57,61]. 579	
  

Conclusions 580	
  

In conclusion, our data demonstrate that basic principles of multisensory integration, such as 581	
  
enhancement effects of bimodal stimuli on detection rates, precision and RT apply to 582	
  
crossmodal processing in the ferret brain. The race model and MLE modeling provide 583	
  
evidence that ferrets integrate modalities in a statistically optimal fashion. To quantify this in 584	
  
more detail more advanced behavioral paradigms would be required where the stimulus 585	
  
onset varies across modalities and a broader range of stimulus amplitudes of supporting 586	
  
modality can be covered.  587	
  
 The setup we have developed to test ferrets in uni- and bimodal conditions is similar 588	
  
to human and non-human primate tasks, and can be combined in future research with 589	
  
approaches for the study of the underlying neural processes. Our behavioral paradigm could 590	
  
be combined with neuroscientific approaches such as, e.g., optogenetics or in vivo imaging 591	
  
[69]. Furthermore, the same setup could be used to implement more complex behavioral 592	
  
paradigms such as discrimination or go/no-go tasks [26]. Moreover, the setup would also be 593	
  
suitable to investigate aspects of sensory processing other than multisensory integration 594	
  
relating, e.g., to altered developmental conditions [7,12,24], to top-down influences on 595	
  
sensory processing, or to large-scale communication across distinct sensory regions during 596	
  
different behavioral paradigms. Altogether, our results describe a highly multifunctional 597	
  
experimental approach, which may further enhance the viability and suitability of the ferret 598	
  
model. 599	
  

  600	
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