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Abstract  17 

 18 

Starting with Savageau's pioneering work from 1970s, here, we choose the simplest transcription 19 

network and ask: How does the cell choose a regulatory topology from the different available 20 

possibilities? We study the natural distribution of topologies at genome, systems, and micro-level in 21 

E. coli and perform stochastic simulations to help explain the differences in natural distributions. 22 

Analyzing regulation of amino acid biosynthesis and carbon utilization in E. coli and B. subtilis, we 23 

observe many deviations from the demand rules, and observe an alternate pattern emerging. 24 

Overall, our results indicate that choice of topology is drawn randomly from a pool of all networks 25 

which satisfy the kinetic requirements of the cell, as dictated by physiology. In short, simply, the cell 26 

picks "whatever works". 27 

  28 
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Introduction  29 

 30 

A critical feature of all living organisms is the ability to tune behavior in response to stimuli [1-5]. The 31 

most widespread and well-understood mode of this tuning is transcription, which enables the cells 32 

to modulate gene expression in response to cues. Looking at the simplest transcription network, 33 

where a regulator R, controls expression of a target T - different possibilities emerge. Control of the 34 

target, might be via positive or negative regulation. When we consider the fact that most 35 

transcription factors in E. coli are also auto-regulators, six possible topologies emerge (Figure 1) [3, 36 

4, 6-10]. In this study, we seek to answer the following question: Among all the available regulatory 37 

designs, how does a cell pick one to control target expression?  38 

 39 

In a series of papers in the 1970s, Savageau proposed "demand rules for gene regulation" [11-16], 40 

according to which, a target T is positively regulated (Figure 1A-C) if, in the organism’s natural 41 

habitat, T is required for a high fraction of time. On the other hand, if the target is only required 42 

sporadically, it tends to be regulated negatively (Figure 1D-F) [12, 13]. Evidence was provided in the 43 

shape of conformity in regulation of sugar utilization enzymes in E. coli with the demand rules [11, 44 

12]. In 2006, Alon et. al. provided a functional explanation for demand rules [17]. They argued that 45 

positive regulation for a frequently needed target T ensured erroneous binding of other 46 

transcription factors to the promoter was minimized. Alon et. al. demonstrate and propose, in a 47 

later report [18], that such an approach for gene regulation acts as an insulator of the promoter 48 

regions, preventing erroneous transcription. 49 

 50 

However, demand rules raise a few interesting questions. Active control, as proposed by the 51 

demand rules, will increase the demand of regulators in the cell. The cost associated with production 52 

of additional regulators for control is likely detrimental for cellular growth [19-21]. In addition, 53 

demand rules seem contrary to the concept of genetic robustness, which focuses on loss of fitness 54 

due to mutations acquired by an individual [22]. How then do we reconcile these seemingly opposite 55 

logics? In a 2009 report, Hwa et. al. have, via a theoretical framework, demonstrated that the choice 56 

of mode of gene regulation could be biased for or against demand rules, and is dictated by 57 

population size and the time scale of environmental evolution [23]. Their framework remains to be 58 

experimentally tested though. An alternate approach can be to examine response of different 59 

topologies to cues. The response can be quantified in terms of parameters like time of response, 60 

response to noise, and cost of control [3, 24-28]. However, questions like whether, over 61 
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physiologically relevant range of biochemical parameter values, there are inherent qualitative 62 

differences in the response that can be generated by different topologies remain unanswered.  63 

 64 

In this work, we perform simulations of the simplest transcriptional network (Figure 1), and compare 65 

our results with the natural distribution of regulatory interactions among topologies in E. coli. We 66 

revisit some of the results proposed by Savageau and study in detail the control of sugar utilization 67 

and amino acid biosynthesis in E. coli. Finally, we characterize the role of control cost in dictating 68 

fitness of a cell. Put together, our results indicate that, contrary to demand rules, choice of a 69 

particular topology for gene expression control is likely chosen randomly from all available 70 

topologies which satisfy the dynamic demands of physiology associated with a cellular function.   71 
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Results 72 

