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Abstract

We have carried out a comprehensive analysis of the determinants of human influenza A H3
hemagglutinin evolution, considering three distinct predictors of evolutionary variation at in-
dividual sites: solvent accessibility (as a proxy for protein fold stability and/or conservation),
experimental epitope sites (as a proxy for host immune bias), and proximity to the receptor-
binding region (as a proxy for protein function). We have found that these three predictors
individually explain approximately 15% of the variation in site-wise dN/dS. However, the sol-
vent accessibility and proximity predictors seem largely independent of each other, while the
epitope sites are not. In combination, solvent accessibility and proximity explain 32% of the
variation in dN/dS. Incorporating experimental epitope sites into the model adds only an ad-
ditional 2 percentage points. We have also found that the historical H3 epitope sites, which
date back to the 1980s and 1990s, show only weak overlap with the latest experimental epi-
tope data, and we have defined a novel set of four epitope groups which are experimentally
supported and cluster in 3D space. Finally, sites with dN/dS > 1, i.e., the sites most likely
driving seasonal immune escape, are not correctly predicted by either historical or experimental
epitope sites, but only by proximity to the receptor-binding region. In summary, proximity to
the receptor-binding region, rather than host immune bias, seems to be the primary determinant
of H3 immune-escape evolution.

Author summary

The influenza virus is one of the most rapidly evolving human viruses. Every year, it accumulates
mutations that allow it to evade the immune response of people previously infected. Which sites
in the virus’ genome allow this immune escape is not entirely understood, but conventional
wisdom states that specific “immune epitope sites” in the protein hemagglutinin are primarily
responsible, and these sites are commonly targeted by vaccine development efforts. Here, we
survey all available experimental data on immune epitopes in hemagglutinin, and we demonstrate
that these immune epitope sites may not be that crucial for influenza evolution. Instead, we
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propose and find evidence for a simple geometrical model: sites that are closest to the location
where the virus binds the human receptor (i.e, the furthest away from the viral surface) are the
primary driver of immune escape.

Introduction

The influenza virus causes one of the most common infections in the human population. The
success of influenza is largely driven by the virus’s ability to rapidly adapt to its host and escape
host immunity. The antibody response to influenza virus is determined by the surface proteins
hemagglutinin (HA) and neuraminidase (NA). Among these two proteins, hemagglutinin, the
viral protein responsible for receptor-binding and uptake, is a major driver of host immune
escape by the virus. Previous work on hemagglutinin evolution has shown that the protein
evolves episodically [1-3]. During most flu seasons, hemagglutinin experiences mostly neutral
drift around the center of an antigenic sequence cluster; in those seasons, it can be neutralized
by similar though not identical antibodies, and all of the strains lie near each other in antigenic
space [4-7]. After several seasons in a cluster, the virus escapes its local sequence cluster to
establish a new center in antigenic space [7-9].

There is a long tradition of research aimed at identifying the regions of hemagglutinin to
which the human immune system responds, and by proxy, the sites that determine sequence-
cluster transitions [4,6,10-21]. Initial attempts to identify and categorize immune-epitope sites
of H3 hemagglutinin were primarily sequence-based and focused on substitutions that took place
between 1968, the emergence of the Hong Kong H3N2 strain, and 1977 [10,11]. Those early
studies used the contemporaneously solved protein crystal structure, a very small set of mouse
monoclonal antibodies, and largely depended on chemical intuition to identify antigenically rel-
evant amino-acid changes in the mature protein. Many of the sites identified in those studies
reappeared nearly two decades later, in 1999, as putative epitope sites with no additional ci-
tations linking them to immune data [4]. Those sites and their groupings are still considered
the canonical immune epitope set today [3,16,22]. While the limitations of experimental tech-
niques and of available sequence data in the early 1980’s made it necessary to form hypotheses
based on chemical intuition, these limitations have been overcome through recent advances in
experimental techniques and wide-spread sequencing of viral genomes. Therefore, it is time to
revisit the question of which sites in influenza hemagglutinin are epitope sites. In particular,
since the original epitope set was identified via sequence analysis, we do not even know whether
bona-fide immune-epitope sites actually exist, i.e., sites which represent a measurable bias in
the host immune response. And even if such sites do exist, we do not know to what extent the
bias in host immune response can be quantified with the available biochemical assays. Finally,
assuming that immune-epitope sites exist and can be experimentally identified, it is possible
that they do not experience an elevated selective pressure to change amino acids relative to
other important sites in the protein.

Some recent studies have begun to address these questions indirectly, via evolutionary anal-
ysis. For example, over the last two decades, virtually every major study on positive selection in
hemagglutinin has found some but never all of the historical epitope sites to be under positive
selection [3,16,18,19,23]. Furthermore, each of these studies has found a set of sites that are
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under positive selection but do not belong to any historical epitope. Finally, because every study
identifies slightly different sites, there seems to be no broad agreement on which sites are under
positive selection [12,16,18,19]. The sites found by disparate techniques are similar but they
are never identical.

To dissect the determinants of hemagglutinin evolution and the evidence for epitopes, we
linked several predictors, including relative solvent accessibility, the inverse distance from the
receptor-binding region, and experimental immune epitope data, to site-wise evolutionary rates
calculated from all of the human H3N2 sequence data for the last 22 seasons (1991-2014). We
found that the inverse distance from the sialic acid-binding region explained the largest portion
of evolutionary rate variation. Moreover, we analyzed all of the available H3 experimental epi-
tope data, and we found that experimental data supports redefining and regrouping immune
epitope sites for hemagglutinin. After controlling for biophysical constraints with relative sol-
vent accessibility, function with distance to the receptor-binding region, and immune bias with
experimental epitope data, the remaining explanatory power of historical categories was rela-
tively low. Finally, by explicitly accounting for each constraint we found that we could predict
nearly 35% of the evolutionary rate variation in hemagglutinin, nearly twice as much variation
as could be explained by earlier models.

Results

Relationship between evolutionary rate and inverse distance to the receptor-
binding site

Our overarching goal in this study was to dissect the factors that determine selective pressures
at individual sites in influenza hemagglutinin H3. In particular, we wanted to identify specific
biophysical or biochemical properties of the mature protein that determine whether a given site
will evolve rapidly or not. As a measure of evolutionary variation and selective pressure, we
used the metric dN/dS. dN/dS can measure both the amount of purifying selection acting on
a site (when dN/dS < 1 at that site) and the amount of positive diversifying selection acting
on a site (when dN/dS = 1). For simplicity, we will refer to dN/dS as an evolutionary rate,
even though technically it is a relative evolutionary rate or evolutionary-rate ratio. We built
an alignment of 3854 full-length H3 sequences spanning 22 seasons, from 1991/92 to 2013/14.
We subsequently calculated dN/dS at each site, using a fixed-effects likelihood (FEL) model as
implemented in the software HyPhy [24].

