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Abstract

Genomic selection, enabled by whole genome prediction (WGP) methods, is
revolutionizing plant breeding. Existing WGP methods have been shown to deliver
accurate predictions in the most common settings, such as prediction of across
environment performance for traits with additive gene effects. However, prediction of
traits with non-additive gene effects and prediction of genotype by environment
interaction (G×E), continues to be challenging. Previous attempts to increase
prediction accuracy for these particularly difficult tasks employed prediction methods
that are purely statistical in nature. Augmenting the statistical methods with biological
knowledge has been largely overlooked thus far. Crop growth models (CGMs) attempt
to represent the functional relationships between plant physiology and the environment
in the formation of yield and similar output traits of interest. Thus, they can explain
the impact of G×E and certain types of non-additive gene effects on the expressed
phenotype. Approximate Bayesian computation (ABC), a novel and powerful
computational procedure, allows the incorporation of CGMs directly into the estimation
of whole genome marker effects in WGP. Here we provide a proof of concept study for
this novel approach and demonstrate its use with a simulated data set. We show that
this novel approach can be considerably more accurate than the benchmark WGP
method GBLUP in predicting performance in environments represented in the
estimation set as well as in previously unobserved environments for traits determined by
non-additive gene effects. We conclude that this proof of concept demonstrates that
using ABC for incorporating biological knowledge in the form of CGMs into WGP is a
very promising novel approach to improving prediction accuracy for some of the most
challenging scenarios of interest to applied geneticists.

Introduction 1

Genomic selection (Meuwissen et al. [1]), enabled by whole genome prediction (WGP) 2

methods, is revolutionizing plant breeding (Cooper et al. [2]). Since its inception, 3

attempts to improve prediction accuracy have focused on: developing improved and 4

specialized statistical models (Yang and Tempelman [3], Heslot et al. [4], Kärkkäinen 5

and Sillanpää [5], Technow and Melchinger [6]), increasing the marker density used 6

(Meuwissen and Goddard [7], Erbe et al. [8], Ober et al. [9]), increasing the size and 7

defining optimal designs of estimation sets (Rincent et al. [10], Windhausen et al. [11], 8

Technow et al. [12], Hickey et al. [13]) and better understanding the genetic 9

determinants driving prediction accuracy (Daetwyler et al. [14], Habier et al. [15]). 10
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In-silico based phenotypic prediction, enabled by dynamic crop growth models 11

(CGMs), dates back to the late 60’s (van Ittersum et al. [16]) and it has constantly 12

evolved since then through inclusion of scientific advances made in plant and crop 13

physiology, soil science and micrometeorology (Keating et al. [17]; van Ittersum et 14

al. [16]). CGMs used in plant breeding are structured around concepts of resource 15

capture, utilization efficiency and allocation among plant organs (Cooper et al. [18]; 16

Hammer et al. [19]; Passioura [20]; Yin et al. [21]) and are used to: characterize 17

environments (Chapman et al. [22]; Löffler et al [23]), predict consequences of trait 18

variation on yield within a genotype x environment x management context (Hammer et 19

al. [24]), evaluate breeding strategies (Chapman et al. [25]; Messina et al. [26]; Messina 20

et al. [27]), and assess hybrid performance (Cooper et al. [2]). 21

Early attempts to extend the use of CGMs to enable genetic prediction have focused 22

on developing genetic models for parameters of main process equations within the CGM 23

(Chenu et al. [28]; Messina et al. [29]; Yin et al. [21]). Linking quantitative trait locus 24

(QTL) models and GCMs for complex traits motivated adapting CGMs to improve the 25

connectivity between physiology and genetics of the adaptive traits (Hammer et al. [30]; 26

Messina et al. [27]; Yin et al. [21]). However, despite a tremendous body of knowledge 27

and experience, CGMs were largely ignored for the purpose of WGP. 28

There is ample evidence for the importance of epistasis in crops, including for 29

economically important traits such as grain yield in maize (Wolf and Hallauer [31], 30

Eta-Ndu and Openshaw, [32]; Holland [33]). Yield and other complex traits are the 31

product of intricate interactions between component traits on lower hierarchical levels 32

(Cooper et al. [34], Hammer et al. [19], Riedelsheimer et al. [35]). If the relationship 33

between the underlying component traits is non-additive, epistatic effects can occur on 34

the phenotypic level of complex traits even if the gene action is purely additive when 35

characterized at the level of the component traits (Holland [33]). This phenomenon was 36

first described for multiplicative relationships between traits by Richey [36] and later 37

quantified by Melchinger et al. [37]. CGMs, which explicitly model these non-linear 38

relationships among traits, have therefore the potential to open up novel avenues 39

towards accounting for epistatic effects in WGP models by explicit incorporation of 40

biological knowledge. 41

The target population of environments for plant breeding programs is subject to 42

continuous change, expansion and increases in diversity (Cooper et al. [2]). To select for 43

performance in specific environments, genotype by environment (G×E) interactions 44