 73 

At the global scale, E. coli chooses topologies differentially for control of gene expression  74 

To understand the "logic" behind choice of topology for gene expression control, we enumerated all 75 

regulatory interactions in E. coli, and classified them in one of the six topologies in (Figure 1) [29]. 76 

We note that there is no qualitative difference in the number of interactions which are controlled via 77 

positive (~49.6%) or negative regulation (~50.4%) (Figure 2A). Including global regulators (and their 78 

regulons) in the enumeration yields similar results (Figure S1(A)). We also repeated the analysis by 79 

defining an interaction as a regulator R controlling a promoter (instead of all genes in an operon) 80 

(Figure S1(B-C)), and the analysis exhibits that there is no significant bias in E. coli choosing positive 81 

or negative regulation preferentially.  82 

 83 

However, the R-T frequency distribution changes qualitatively when we analyze the number of 84 

interactions in each of the six topologies in (Figure 1). As represented in (Figure 2B), among the six 85 

topologies, F is over-represented. This is followed by topologies A, B, C, and D, with no statistically 86 

significant difference between them. Last, topology E is the least represented (~5% of all 87 

interactions). We observe the same general trend when we define one interaction as regulator R 88 

controlling a promoter, instead of a gene (Figure S2A). On including the global regulators from the 89 

analysis, a slightly different picture emerges, where topologies C and F are the most represented (as 90 

most global regulators auto-regulate themselves), followed by topologies B, D, A, and E (which is 91 

again under represented) (Figure S2(B-C)). 92 

 93 

Overall, our analysis suggests that E. coli prefers certain regulatory arrangements over others. What 94 

are the factors that dictate this choice? Various possibilities exist, including, demand rules [11-16], 95 

error-minimization [17], or minimizing cost of control [19-21]. To understand the differences 96 

between the distribution of the six topologies, we study and analyze their distribution at two 97 

different scales. At the first level, we analyze frequency distribution of regulatory arrangements at a 98 

systems level, where a system is defined as sum of all interactions which serve the cell towards a 99 

common function. At the second level, we analyze in detail the demand and corresponding 100 

regulatory design at a micro level, specifically those related to amino acid biosynthesis and carbon 101 

source utilization.  102 

 103 

Differential choice of topology at a systems scale  104 
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To analyze frequency distribution of topologies in further detail, we separated R and T interactions in 105 

E. coli into six functional sub-groups: (a) amino acid transport and metabolism, (b) sugar metabolism 106 

and energy production, (c) coenzyme transport and metabolism, (d) inorganic transport and 107 

metabolism, (e) cell division and nucleotide metabolism, and (f) stress response (Figure 3). In five of 108 

the six classifications, distribution of number of interactions among A-C and D-F is statistically 109 

identical to the distribution observed at the genome scale in E. coli. Moreover, when analyzed 110 

individually, we note that in each of the six classifications, topology E is under-represented, and 111 

topology F is over-represented. In addition, the frequency distributions in all six groups is statistically 112 

similar to the one observed in nature (Figure 2B). We revisit the reason and nature of this 113 

distribution later in this manuscript. It is not surprising that topology F is over-represented in nature. 114 

Negative auto-regulation is known to speed up response in cellular systems [9, 25], and both 115 

topologies C and F possess that architecture. However, subtle differences exist. While topology C 116 

speeds up response when the system transitions from an OFF to an ON state, topology F speeds up 117 

cellular response in transition from ON to OFF state. Could other similar dynamic criteria explain the 118 

differential use of topologies in E. coli? To help answer this question, stochastic simulations of the 119 

simplest regulatory network between a regulator R and target T were performed (Figure 1). 120 