Although a number of predictors of site-specific evolutionary rate variation have been de-
veloped previously [19,20,25-30] (see Ref. [31] for a recent review), none describe a functional
constraint on the evolution of viral proteins. In addition, they generally all predict the amount
of purifying selection expected at sites, and therefore they cannot identify sites under positive
diversifying selection. Moreover, the short divergence time of viruses causes the systematic bio-
physical pressures that predict much of eukaryotic protein evolution to be much less dominant
in viral evolution [28]. Thus, we set out to find a constraint on hemagglutinin evolution that
was related to the protein’s role in viral binding and fusion. A few earlier studies had shown
that sites near the sialic acid-binding region of hemagglutinin tend to evolve more rapidly than
the average for the protein [4,20,21]. Furthermore, when mapping evolutionary rates onto the
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hemagglutinin structure, we noticed that the density of rapidly evolving sites seemed to increase
somewhat towards the receptor-binding region (Fig. 1A). Therefore, as the primary function of
hemagglutinin is to bind to sialic acid and induce influenza uptake, we reasoned that distance
from the receptor-binding region of HA might serve as a predictor of functionally driven HA
evolution. We calculated distances from the sialic acid-binding region (defined as the distance
from site 224 in HA), and correlated these distances with the evolutionary rates at all sites. We
found that distance from the receptor-binding region was a strong predictor of evolutionary rate
variation in hemagglutinin (Pearson correlation r = 0.41, P < 10~19).

Next, we wanted to verify that this correlation was representative of hemagglutinin evolution
and not just an artifact of the specific site chosen as the reference point in the distance calcula-
tions. It would be possible, for example, that distances to several spatially separated reference
sites all resulted in similarly strong correlations. We addressed this question systematically by
making, in turn, each individual site in HA the reference site, calculating distances from that site
to all other sites, and correlating these distances with evolutionary rate. We then mapped these
correlations onto the structure of hemagglutinin, coloring each site according to the strength
of the correlation we obtained when we used that site as reference in the distance calculation
(Fig. 1B). We obtained a clean, gradient-like pattern: The correlations were highest when we
calculated distances relative to sites near the receptor-binding site (with the maximum correla-
tion obtained for distances relative to site 224), and they continuously declined and then turned
negative the further we moved the reference site away from the apical region of hemagglutinin
(Fig. 1B). This result was in stark contrast to the pattern we had previously observed when
mapping evolutionary rate directly (Fig. 1A). In that earlier case, while there was a perceptible
preference of faster evolving sites to fall near the receptor-binding site, the overall distribution
of evolutionary rates along the structure looked mostly random to the naked eye.

We thus found a geometrical, distance-based constraint on hemagglutinin evolution: Sites
evolve the faster the closer they lie towards the receptor-binding region. Next, we wanted to
evaluate how our distance metric performed relative to or in combination with other possible
predictors of hemagglutinin evolution. One additional possible constraint on sequence divergence
is a bias in the human immune system. This bias, generally referred to as antigenicity, describes
the extent to which the human immune does a better job attacking one region of a protein
compared to another. For influenza hemagglutinin H3, there exists a list of canonical, historical
epitope sites that is commonly considered to represent this bias [4]. However, these sites were
not primarily defined based on actual immunological data, and they have not been revisited
since the late 1990s even though much more experimental data is now available (see Discussion
for details on the history of the historical epitope sites). Therefore, before we could generate a
combined evolutionary model, we considered it essential to re-derive the antigenic groups entirely
from currently available immunological data.

Comparing historical epitope groups to experimental immune epitope data

We asked whether there is experimental evidence that the human immune system displays a
bias towards particular regions of hemagglutinin; such a bias would traditionally be called an
immune epitope. We obtained all available human B cell epitopes for H3 hemagglutinin from the
Influenza Research Database (IRD). For comparison, we initially also considered all available
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non-human B cell epitope data in our analysis, because non-human data have traditionally been
part of the data considered for epitope definition in influenza (see e.g. [10]). In the database,
there were two types of B cell epitopes available for hemagglutinin: linear and non-linear. For
humans, there were 31 separate epitope entries consisting of 26 non-linear and 5 linear. For
non-humans, there were 134 available epitope entries consisting of 47 non-linear and 87 linear.
The non-linear epitopes were provided as site numbers, so that mapping them onto the protein
structure was trivial. By contrast, all linear epitopes were given as short peptide sequences with
fewer than 40 amino acids per peptide. We mapped the linear epitopes onto the protein structure
by jointly aligning the peptide sequences and the complete set of 3854 protein sequences used for
evolutionary-rate calculations. Each linear epitope aligned without gaps to a particular segment
of the full protein. The 5 linear human epitopes turned out to be a subset of the 87 non-human
linear epitopes, and we therefore dropped the linear human epitopes from further analysis.

For both linear and non-linear epitope data, we counted for each site in hemagglutinin how
often it appeared in each epitope data set. We then compared these epitope counts to the
historical epitope sites (Bush 1999, Ref. [4]). We first considered the human, non-linear epitope
data. We found some overlap between the historical sites and the experimental non-linear
epitope counts (Fig. 2). Each of the four largest peaks (i.e., the four regions with strongest
experimental evidence of belonging to epitopes) was at least partially captured by the historical
epitope groups. The majority of historical epitopes A and B were represented in the non-linear
epitope data; A had 16 of 19 sites appear in the experimental data and epitope B had 13 of
22. By contrast, many of the historical sites had no experimental support among the available
non-linear epitope data. Of 131 historical epitope sites, only 52 appeared at least once in the
experimental data set. Historical epitopes C, D, and E were particularly poorly represented as a
fraction of their size, with only 8 of 27, 13 of 41, and 2 of 22 sites having experimental support,
respectively. Among the discrepancies between historical and experimental immune epitopes,
an important deviation came from the HA2 chain. By historical convention, no sites from HA2
were included among the hemagglutinin epitopes; as a result, there were a large number of sites
appearing in the experimental set that were not defined as historical epitopes.

To understand to what extent the experimental non-linear epitope sites separated into dis-
tinct groups, we performed a clustering analysis (Fig. 3A). We considered all sites in the exper-
imental epitope dataset as nodes of a graph, and we drew an edge between any two sites that
appeared within the same accession number of the immune epitope database (IEDB). Then, we
colored the nodes according to their classification in the historical epitope groups. We found
that the non-linear experimental epitope data was able to partially reconstruct the historical
epitope groups. In particular, historical epitopes A, B, and D clustered well, with only two sites
from A and one site from D being completely disconnected from the rest of the epitope. By
contrast, epitopes C and E did not at all recapitulate any experimental data. In addition, as
previously shown in Fig. 2, there was a relatively large number of experimental epitope sites
that were not accounted for by the historical epitope definition (Fig. 3A).

In addition to antibody connectivity (accession number clustering), given the structural
nature of antibody neutralization, we expected that any correct grouping of epitope sites would
display some ability to cluster in three dimensional space. Thus, we calculated the distance
from each C, (the a-Carbon atom in the polypeptide backbone) site in hemagglutinin to every
other C,. We then constructed a graph where we connected any two nodes in the non-linear
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experimental epitope data set with an edge if the two corresponding sites were less than 10 A
apart in the 3D structure (Fig. 3B). Again, we colored the nodes by their historical groupings.
For these spatial clusters, the historical epitopes were poorly grouped within the non-linear
epitope data. All historical epitopes fell into at least two disjoint sets separated by sites not
belonging to the same epitope, and no single visible spatial cluster corresponded to a single
historical epitope. We concluded that the historical epitope definitions largely failed to spatially
cluster within the sites for which we had experimental immune epitope data.

We next considered the non-human, non-linear epitopes. We found that there was no
clear connection between the non-human non-linear epitope data and historical epitopes groups
(Fig. S1); in addition, several of the accessions listed individual sites, which thus did not provide
any information about epitope groupings. We also considered experimental non-human linear
epitopes. By contrast to the non-linear epitopes, the linear epitope set covered nearly every
site in the entire hemagglutinin protein (Fig. S2). However, the most represented sites in the
experimental epitope dataset (near site 100) were almost completely missed by the historical
epitope sites. Furthermore, there was a substantial portion of experimental sites near the N-
terminal region of HA1 that was completely absent from the historical sites. When clustering
the data by shared accession numbers, we found that the experimental linear epitope data did
not at all resemble historical epitope groups (Fig S3). Moreover, since the experimental linear
epitopes covered almost every site in HA, it was not clear that they represented any particular
immune-system bias. In fact, we expect that the experimental practice of expressing short linear
peptides and testing them against antibody binding will generally produce many false positives,
sites that are included in the peptide but not actually bound by an antibody.

Because neither the linear nor the non-linear non-human epitope sites appeared particularly
informative, and because in general it is not clear that non-human immune data are relevant to
human epitope grouping, we disregarded all non-human epitope data for the remainder of this
study. We thus assumed that the non-linear human B cell epitopes represent the true immune
epitope sites. We acknowledge that at least some of the sites included among the linear epitopes
should likely be included among the true immune epitopes. However, these sites would first have
to be verified by non-linear mapping.

Regrouping epitope sites with experimental data

Even though the historical epitopes were able to partially reconstruct the experimental epitope
clusters, a simple visual inspection suggested more natural groups than those used in the histori-
cal set (Fig. 3A). Thus, we re-grouped the experimental human non-linear epitopes into the most
obvious possible groupings (Fig. 3C and Table 1). The non-linear epitope data clustered most
naturally into four distinct immune epitope regions, which we referred to as 1-4, to distinguish
them from the historical epitopes A—E. Two of the four regions (experimental regions 2 and 3,
respectively) were generally very similar to epitopes A and B in the historical definitions. One
of the two remaining regrouped epitopes (experimental region 4) was vaguely similar to the D
historical epitope with many sites added. The last epitope (experimental region 1) supported
by experimental non-linear data was virtually nonexistent in all previous epitope groups. It had
a few sites that were previously classified in the C epitope, and it added a large number of sites
from the HA2 chain of hemagglutinin. Finally, there were eight sites that had at least one count
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in the non-linear epitopes and that could not be easily clustered with the other sites (Table 1).

We performed the same spatial clustering with our newly defined epitope groups as we had
previously done for the historical epitope sites. By contrast to the historical epitopes, we found
that our epitope groups, which were defined simply by antibody-clustered sites, partitioned
almost perfectly into spatial clusters (Fig. 3D). Of the four groups we defined, all but one
(experimental region 2) was spatially connected. In addition, experimental region 2 had only
a single spatial disconnection. Our data set may be missing a single epitope site that would
flip the relevant portion of the graph and connect the two disconnected sections. In addition,
the spatial graph suggests how to resolve the ungrouped sites (drawn in black) in Fig. 3C. Of
these eight sites, which grouped into one pair and two triplets in Fig. 3C, two likely belong to
Epitope 2, two likely belong to epitope 3, and three may belong to either epitope 2 or 3. Notably,
while our redefined epitopes clustered well in the 3D structure, they looked disconnected and
arbitrarily chosen when plotted along the linear chain (Fig. S4).

Finally, we mapped our epitope groups onto the 3D crystal structure (Fig. 4), using the
same color scheme as used in Figure 3. As expected, there was a clear spatial distribution of
sites. Moreover, Epitopes 2—4 fell into the apical domain of HA, directly adjacent to the sialic
acid-binding region. Only Epitope 1, which clearly separated from 2—4 in the clustering analysis,
was located in the stem of HA.

Developing a predictive model of hemagglutinin evolution

Our ultimate goal in this work was to develop a predictive model of hemagglutinin evolution, a
model that would use biophysical and /or biochemical properties of the protein to infer sites which
are likely going to experience either positive or purifying selection pressure. What should such a
model look like? Clearly, even in the complete absence of any host immune pressure not all sites
in hemagglutinin are expected to evolve equally. In particular, several recent works have shown
that site-specific evolutionary variation is partially predicted by a site’s solvent exposure and/or
number of residue-residue contacts in the 3D structure [19,20,25-30]. This relationship between
protein structure and evolutionary conservation likely reflects the requirement for proper and
stable protein folding: Mutations at buried sites or sites with many contacts are more likely
to disrupt the protein’s conformation [30] or thermodynamic stability [32]. In addition, there
may be functional constraints on site evolution. For example, regions in proteins involved in
protein—protein interactions or enzymatic reactions are frequently more conserved than other
regions [27,33,34]. Likewise, for a viral surface protein, we expect that functionally important
regions (regions with higher fitness consequences) in the protein that are targeted by antibodies
will evolve more rapidly, to facilitate immune escape. And indeed, our results from the previous
subsections have shown that (i) the neutralizing antibody epitopes in the IEDB preferentially
target sites near the receptor-binding region in hemagglutinin and (ii) proximity to the receptor-
binding region is a good predictor of evolutionary variation.

We therefore evaluated how proximity to the receptor-binding region performed as a predictor
of dN/dS in comparison to the previously proposed predictors relative solvent accessibility (RSA)
and weighted contact number (WCN). We found that among these three quantities, proximity
to the sialic acid-binding region was the strongest predictor, explaining 16% of the variation
in dN/dS (Pearson 7 = 0.41, P < 1071, see also Figs. 5 and S5). RSA and WCN explained
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14% and 6% of the variation in dN/dS, respectively (r = 0.37, P < 107! and r = 0.25,
P =7x1077). Proximity to the sialic acid-binding region and RSA were virtually uncorrelated
(r = 0.08, P = 0.09) while RSA and WCN correlated strongly (r = —0.64, P < 10~%).
These results suggested that proximity to the sialic acid-binding region and RSA should be used
jointly in a predictive model. Importantly, proximity alone turned out to be the single strongest
independent predictor of evolutionary rate currently known, outperforming not only RSA and
WCN but also numerous other predictors previously considered [28].