 121 

Simulations to quantify performance of networks across topologies  122 

We define a list of factors that best define performance of a regulatory circuit. These include (a) 123 

steady state target expression, (b) time of response, (c) control cost, (d) cell-to-cell variation, (e) 124 

spread of gene expression, and (f) ability to be effectively switched ON and OFF (see methods for 125 

more details). We hypothesize that these six indicators define performance of a genetic network. 126 

Network dynamics are dictated by the values of the associated biochemical parameters. To account 127 

for biases introduced by parameters, we simulated about 100,000 networks (~16,000 networks in 128 

each topology). The choice of parameters for these networks was taken from a uniform spread from 129 

a range. Each network was simulated for 500 cells, and transition from OFF to ON and ON to OFF 130 

tracked.  131 

 132 

Because of our choice of parameters from a parameter space, many networks are "dead" (steady 133 

state target expression less than one); have infinite cost; or have physiologically unviable dynamics. 134 

For analysis, we considered only those networks which express target T and are able to effectively 135 

switch ON/OFF. In addition, we impose limits on the time of activation (& deactivation) and control 136 

cost. Placing these constraints allows us to define a "Performance Box". In rest of the article, we only 137 

consider networks which lie within this "Performance Box". A frequency count of the networks with 138 
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positive and negative control of T shows that the two are identical (Figure 4A), consistent with the 139 

natural distribution in E. coli.  140 

 141 

Frequency distribution of the six topologies shows that, just as in E. coli, topology E is under-142 

represented, and topology F, most represented in the "Performance Box" (Figure 4B). Hence, our 143 

simulations suggest, and we speculate that distribution of a topology in a cell is proportional to the 144 

frequency of the topology in the "Performance Box". We note, however, that there are differences 145 

in the distribution of the networks among the six topologies between our computational results and 146 

the E. coli distribution. We hypothesize that these differences in distributions are due to the 147 

inherent differences in the dynamic features of the six topologies.  148 

 149 

Dynamics of activation and deactivation vary across the six topologies. Analysis of time of activation 150 

and deactivation indicate that subtle differences exist in the T-t50 space covered by topologies A-C 151 

and D-F (Figure 5A-B). As shown in (Figure 5A), topologies D-F are more suited for slow activation of 152 

targets with small steady state levels. In the OFF state (Figure 5B), we note that physiological 153 

functions with preference for smaller steady state T values and higher deactivation times would 154 

have a greater chance to be represented by topologies A-C. Qualitative differences exist in 155 

performance associated with each of the six topologies (Figure S3). In the ON state, topology C and F 156 

exhibit the widest range of steady state T and activation time. On the other hand, topology E is the 157 

most constrained in terms of the possible values of T. We speculate that this is one of the reasons of 158 

over-representation of topology F, and under-representation of topology E in natural circuits. 159 

 160 

Cost of control of expression. (Figure 5C-D) show that while there are large T-cost space regions 161 

which both groups of topologies can exhibit, only topologies A-C can control expression when T is 162 

small. Moreover, this control is exhibited at relatively small control cost. Similarly, when switched 163 

OFF, topologies A-C are better able to switch expression off when the desired T values are small. In 164 

addition, on an average, topologies A-C are able to provide control with a smaller drop in T when 165 

cells are moved from ON to OFF, the physiological significance of which remains unknown. 166 

Comparison of each topology is presented in (Figure S4). During activation, the control cost in 167 

topologies A-E decreases with increase in T. However, in topology F, the decrease is super-linear, 168 

and the resulting fall in cost much more rapid. This difference likely places topology F at an 169 

advantage when high expression of target T is required. Qualitatively, from the pattern of (Figure 170 

S4), we note that topologies A-C behave identically, whereas D and E behave differently. During 171 

deactivation, all topologies (except C) offer a similar pattern of deactivation dynamics and steady 172 
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state T. We also note, that for topology F, T (in OFF state) is a considerable fraction of T in ON state. 173 