We next asked to what extent epitope groups could predict evolutionary variation. We con-
sidered both the historical epitope groups (Bush 1999) and our experimentally derived epitopes
1-4, defined in the previous subsection. Because a site’s epitope status is a categorical vari-
able, we calculated variance explained as the coefficient of determination (R2) in a linear model
with dN/dS as the response variable and epitope status as the predictor variable. We found
that experimental epitopes explained 15% of the variation in dN/dS, comparable to RSA and
proximity. In comparison, the historical epitopes alone explained nearly 18% of the variation
in dN/dS, outperforming all other individual predictor variables considered here (Fig. 5 and
Table 2). However, as discussed in the previous subsection, the available experimental data
suggest that not all of the historical sites may be actual immune epitope sites. Therefore, we
suspected that some of the predictive power of historical sites was due to these sites simply being
solvent-exposed sites near the receptor-binding region. We similarly wondered to what extent
the predictive power of the experimental epitope sites was attributable to the same cause, since,
in fact, both historical and experimental epitope sites showed comparable enrichment in sites
near the sialic acid-binding region and in solvent-exposed sites (Fig. S6). Thus, we analyzed
how the variance explained increased as we combined epitope sites (experimental or historical)
with either RSA or proximity or both.

We found that epitope status, under either definition (experimental/historical), led to in-
creased predictive power of the model when combined with either RSA or proximity (Fig. 5).
However, a model consisting of just the two predictors RSA and proximity, not including any
information about epitope status of any sites, performed even better than any of the other one-
or two-predictor models, explaining 32% of the variation in dN/dS (Fig. 5). Adding epitope sta-
tus to this best-performing two-predictor model resulted in only minor improvement, from 32%
to 34% variance explained in the case of experimental epitopes and from 32% to 37% variance
explained in the case of historical epitope sites (Fig. 5 and Table 2).

The geometrical constraints RSA and proximity explained more variance in dN/dS than
did epitope sites, but were they also better at predicting sites of interest? Because dN/dS can
measure purifying as well as positive diversifying selection, the percent variance in dN/dS that
a model explains may not necessarily accurately reflect how useful that model is in predicting
specific sites, e.g. sites under positive selection. For example, one could imagine a scenario
in which a model does exceptionally well on sites under purifying selection (dN/dS < 1) but
fails entirely on sites under positive selection (dN/dS > 1). Such a model might explain a
large proportion of variance but be considered less useful than a model that overall predicts
less variation in dN/dS but accurately pinpoints site under positive selection. Therefore, we
wondered whether epitope sites might do a poor job predicting background purifying selection
but might still be useful in predicting sites with dN/dS > 1. We found, to the contrary,
that neither the historical nor the experimental epitope sites could reliably predict sites with
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dN/dS > 1, alone or in combination with RSA (Fig. STA-D). Proximity to the receptor-binding
site, on the other hand, correctly predicted four sites with dN/dS > 1, even in the absence of
any other predictors. Notably, all models we considered here were robust to cross-validation.
The cross-validated residual standard error was virtually unchanged from its non-cross-validated
value in all cases (Table 2). Because proximity clearly identified four points with high dN/dS,
we also verified that the proximity—d/N/dS correlation was not caused just by these four points.
We removed from our data set the four points that had both predicted and observed dN/dS >
1, and found that a significant proximity—dN/dS correlation remained nonetheless (r = 0.17,
p = 0.00001).

Finally, we compared the predictions from the geometrical model of hemagglutinin evolution
to results from a recent study of antigenic cluster transitions; that study found seven sites near
the receptor-binding region which were critical for cluster transitions according to hemagglutinin
inhibition (HI) assays with ferret antisera [21]. The sites identified in Ref. [21] were 145, 155,
156, 158, 159, 189, and 193. For comparison, our geometric model (with predictors RSA and
1/Distance) predicted none of these sites to be under positive selection. Sites predicted to
have dN/dS > 1 were instead 96, 137, 138, 143, 222, 223, 225, and 226. Moreover, out of the
seven sites from Ref. [21], only one (site 145) had an observed dN/dS significantly above 1. By
contrast, four of the eight sites predicted under the geometric model to have dN/dS > 1 did
indeed have dN/dS significantly above 1. Thus, the sites that determine the major antigenic
changes in the virus did not at all overlap with the sites expected and observed to be under the
greatest evolutionary pressure. When investigating the location of these sites in detail, we found
that all of the sites we predicted to have dN/dS > 1 were located just basal to the receptor-
binding site, whereas nearly all of the sites from [21] (with the exception of 145, the site with
dN/dS > 1) were located on the apical side of the receptor-binding site (Fig. S8).

In summary, we have found that two simple geometric measures of a site’s location in the
3D protein structure, solvent exposure and proximity to the receptor-binding region, jointly
outperformed, by a wide margin, any previously considered predictor of evolutionary variation
in hemagglutinin, including immune epitope sites. In fact, the vast majority of the variation in
evolutionary rate that was explained by the historical epitope sites was likely due to these sites
simply being located near the receptor-binding region on the surface of the protein. However,
historical epitope sites, in combination with solvent exposure and proximity, had some resid-
ual explanatory power beyond even a three-predictor model that combined the two geometric
measures with experimental immune-epitope data. We suspect that this residual explanatory
power reflects the sequence-based origin of the historical epitope sites. To our knowledge, the
historical epitope sites were at least partially identified by observed sequence variation, so that,
to some extent, these sites are simply the sites that have been observed to evolve rapidly in
hemagglutinin.

Discussion

We have conducted a thorough analysis of the determinants of site-specific hemagglutinin evolu-
tion. Most importantly, we have found that host immune bias (as measured by experimentally
determined immune epitopes) accounts for a very small but significant portion of the evolutionary
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pressure on influenza hemagglutinin. By contrast, a simple geometric measure, receptor-binding
proximity, is the single largest constraint on hemagglutinin evolution we have identified, and
the only quantity that can predict sites with dN/dS > 1. We have shown that the historical
epitope definitions overlap only partially with experimentally determined immune-epitope data,
and we have defined new epitopes based on the experimentally available data. These experi-
mentally supported epitopes cluster in protein tertiary structure space. Finally, we have shown
that a simple linear model containing three predictors, solvent accessibility, proximity to the
receptor-binding region, and immune-epitope sites, explains nearly 35% of the evolutionary rate
variation in hemagglutinin H3.