This suggests that topology F is best suited for genes which require small changes in expression 174 

levels in different conditions.  175 

 176 

Cell to cell variation. The stochastic nature of gene expression leads to heterogeneity at a single-cell 177 

resolution. Our results show that across the two groups of topologies, there is little qualitative 178 

difference in behavior (Figure 5E-F). Among individual topologies, two key differences exist. First, in 179 

the ON state, topology F is able to exhibit behavior with the widest range of spread in expression of 180 

T. Second, in OFF state, topologies with negative control, all exhibit greater spread in the steady 181 

state T values as compared to topologies A-C. Cell to cell variation is likely key for cells to survive in 182 

uncertain conditions. This is likely another reason for presence of higher than random frequency of F 183 

networks in nature (Figure S5).  184 

 185 

Switchability. For optimal physiology, E. coli would need to control expression of a large number of 186 

genes. However, the control and tuning of each gene in the OFF or ON state will be unique. Hence, 187 

each physiological role would require a topology most suited to provide appropriate control. From 188 

our analysis (Figure 6), we note that in this respect, topology F offers the widest ratio of steady state 189 

T in ON and OFF conditions, across a large range of T values. Networks in topologies A-C offer a 190 

qualitatively similar and a very limited response dynamics in this regard. In addition, topology E 191 

offers the most limited response in terms of steady state T values, and hence is likely least suited for 192 

most cellular functions. 193 

 194 

Revisiting Demand Rules for Gene Regulation  195 

To test and apply the demand rules in determining the choice of regulatory topology, we perform 196 

two analyses at a micro scale. In the first, we study amino acid biosynthesis in E. coli, primarily 197 

present in mammalian intestine, and with ability to synthesize all 20 amino acids. However, because 198 

of unequal presence in the intestine, not all amino acids are required equally by the bacterium [30, 199 

31]. The demand for amino acids is further biased by the number of codons for each amino acid in 200 

the E. coli genome (Sheet S1, Excel). The actual availability of amino acids was therefore calculated 201 

as availability normalized with demand for an amino acid in the E. coli genome. In our analysis, we 202 

identified the biosynthesis pathway(s) which are uniquely dedicated to synthesis of a particular 203 

amino acid only [32], analyzed regulation of each gene in the pathway(s), and classified regulation as 204 

positively or negatively regulated topologies.  205 

 206 
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Amino acid biosynthesis and transport are cellular functions with inversely related demand. For 207 

instance, if an amino acid is not present in the surroundings (resulting in low demand for 208 

transporters), the biosynthetic demand would be high, and vice versa. In (Figure 7A), the x-axis 209 

represents amino acids in increasing availability in E. coli habitat, while the y-axis gives the fraction 210 

of all regulatory interactions, controlling biosynthesis and transport of that amino acid, belonging to 211 

topologies A-C. Our analysis shows that regulation of both biosynthesis and transport exhibit a 212 

statistically insignificant correlation with increasing availability. This is contrary to the demand rules. 213 

Adherence to the demand rules would have meant that transporters of abundant amino acids are 214 

regulated by A-C topologies, and biosynthetic genes for such amino acids are primarily regulated by 215 

D-F topologies. The reverse would have held true for scarcely available amino acids. The same 216 

results hold on including interactions involving global regulators (Figure S6A). (Figure S6B-C) show 217 

the data when amino acid demand is not normalized with the number of codons in the genome – 218 

both the results show statistically insignificant relationship against demand rules.  Additionally, we 219 

performed a similar analysis for the soil bacterium B. subtilis, and found no correlation between 220 

choice of topology and availability of an amino acid in the surroundings [33, 34] (Figure S7).  221 

 222 

The demand for proteins encoded by amino acid biosynthesis genes is inversely linked with the 223 

presence of amino acid in the surrounding environment. Hence, we would expect that expression 224 

pattern (and demand) of biosynthetic genes and amino acid transporters is linked inversely. 225 

However, performing a similar analysis on amino acid transporter gene regulation in E. coli 226 

demonstrates a lack of correlation between demand for the gene product and choice of topology 227 

(Figure 7A).  228 

 229 

In the second example, we focus on metabolism of sugars preferred by E. coli in its natural habitat 230 

[35]. Based on their abundance, we obtained the relative demand for carbohydrates in the intestine. 231 

For our analysis, we only considered part of metabolism which deals exclusively with a particular 232 

carbon source. The genes encoding the respective enzymes and their regulators were studied, and 233 

classified into activator- or repressor-based topologies. Our results indicate that regulation of 234 

enzymes involved in carbon utilization is independent of the availability of the sugar (Figure 7B). A 235 

similar statistically insignificant result was obtained on including global regulators (Figure S8). In case 236 

of carbon utilization, the expression of transporter genes is positively correlated with expression of 237 

genes involved in catabolism. However, our analysis shows that the choice of topology does not 238 

seem linked with availability of the carbon source (Figures 7B and S8). Similar analysis was 239 
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performed for carbon utilization in B. subtilis and no statistical correlation was observed between 240 

choice of topology and demand for product of gene of interest [33, 34](Figure S9).  241 

 242 

Overall, our results indicate deviations from Savageau's demand rules. A major difference in our and 243 

Savageau's analysis is that we consider all regulatory interactions controlling cellular functions, while 244 

Savageau's work only accounted for the key regulator involved in a particular cellular process, for 245 

example, AraC for arabinose catabolism [11, 13]. Another key difference lies in the fact that our 246 

analysis takes into account auto-regulation of regulatory proteins. This is likely extremely important 247 

in dictating the choice of topology, as seen by differences in topologies D, E, and F in E. coli.  248 

 249 

Cost of control places a growth burden on the cell  250 

Cellular growth is hindered by production of unnecessary proteins [19-21, 36], and as a result, 251 

regulation has a fitness effect [37, 38]. To test this, we performed competition assays between 252 

genetically identical strains with the only difference that one strain was producing GFP. Our analysis 253 

with the rob promoter in E. coli demonstrates that the cost of additional GFP places a growth burden 254 

on the cell (Figure 8). Similar trends for ParaBAD and PmarRAB promoters were also observed. This 255 

suggests that the advantage of preventing erroneous transcription by adhering to the demand rules 256 

must offset the disadvantage of additional control cost, for demand rules to prevail. 257 

 258 

As a speculative test of the demand rules, we performed long-term experiments where we fed a 259 

arabinose to E. coli for 3000 generations. In parallel, we fed glucose with limited arabinose to the 260 

culture. The culture grown on arabinose had high demand for arabinose utilization genes, whereas 261 

the culture with small amounts of arabinose would only express from araBAD operon when out of 262 

glucose - thus creating differential demand for the araBAD gene products. AraC is known to be a 263 

dual regulator of the araBAD operon, acting as a repressor in absence of arabinose, and activating 264 

expression when bound with arabinose. This dual regulation can be observed experimentally in wild 265 

type E. coli. On altering demand for the araBAD gene products, the dual regulation can still be 266 

observed in both (with high, and low demand for araBAD gene products) the strains (Figure 9A-B). In 267 

a relatively short span of 3000 generations, no switch in mode of regulation was observed, though 268 

the absolute levels of expression were different in the two strains, and had evolved from the parent 269 

wild-type E. coli.   270 
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Discussion 271 

  272 

Transcription networks are of interest from a number of perspectives like structure, topology, 273 

dynamics, and evolution [3, 24, 39-42]. Despite significant effort in trying to understand dynamic 274 

features of topologies – an open question remains. Why does a cell choose a particular topology 275 

over the others? 276 

 277 

Demand rules provide an insight into this question. However, our analysis reveals that the 278 

agreement with demand rules is rather limited. What then could be the additional determinants? 279 