History of epitopes in hemagglutinin H3

Efforts to define immune epitope sites in H3 hemagglutinin go back to the early 1980’s [10].
Initially, epitope sites were identified primarily by speculating about the chemical neutrality of
amino acid substitutions between 1968 (the year H3N2 emerged) and 1977, though some limited
experimental data on neutralizing antibodies was also considered [10,11]. In 1981, the initial
four epitope groups were defined by non-neutrality (amino-acid substitutions that the authors
believed changed the chemical nature of the side chain) and relative location, and given the
names A through D [10]. Since that original study in 1981, the names and general locations of
H3 epitopes have remained largely unchanged [4,16]. The sites were slightly revised in 1987 by
the same authors and an additional epitope named E was defined [11]. From that point forward
until 1999 there were essentially no revisions to the codified epitope sites. In addition, while
epitopes have since been redefined by adding or removing sites, no other epitope groups have
been added [3,16,18]; epitopes are still named A-E. In 1999, the epitopes were redefined by more
than doubling the total number of sites and expanding all of the epitope groups [4]. At that
time, the redefinition consisted almost entirely of adding sites; very few sites were eliminated
from the epitope groups. Although this set of sites and their groupings remain by far the most
cited epitope sites, it is not particularly clear what data justified this definition. Moreover, when
the immune epitope database (IEDB) summarized the publicly available data for flu in 2007, it
only included one experimental B cell epitope in humans (Table 2 in [35]). Although there were
a substantial number of putative T cell epitopes in the database, a priori there is no reason to
expect a T cell epitope to show preference to hemagglutinin as opposed to any other influenza
protein; yet it is known that several other influenza proteins show almost no sites under positive
selection. Moreover, it is known that the B cell response plays the biggest role is maintaining
immunological memory to flu, and thus it is the most important arm of the adaptive immune
system for influenza to avoid.

The historic H3 epitope sites have played a crucial role in molecular evolution research. Since
1987, an enormous number of methods have been developed to analyze the molecular evolution
of proteins, and specifically, to identify positive selection. The vast majority of these methods
have either used hemagglutinin for testing, have used the epitopes for validation, or have at
some point been applied to hemagglutinin. Most importantly, in all this work, the epitope
definitions have been considered fixed. Most investigators simply conclude that their methods
work as expected because they recover some portion of the epitope sites. Yet virtually all of
these studies identify many sites that appear to be positively selected but are not part of the
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epitopes. Likewise, there is no single study that has ever found all of the epitope sites to be
important. Even if the identified sites from all available studies were aggregated, we would likely
not find every site among the historical epitopes in that aggregated set of sites.

Implications of historical epitope groups for current research

Given all of this research activity, it seems that the meaning of an immune epitope has been
muddled. Strictly speaking, an immune epitope is a site to which the immune system reacts.
There is no a priori reason why an immune epitope needs to be under positive selection, needs
to be a site that has some number or chemical type of amino acid substitutions, or needs to
be predictive of influenza whole—genome or hemagglutinin specific sequence cluster transitions.
Yet, from the beginning of the effort to define hemagglutinin immune epitopes, such features
have been used to identify epitope sites, resulting in a set of sites that may not accurately reflect
the sites against which the human immune system produces antibodies.

Ironically, this methodological confusion has actually been largely beneficial to the field of
hemagglutinin evolution. As our data indicate, if the field had been strict in its pursuit of
immune epitopes sites, it would have been much harder to produce predictive models with those
sites, in particular given that experimental data on non-linear epitopes have been sparse until
very recently. By contrast, the historical epitope sites have been used quite successfully in several
predictive models of the episodic nature of influenza sequence evolution. In fact, in our analysis,
historical epitopes displayed the highest amount of variance explained among all individual
predictors (Fig. 5). We argue here that the success of historical epitope sites likely stems from
the fact that they were produced by disparate analyses each of which accounted for a different
portion of the evolutionary pressures on hemagglutinin. Of course, it is important to realize
that some of this success is likely the result of circular reasoning, since the sites themselves were
identified at least partially from sequence analysis that included the clustered, episodic nature
of influenza hemagglutinin sequence evolution.

Despite the success of historical epitope groups, they only predict about 18% of the evolu-
tionary rate-variation of hemagglutinin. Moreover, since many of these sites likely are not true
immune epitopes (and therefore not host dependent), one might ask which features of the his-
torical epitope sites make them good predictors. We suspect that they perform well primarily
because they are a collection of solvent-exposed sites near the sialic acid-binding region (see
also Fig. S6). We had shown previously that sites within 8 A of the sialic acid-binding site are
enriched in sites under positive selection, compared to the rest of the protein [20]. A similar
result was found in the original paper by Bush et al. [4]. However, the related metric of distance
from the sialic acid-binding site has not previously been considered as a predictor of evolution in
hemagglutinin. Furthermore, before 1999, most researchers thought the opposite should be true;
that receptor-binding sites should have depressed evolutionary rates [4]. Even today the field
seems split on the matter [21]. As we have shown here, the inverse of the distance from sialic
acid is the single best independent predictor of hemagglutinin evolution; by itself this distance
metric can account for 16% of evolutionary rate-variation. Moreover, by combining this one
metric with another to control for solvent exposure, we can account for more than a third of
the evolutionary rate variation in hemagglutinin. For reference, this number is larger than the
variation one could predict by collecting and analyzing all of the hemagglutinin sequences that
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infect birds (another group of animals with large numbers of natural flu infections), and using
those rates to predict human influenza hemagglutinin evolutionary rates [20].

In this context, it is important to note that the IDB has limitations; not all existing (not to
mention all possible) immunological data have been added. Further, the extent to which certain
epitopes (e.g., stalk epitopes) have been mapped may be more reflective of a bias in research
interests among influenza researchers than a bias in the human immune system. Therefore, in
our re-derivation of epitope groupings, we may be missing immune epitope sites or be incorrectly
grouping the ones that we have. Our analysis of epitope sites will likely have to be redone as more
data become available. However, we expect that as more non-linear data become available, they
will broadly follow the trend observed in the linear epitope data, that is, the more antibodies
are mapped, the more sites in the hemagglutinin protein appear in at least one mapping, until
virtually every site in the entire hemagglutinin protein is represented. Under this scenario, the
ability to predict evolution from immunological data would become worse, not better, as more
data are accumulated.