Dynamically, as our analysis shows, there are several subtle differences across topologies, and it 280 

could be these differences which dictate choice. Our simulations and comparisons with E. coli 281 

distribution suggests that a network is perhaps randomly picked out from a group that satisfies the 282 

demands of physiology. Or simply, the cell picks "whatever works". 283 

 284 

In a 2009 study, Hwa et. al. demonstrated that different modes of regulation lead to qualitatively 285 

different patterns of protein levels when cells are grown in conditions supporting different growth 286 

rates [43]. They demonstrate that constitutively and positively controlled genes exhibit a decrease in 287 

steady state with growth rate, negatively regulated genes can exhibit a weakly negative or a strongly 288 

positive correlation between protein levels and growth rate. Could additional considerations like 289 

maintenance of protein levels at a constant levels, independent of growth rate, be a selective force 290 

for certain physiological roles? 291 

 292 

In terms of what we can explore, our simulations very rapidly approach saturation in as we begin to 293 

increase the complexity of networks. In addition, combinatorial inputs of multiple regulators into 294 

one promoter remain unanswered and unexplored. These additional interactions would make the 295 

possible range of dynamic behaviour much more complex and richer, but at the same time 296 

computationally intractable.  297 

  298 
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Experimental Procedure and Mathematical Analysis 299 

 300 

Regulatory interactions in E. coli  301 

The R-T interaction dataset for the transcription regulatory networks was acquired from RegulonDB 302 

[29]. There are 197 transcription factors reported in RegulonDB, of which, seven are listed twice, 303 

individually, as well as in dimeric form with another protein. We have considered 190 unique 304 

regulators for our study and their interactions with targets have been classified in two ways; (i) 305 

between regulator protein and target gene and (ii) between regulator protein and promoter (all 306 

genes in an operon). This resulted in 4970 interactions in Regulator-Target gene classification (Sheet 307 

S2 in Excel) and 2139 interactions in Regulator-Promoter classification (Sheet S3 in Excel). Out of 190 308 

transcription factors, seven are global regulators (CRP, H-NS, Lrp, IHF, ArcA, Fis, and FNR) and control 309 

around 51% of all genes in E. coli [44]. Excluding interactions of global regulators, there are 2625 310 

interactions in regulator-target gene class and 1176 interactions in regulator-promoter class. 311 

Multiple transcription factors feeding into a promoter were categorized into more than one 312 

topology, depending on the nature of interaction of the target gene with each interacting 313 

transcription factor. 314 

 315 

Distribution of R-T interactions among six topologies  316 

On the basis of the specific roles in cellular physiology, the interactions were further classified into 317 

six functional sub-groups, as reported in EcoCyc [32]. For each functional sub-group, all the involved 318 

target genes were identified and distributed among six topologies. Biosynthesis pathways for amino 319 

acids and degradation pathways for carbohydrate were studied further in detail.    320 

 321 

Biosynthesis pathways of amino acids: For biosynthesis of an amino acid, we considered regulation 322 

of only target genes which play a role in biosynthesis (Sheet 4 in Excel) of that particular amino acid 323 

and its transport (Sheet 5 in Excel) only.  324 

 325 

Frequency of occurrence of amino acids: Occurrence of each of the 20 amino acids from coding 326 

region of E. coli DH10β genome was calculated to calculate the relative demand of all amino acids in 327 

E. coli (Sheet 1 in Excel).  328 

 329 

Sugar utilization: Genes encoding for enzymes involved in metabolism of a particular carbon source 330 

until the metabolic branch merges with another in the network were considered in our analysis 331 

(Sheet 6 in Excel). The interactions between the identified genes and their regulators (R-T) have 332 
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been distributed across the defined topologies. In addition, genes involved in transport of sugars 333 

were also analysed in same way (Sheet 7 in Excel).  334 

 335 

Mathematical analysis of the six topologies  336 

Mathematical model for each topology was formulated by writing ordinary differential equations, 337 

and simulating stochastically. The two differential equations for each topology describe the rate of 338 

change in regulator, R and target, T, as described in Supplement text.  339 

 340 

Definition of parameter space. To analyze the six topologies, networks were generated with different 341 

biochemical parameters. To choose parameter values and range, physiologically observed values of 342 

all parameters was analyzed and the resultant space called parameter space (Figure S10A). From 343 

parameter space, the red region represents commonly observed values reported in literature [41, 344 

45-50], biased towards exhibiting limited diversity in dynamics. In this work, we chose the "unbiased 345 

region" (blue) from parameter space to explore all possible dynamics [41, 45-50].  346 

 347 

Generation of networks from a topology. The model of topologies B, C, E, and F consists of seven 348 

parameters whereas of each from A and D consists of five parameters. We generated 16807 (75) 349 

networks for topology A & D and 16384 (47) networks for topologies B, C, E, and F. Such an approach 350 

was recently adopted by Ma and co-workers in the context of analysis of adaptation in biochemical 351 

networks [51]. We also performed simulations with several other parameter distributions across the 352 

range of values. However, different parameter ranges do not qualitatively affect our analysis.  353 

 354 

Calculation of performance indicators. Each network was simulated using Gillespie algorithm to 355 

account for stochasticity [52, 53]. Dynamic simulation of each network in both transitions from OFF 356 

to ON and from ON to OFF state was performed in 500 cells. The detailed flowchart of simulation is 357 

described in (Figure S10B). The dynamics of each network was recorded and performance indicators 358 

for each network were calculated as described in the Supplement.  359 

 360 

Definition of “Performance Box”. A box in the performance indicator space defining networks with 361 

robust response, low cost, and fast dynamics was named as “performance box”. Networks with 362 

steady state expression of T ≥ 6 (A.U.) in ON state, with a minimum switchability factor of 1.3; 363 

activation time (t50) ≤ 1 (A.U.) and deactivation time ≤  1.2 (A.U.); and cost of activation and cost of 364 

deactivation ≤ 0.5 (A.U.) were considered to define the outer edges of the "Performance Box". 365 

Networks outside of the performance box were assumed to be more costly, exhibiting minimal 366 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 22, 2015. ; https://doi.org/10.1101/014142doi: bioRxiv preprint 

https://doi.org/10.1101/014142
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

expression of target protein T, or/and slow responding networks, and hence excluded from our 367 

analysis. The precise definition of the edges of the performance box presented here represents a 368 

general trend. 369 

 370 

Cost experiment using Flow Cytometry  371 

E. coli containing a rob promoter fusion with gfp integrated at the λ site (plasmid pLA2) on the 372 

chromosome [54, 55] was grown overnight in LB media with kanamycin 25µg/ml in at 37⁰C with 373 

shaking. E. coli with pLA2-gfp (without the rob promtoer) was used as a control. Both cultures were 374 

grown overnight, and then sub-cultured in 1:500 dilution each in LB media with kanamycin 25µg/ml 375 

in the same tube and grown at 37⁰C with shaking. Samples were collected at various times and then 376 

stored in PBS (containing 34µg/ml chloramphenicol). All the samples were kept on ice in dark 377 

condition. The samples were then analyzed with BD FACS Aria SORP to get relative frequency. The 378 

choice of rob promoter was based on its constitutive expression [56]. Competition experiments were 379 

done with the ParaBAD promoter and the PmarRAB promoter, and similar results observed when 380 

the inducers for the two systems (arabinose and salicylic acid, respectively) were added to the media 381 

[57, 58].  382 

 383 

Evolutionary experiments  384 

E. coli grown overnight in LB at 37⁰C with shaking was sub-cultured (1:100)  in tubes containing 1ml 385 

M9 media, 1% casamino acids and a sugar source. The tubes either contained 0.4% arabinose or 386 

0.35% glucose with 0.05% arabinose. The cultures were grown for 24 hours at 37⁰C, and propagated 387 

daily by sub-culturing 1:100 into fresh M9 media containing respective sugars. The last strains from 388 

each lineage was transformed with plasmid based promoter fusions of arabinose metabolic genes 389 