Geometric constraints likely dominate adaptive evolution in hemagglutinin

Why do geometric constraints (solvent exposure and proximity to receptor-binding site) do such
a good job predicting hemagglutinin evolutionary rates? Hemagglutinin falls into a class of
proteins known collectively as viral spike glycoproteins (GP). In general, the function of these
proteins is to bind a host receptor to initiate and carry out uptake or fusion with the host
cell. Therefore, a priori one might expect that the receptor-binding region would be the most
conserved part of the protein, since binding is required for viral entry. Yet in hemagglutinin
sites near the binding region are the most variable in the entire protein. There are at least two
possible models that might explain this observation. First, in terms of host immune evasion,
antibodies that bind near the receptor-binding region may be the most inhibitory, and hence
mutations in this region the most effective in allowing immune escape. Viral spike GPs have a
surface that is both critical for viral survival and is sufficiently long lived that a host immune
response is easily generated against it. There are likely many other viral protein surfaces that
are comparatively less important or sufficiently short lived during a conformational change that
antibody neutralization is impractical. Thus, the virions that survive to the next generation are
those with substantial variation at the surface or surfaces with high fitness consequences and
a long half-life in vivo. Evolutionary variation at surfaces with low or no fitness consequences,
or at short-lived surfaces, should behave mostly like neutral variation and hence appear as
random noise, not producing a consistent signal of positive selection. Second, according to the
avidity modulation model of Hensley et al. [23], it is possible that antibody inhibition is not
overcome by escaping the antibody directly. Rather, a single or a few relatively rare mutations
may increase the avidity of hemagglutinin for its receptor so as to out-compete partial antibody
inhibition. Subsequently, once the partial inhibition is overcome in a competent host, passage
to an incompetent how allows genetic drift to bring the avidity back down to baseline. Both of
these models are reasonable under our analyses in this study.

We also need to consider that actual epitope sites, i.e., sites towards which the immune
system has a bias, may not be that important for the evolution of viruses. An epitope is
simply a part of a viral protein to which the immune system reacts. Therefore, it represents a
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host-centered biological bias. The virus may experience stronger selection at regions with high
fitness consequences but that generate a relatively moderate host response compared to other
sites with low fitness consequences that generate a relatively strong host response. For example,
if an antibody binds to the receptor-binding region of hemagglutinin, the influenza virus must
adapt to survive; by contrast, if an antibody binds away from the receptor-binding region, the
influenza virus may not be neutralized by that antibody and hence may not experience much
selection pressure to adapt. For these reasons, we expect that the geometric constraints we have
identified here will be more useful in future modeling work than the experimental epitope groups
we have defined. Moreover, we expect that similar geometrical constraints will exist in other
viral spike glycoproteins, and in particular in other hemagglutinin variants.

Remarkably, the sites we found that experienced the most positive selection showed minimal
overlap with the sites found to be minimally sufficient for explaining the major antigenic transi-
tions in H3N2, as determined by HI assays with ferret antisera [21]. While both groups of sites
lie near the sialic-acid binding region, the vast majority of positively selected sites are located
basally to sialic acid whereas sites identified by HI assays lie predominantly on the apical side
(Fig. S8). This finding suggests that HI assays and positive selection analyses reflect distinct
biological mechanisms. For example, HI assays might not accurately reflect selection pressures
in vivo. Alternatively, HI assays may correctly identify mutations that lead to antigenic cluster
transitions whereas positive selection analyses may identify sites that mediate avidity [23] or
antigenic drift within a cluster. In future work, disentangling the different mechanisms reflected
by HI assays and by positive-selection analyses will likely be crucial for improved prediction of
HA evolution and of optimal vaccine strains.

Materials and Methods

Obtaining influenza data and preparing sequences

All of the data we analyzed were taken from the Influenza Research Database (IRD) [36]. The
IRD provides experimental immune epitope data curated from the data available in the Immune
Epitope Database (IEDB) [37].

We used sequences that had been collected since the 1991-1992 flu season. Any season
before the 1991-1992 season had an insufficient number of sequences to contribute much to the
selection analysis. The sequences were filtered to remove redundant sequences and laboratory
strains. The sequences were then aligned with MAFFT [38]. Since it is known that there have
been no insertions or deletions since the introduction of the H3N2 strain, we imposed a strict
opening penalty and removed any sequences that had intragenic gaps. In addition, we manually
curated the entire set to remove any sequence that obviously did not align to the vast majority
of the set; in total the final step only removed about 10 sequences from the final set of 3854
sequences. For the subsequent evolutionary rate calculations, we built a tree with FastTree
2.0 [39].
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Computing evolutionary rates and relative solvent accessibilities

To compute evolutionary rates, we used a fixed effects likelihood (FEL) approach with the MG94
substitution model [24,40,41]. We used the FEL provided with the HyPhy package [24]. For the
full setup see the linked GitHub repository (https://github.com/wilkelab/influenza HA evolution).
As is the case for all FEL models, an independent evolutionary rate is fit to each site using only
the data from that column of the alignment. Because our data set consisted of nearly 4000
sequences, almost every site in our alignment had a statistically significant posterior probability
of being either positively or negatively selected after adjusting via the false discovery rate (FDR)
method. As shown in Figure S7, all evolutionary rates fall into a range between dN/dS = 0 and
dN/dS = 4.

We computed RSA values as described previously [28]. Briefly, we used DSSP [42] to compute
the solvent accessibility of each amino acid in the hemagglutinin protein. Then, we used the
maximum solvent accessibilities [43] for each amino acid to normalized the solvent accessibilities
to relative values between 0 and 1. We found that RSA calculated in the trimeric state produced
better predictions than RSA calculated in the monomeric state. Thus, we used multimeric
RSA in all models in this study. Both multimeric and monomeric RSA are included in the
supplementary data.

Mapping experimental immune epitopes

There were two broad categories of epitope data available in the epitope database. One was
non-linear epitopes and the other was linear epitopes. In addition, the IRD splits epitopes into
B and T cell epitopes and also into the various species whose immune system was tested. Here,
we were interested in antibody-driven immune escape, and hence we focused on B cell epitopes.

For B cell epitopes, every linear human epitope was also recognized by the immune system
of many other species. Therefore, we decided to split the analysis into linear and non-linear
groups. All of the non-linear epitope data came in the form of amino acid plus site number. As
a result, we could map the epitopes by simply counting the number of times each site in the
protein was hit and the co-occurrences of sites hit by the same antibody.

Mapping linear epitopes was slightly more complicated. We started with the short sequence
fragments; each of the fragments was between 5 and 40 amino acids in length. We tried initially
to map the fragments onto the emblematic A/Aichi/2/1968 sequence, but it turned out the
epitope fragments were actually generated from disparate strains along the H3N2 lineage. The
differences between the original founder strain and the fragments meant that we could not
accurately map the vast majority of short peptides onto a single sequence. Instead, we took
the entire curated and pre-aligned set of 3854 sequences that we used in the evolutionary rate
calculations. We then aligned the fragments with MAFFT using a very strong opening penalty
of 10. We visually checked to be sure all of the 87 fragments aligned reasonably well to the full
H3 alignment. Then, as with the non-linear epitopes, we counted the number of times each site
was hit and the co-occurrences of sites hit by the same antibody.

To calculate the distance maps, we used an H3 protein structure (PDB ID: 4FNK) available
in the Protein Databank [44,45]. We first cleaned the protein structure using PyMOL [46]. We
then used the Bio.PDB module of biopython to compute distances on the protein structure. In
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a similar fashion to the co-occurrence maps above, we used every site that appeared in at least
one epitope. We then calculated the distance from every experimental epitope site to every
other experimental epitope site. If a site was within 10 A of another epitope site, then an edge
was drawn between them using the igraph package [47] in the statistical programming language
R [48].

Evolutionary rate-distance correlations

To create the structural heat map of correlations shown in Fig. 1B, we first needed to calculate
the correlations between evolutionary rates and pairwise distances, calculated in turn for each
location in the protein structure as the reference point for the distance calculations. Concep-
tually, we can think of this analysis as overlaying a grid on the entire protein structure, where
we first calculate the distance to various grid points from every C, in the entire protein, and
then compute the correlation between the set of distances to the sites on the grid and the evolu-
tionary rate at those sites. In practice, we calculated the distance from each C, to every other
Co. We then colored each residue by the correlation obtained between evolutionary rates and
all distances to its C,,.

Statistical analysis and data availability

All statistical analyses were performed using R [48]. We built the linear models with both the
1m() and glm() functions. For cross validation, we used the cv.glm() function within the boot
package. Residual standard error values were computed by taking the square root of the delta
value from cv.glm(). With the exception of graph visualizations, all figures in this manuscript
were created using ggplot2 [49].

A complete data set including evolutionary rates, epitope assignments, RSA, and proximity
to the receptor-binding site is available as Table S1. Raw data and analysis scripts are available
at
https://github.com/wilkelab/influenza HA_evolution. In the repository, we have included
all human H3 sequences from the 1991-1992 season to present combined into a single align-
ment. We have cleaned the combined data to only include sequences with canonical bases,
non-repetitive sequences, and we have hand filtered the data to ensure all included sequences
align appropriately to the 566 known amino acid sites. In addition, we have built a tree and
visually verified that there were no outlying sequences on the tree for the combined set.

Technical considerations for analysis

The site-wise numbering for the H3 hemagglutinin protein reflects the numbering of the mature
protein; this numbering scheme requires the removal of the first 16 amino acids in the full-
length gene. Thus, for protein numbering purposes, site number 1 is actually the 17th codon
in full-length gene numbering. The complete length of the H3 hemagglutinin gene is 566 sites
while the total length of the protein is 550 sites. It is important to point out that the mature
H3 protein has two chains (HA1 and HA2) that are produced by cutting the presursor (HAO)
protein between sites 329 and 330 in protein numbering. In addition, as a result of cloning and
experimental diffraction limitations, most (or likely all) hemagglutinin structures do not include
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some portion of the first or last few amino acids of either chain of the mature protein, and
crystallographers always remove the C-terminal transmembrane span from HA2. For example,
the structure we used (PDBID: 4FNK) in this study does not include the first 8 amino acids
of HA1, the last 3 amino acids of HA1, or the last 48 amino acids of HA2. As a result, HA1
includes sites 9-326 and HA2 includes sites 330-502. Table S1 lists the gene sequence from one of
the three original H3N2 (Hong Kong flu) hemagglutinin (A/Aichi/2/1968), the gene numbering,
the protein numbering, the numbering of one H3N2 crystal structure, historical immune epitope
sites from 1981, 1987 and 1999, and every calculated parameter used (and many others than
were not used) in this study. In general, the most common epitope definitions in use today are
those employed by Bush et. al 1999 [4]. Throughout this work, we refer to the Bush et. al 1999
epitopes as the “historical epitope sites”.
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Tables

Table 1. Groups of experimental non-linear epitope sites. We defined epitope groups
on the basis of which sites co-occurred within the same IEDB accession number. See also
Fig. 3C and Table S1. Sites are numbered according to their position in the mature protein.

Epitope group Sites
1 34, 36, 53, 54, 70, 292, 295, 305, 307, 334, 363, 364, 365,
366, 379, 380, 382, 383, 384, 386, 387, 390, 391, 393, 394,
395, 397, 398, 401, 403, 404, 405, 499

2 121, 122, 123, 124, 126, 131, 133, 135, 136, 137, 138, 140
142, 143, 144, 145, 146

3 155, 156, 157, 158, 159, 160, 187, 188, 189, 190, 191, 192,
194, 196, 223, 256

4 114, 115, 147, 148, 149, 150, 151, 152, 153, 154, 161, 162,

169, 170, 171, 172, 173, 174, 175, 176, 204, 205, 206, 208,
209, 210, 211, 212, 235, 238, 241, 242, 243
N/A 82, 83, 222, 225, 275, 276, 278

Table 2. Predictive performance of each linear model considered. R? is the
proportion of variation in dN/dS explained by the specified model. RSE is the residual
standard error of the linear model. cvRSEq is the cross validated residual standard error
calculated by 10-fold cross validation. cvRSEj,, is the cross validated residual standard error
calculated by leave-one-out cross validation.

Predictors in the linear model R?> RSE c¢vRSE;g c¢vRSE,
RSA 0.14 0.41 0.41 0.41
Experimental epitopes 0.15 041 0.42 0.42
1 / Distance 0.16 0.40 0.41 0.41
Bush 1999 0.18 0.40 0.41 0.41
RSA + Experimental epitopes 0.23 0.39 0.41 0.40
RSA + Bush 1999 0.24 0.39 0.39 0.39
1 / Distance + Experimental epitopes 0.23 0.39 0.40 0.40
1 / Distance + Bush 1999 0.28 0.38 0.39 0.39
RSA + 1 / Distance 0.32 0.37 0.37 0.37
RSA + 1 / Distance + Experimental epitopes 0.34 0.36 0.39 0.38

RSA + 1 / Distance + Bush 1999 0.37 0.35 0.37 0.37
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Figure 1. Evolutionary-rate variation along the hemagglutinin structure. (A) Each
site in the protein structure is colored according to its evolutionary rate dN/dS. Hot colors
represent high dN/dS (positive selection) while cool colors represent low dN/dS (purifying
selection). (B) Each site in the protein structure is colored according to the dN/dS—distance
correlation obtained when distances are calculated relative to that site. Hot colors represent
positive correlations while cool colors represent negative correlations. Thus, distances from
sites that are redder are better positive predictors of the evolutionary rates in the protein than
are distances from bluer sites; distances from blue sites are actually anti-correlated with
evolutionary rate. Distances from sites that are colored green have essentially no predictive