(araB (PEC3876-98156236)), from Thermo Scientific E. coli promoter collection (PEC3877). 390 

Fluorescence (488/525nm) and absorbance (600nm) values were measured in a Tecan microplate 391 

reader (Infinite M200 PRO).   392 
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Figure Legends 536 

 537 

Figure 1 Topologies between a regulator R (pink) and a target, T (blue). In topologies A, B, and C, in 538 

presence of the appropriate environmental or cellular signal, target T is controlled positively by the 539 

regulator. In contrast, target in topologies D, E, and F is repressed by regulator, and the repression is 540 

relieved under appropriate conditions.  541 

 542 

Figure 2 Frequency distribution of R - T topologies in E. coli. (A) All regulator-target interactions 543 

frequency in E. coli among activator- (topologies A, B, C) and repressor-based (topologies D, E, F) 544 

interactions. (B) Distributions of all R-T interactions among the six distinct topologies in E. coli. 545 

 546 

Figure 3 Division of R-T interactions among six functional groups. For each group, frequency of 547 

activator-based topologies roughly equals repressor-based topologies. Among individual topologies, 548 

F is over-represented and E under-represented in all six functional groups.  549 

 550 

Figure 4 Frequency distribution of R - T topologies from simulations. (A) Percent networks 551 

belonging to the activator- and repressor-based topologies in the "Performance Box" and (B) Percent 552 

networks belonging to each of six topologies in the "Performance Box".  553 

 554 

Figure 5 Dynamic performance of activator- and repressor-based topologies. (A-B) Steady state T 555 

levels and time of activation/deactivation for all six topologies. A dot on the plot represents each 556 

network. (C-D) Steady state T and cost of control phase plane for the six topologies. (E-F) Steady 557 

state T and spread among the 500 cells at steady state in the topologies. Activator-based topologies 558 

are represented in blue, and repressor-based topologies in red. Shaded regions indicate the region 559 

covered by the activator- and repressor-based topologies. The left panel represents networks in ON 560 

state. Right panel represents OFF state.  561 

 562 

Figure 6 "Switchabililty" of networks. Steady state T in the ON (a-axis) vs. the OFF condition (y-axis) 563 

for all six topologies.  564 

 565 

Figure 7 Correlation between demand and activator-based control. (A) X-axis represents amino 566 

acids in normalized increasing availability, and y-axis represents fraction of regulatory interaction in 567 

the activator-based topologies for each amino acid biosynthesis regulon (blue) and its transport 568 

(red). (B) X-axis represents carbon sources in increasing order of preference to E. coli in the intestine, 569 
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and y-axis, the fraction of regulatory interactions controlling expression of metabolic genes involved 570 

in utilization (blue) of each sugar and its transport (red) and belonging to activator-based topologies.  571 

 572 

Figure 8 Competition between E. coli strains exhibits a fitness effect of production of an additional 573 

protein as compared to the control.  574 

 575 

Figure 9 Long term experiment to track changes, if any, in mode of regulation. ParaBAD  expression in 576 

(A) strain grown in 0.4% arabinose for 3000 generations. (B) strain grown in 0.35% glucose and 577 

0.05% arabinose for 3000 generations. WT strain refers to the evolved strain after 3000 generations 578 

in a particular condition. ΔaraC strain refers to the mutant created by knocking out araC from the 579 

parent evolved strain.  580 

 581 
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Figure 1 583 

 584 

 585 

  586 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 22, 2015. ; https://doi.org/10.1101/014142doi: bioRxiv preprint 

https://doi.org/10.1101/014142
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Figure 2 587 
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Figure 3 591 
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Figure 4 595 
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Figure 5 599 
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Figure 6 603 
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Figure 7 607 
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Figure 8 612 
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Figure 9 617 
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