ability.
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Figure 2. Experimental non-linear epitope site counts, colored by historical
epitope groupings. The heights of individual bars indicate how often each site in the H3
hemagglutinin protein appears in an experimental non-linear epitope set, and the color of each
bar indicates the site’s historical epitope assignment according to Bush et. al 1999 [4]. Sites
that do not appear in the experimental set are shown with a count of zero. The rug underneath
the y = 0 line contains all sites and visualizes the exact loation of the historical epitope sites.
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Figure 3. Clustering of experimental non-linear epitope sites by IEDB accession
number and by physical proximity in the 3D structure. (A) Non-linear epitope sites
clustered by IEDB accession number and colored according to the historical epitope

definition [4]. Each node represents a site that appears at least once in the experimental
non-linear epitope data set. Two nodes are connected by an edge if they are bound by the same
antibody in the Immune Epitope Database (i.e., have the same IEDB accession number). The
historical epitope definitions do not correspond well to the experimentally observed clustering.
(B) Non-linear epitope sites clustered by physical proximity in the 3D structure and colored
according to the historical epitope definition. The same nodes as in (A) are now connected by
an edge if they are within 10 A of each other in the three dimensional structure. The historical
epitope groupings do not appear clustered in 3D space. (C) Sites are clustered as in A but
colored according to the most natural grouping based on antibody clustering. Colored areas
are drawn to highlight the distinct clusters. (D) Site are clustered as in (B) but colored as in
(C). Parts (C) and (D) show that the experimental non-linear epitope data support the
expectation that immune epitopes should group together spatially. All the sites that group by
binding the same set of antibodies are also spatially connected. The only exception is the red
epitope (#2), which is split into two groups. Also, there is one site that appears once in the
data, but is not connected to any other sites; as a result, it could not be displayed.
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Figure 4. Location of experimental, non-linear epitopes in the 3D structure of
hemagglutinin. (A) Side perspective of hemagglutinin. Non-linear epitope sites are colored
according to their group assignment, as defined in Fig. 3. (B) Top perspective of
hemagglutinin, with epitope sites highlighted. The orange moiety is sialic acid: the human
receptor for influenza.
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Figure 5. Proportion of variance in dN/dS explained by different linear models.
The height of each bar represents the coefficient of determination (R?) for a linear model
consisting of the stated predictor variables. The historical epitope sites from Bush 1999 [4]
(vellow bar on the left) are the single best predictor of evolutionary rate variation. However, a
model using three predictors that each have a clear biophysical meaning (solvent exposure,
proximity to receptor-binding region, non-linear epitope status) explains almost twice the
variation in dN/dS (yellow bar on the right).
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Supplementary Tables

Table S1: Complete data set including evolutionary rates, solvent accessibilities,
proximities to the receptor-binding region, and epitope status for all sites.


https://doi.org/10.1101/014183
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/014183; this version posted February 28, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

27

Supplementary Figures

Figure S1: Clustering of experimental non-human non-linear epitope sites by IEDB
accession number. Each node represents a site that appears at least once and is connected
to another site in the experimental non-linear epitope data set. Nodes are colored according to
the historical epitope definition [4]. Two nodes are connected by an edge if they are both part
of the same IEDB accession number. The historical epitope definitions do not correspond well
to the experimentally observed clustering. Also, there are 13 sites that appear once in the data
but are not connected to any other sites; as a result, they could not be displayed.


https://doi.org/10.1101/014183
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/014183; this version posted February 28, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

28

ZmMoOO® >

:
W{ da

Figure S2: Experimental non-human linear epitope site counts, colored by historical
epitope groupings. The heights of individual bars indicate how often each site in the H3
hemagglutinin protein appears in an experimental linear epitope set, and the color of each bar
indicates the site’s historical epitope assignment according to Bush et. al 1999 [4]. Sites that
do not appear in the experimental set are shown with a count of zero. The rug underneath the
y = 0 line contains all sites and visualizes the exact loation of the historical epitope sites.
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Figure S3: Clustering of experimental non-human linear epitope sites by IEDB
accession number. Each node represents a site that appears at least once and is connected
to another site in the experimental linear epitope data set. Nodes are colored according to the
historical epitope definition [4]. Two nodes are connected by an edge if they are both part of
the same IEDB accession number. The historical epitope definitions do not correspond well to
the experimentally observed clustering.
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Figure S4: Experimental human non-linear epitope site counts, colored by our pro-
posed, experimentally-based epitope groupings. The heights of individual bars indicate
how often each site in the H3 hemagglutinin protein appears in an experimental non-linear epi-
tope set, and the color of each bar indicates the site’s epitope assignment. Sites that do not
appear in the experimental set are shown with a count of zero. The experimentally-based epi-
topes are not clustered linearly along the sequence, but instead fall into a non-contiguous spatial
arrangement.
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Figure S5: Dependence of dN/dS on solvent exposure and proximity to the receptor-
binding region. (A) dN/dS vs. RSA. The size of the dots represents 1/Distance. (B) dN/dS
vs. 1/Distance. The coloring of the dots represents RSA. The distance to the sialic acid-binding
region is the single strongest quantitative predictor of evolutionary rate ratio in hemagglutinin.
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Figure S6: Distance to receptor-binding site and solvent exposure for epitope and
non-epitope sites. (A) Distribution of distances to residue 224, for historical epitope and non-
epitope sites. (B) Distribution of distances to residue 224, for experimental non-linear epitope
and non-epitope sites. (C) Distribution of relative solvent accessibilities, for historical epitope
and non-epitope sites. (D) Distribution of relative solvent accessibilities, for experimental non-
linear epitope and non-epitope sites. Under both historical and experimental epitope definitions,
epitope sites are closer to the sialic acid-binding region and have higher RSA than non-epitope
sites.
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Figure S7: Observed dN/dS vs. predicted dN/dS for different predictive linear
models. (A) Only epitope status according to the historical definition is used as predictor
variable. (B) Historical epitope sites and RSA are used as predictor variables. (C) Only epitope
status according to the experimental non-linear epitope data is used as predictor variable. (D)
Experimental epitope sites and RSA are used as predictor variables. (E) Only proximity to the
sialic acid-binding region (measured as 1/Distance to Residue 224) is used as predictor variable.
(F) Proximity and RSA are used as predictor variables. Individual sites with dN/dS > 1 are
predicted correctly only if the linear model includes the 1/Distance predictor. However, in all
cases, adding the RSA predictor significantly improves the model predictions.
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Figure S8: Sites identified by Koel et al. 2013 and those predicted to have dN/dS > 1.
The sites shown in purple are those identified by Koel et al. 2013 [21] to be critical for antigenic
cluster transitions. Only one of these sites has a dN/dS significantly above one, site 145. The
sites shown in red are those that our geometrical model predicts to have dN/dS > 1. (Half of
those sites have observed dN/dS > 1.) Note that our model predicts only sites on the basal side
of sialic acid to be under positive selection, since our reference point for proximity is site 224.
Site 145, the only purple site under positive selection, is also the only purple site on the basal
side of sialic acid.


https://doi.org/10.1101/014183
http://creativecommons.org/licenses/by/4.0/