have to be predicted. Genomic prediction of G×E interactions is therefore of great 45

interest to scientists and practitioners alike. Previous attempts incorporated G×E 46

interactions in WGP models through environment specific marker effects 47

(Schulz-Streeck et al. [38]) or genetic and environmental covariances (Burgeño et 48

al. [39]). Later Jarqúın et al. [40] and Heslot et al. [41] developed WGP models that 49

accounted for G×E interactions by means of environmental covariates. 50

While these previous attempts are promising, they are purely statistical in nature 51

and do not leverage the substantial biological insights into the functional mechanisms 52

determining performance in specific environments. CGMs are an embodiment of this 53

biological knowledge and might serve as a key component in novel WGP models for 54

predicting G×E interactions. In fact, Heslot et al. [41] recognized this potential for 55

CGMs. However, they employed them only for computing stress covariates from 56

environmental data, which were subsequently used as covariates in purely statistical 57

WGP models. 58

Given the potential merits of integrating CGMs in WGP, the question arises of how 59

to combine the two in a unified predictive system. The ever increasing computational 60

power of modern computing environments allows for efficient simulation from the most 61

complex of models, such as CGMs (Messina et al. [27]). This computational power is 62
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leveraged by approximate Bayesian computation (ABC) methods, which replace the 63

calculation of a likelihood function with a simulation step, and thereby facilitate 64

analysis when calculation of a likelihood function is impossible or computationally 65

prohibitive. ABC methods were developed in population genetics, where they helped 66

solve otherwise intractable problems (Tavare et al. [42], Pritchard et al. [43], Csilléry et 67

al. [44], Lopes and Beaumont [45]). However, ABC methods are rapidly adopted in 68

other scientific fields, such as ecology (Lawson Handley et al. [46]), systems biology 69

(Liepe et al. [47]) and hydrology (Sadegh and Vrugt [48]). Recently, Marjoram et al. [49] 70

proposed using ABC methods for incorporating the biological knowledge represented in 71

gene regulatory networks into genome-wide association studies, arguing that this might 72

present a solution to the “missing heritability” problem. 73

Here we make the case that ABC may hold great promise for enabling novel 74

approaches to WGP as well. Thus, the objective of this study is to provide a proof of 75

concept, based on a simulated data set, for using ABC as a mechanism for incorporating 76

the substantial biological knowledge embodied in CGMs into a novel WGP approach. 77

Materials and Methods 78

CGM and environmental data 79

We used a modified version of the maize CGM developed by Muchow et al. [50], which 80

models maize grain yield development as a function of plant population (plants m−2), 81

daily temperature (◦C) and solar radiation (MJ m−2) as well as several genotype 82

dependent physiological traits. These traits were total leaf number (TLN), area of 83

largest leaf (AM), solar radiation use efficiency (SRE) and thermal units to 84

physiological maturity (MTU). Details on how the values for these traits were generated 85

for the genotypes in the synthetic data set are provided later. However, the values used 86

were within typical ranges reported in the literature. The simulated intervals for TLN, 87

AM, SRE and MTU were [6, 18] (Meghji et al. [51], Muchow et al. [50]), [700, 800] 88

(Muchow et al. [50], Elings [52]) , [1.5, 1.7] (Muchow and Davis [53] and [1050, 1250] 89

(McGarrahan and Dale [54], Muchow [55], Nielsen et al. [56]), respectively, with average 90

values at the midpoints of the intervals. 91

We chose Champaign/Illinois (40.08◦ N, 88.24◦ W) as a representative US corn belt 92

location. Temperature and solar radiation data were obtained for the years 2012 and 93

2013 (Data provided by the Water and Atmospheric Resources Monitoring Program, a 94

part of the Illinois State Water Survey (ISWS) located in Champaign and Peoria, 95

Illinois, and on the web at www.sws.uiuc.edu/warm). In 2012, we used as sowing date 96

April 1st and a plant population of 5 plants m−2. In 2013, the sowing date used was 97

May 1st and the plant population 10 plants m−2. The 2012 and 2013 environments 98

therefore differed not only in temperature and solar radiation but also in simulated 99

management practices. The temperature and solar radiation from date of sowing is 100

shown in Fig. 1 and typical growth curves obtained from the CGM for the two 101

environments are shown in Fig. 2. 102

The CGM can be viewed as a function F of the genotype specific inputs (the 103

physiological traits) and the environment data 104

F (yTLNi
, ySREi

, yAMi
, yMTUi

,Ωk) (1)

where yTLNi etc. are the values of the physiological traits observed for the ith genotype 105

and the weather and management data of environment k is represented as Ωk. To 106

simplify notation, we will henceforth use F (·)ik to represent the CGM and its inputs for 107

genotype i in environment k. 108
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Figure 1. Daily average temperature and solar radiation at Champaign,
Illinois in 2012 and 2013. The thick grey line shows a smoothed curve.

Approximate Bayesian Computation (ABC) 109

ABC replaces likelihood computation with a simulation step (Tavare et al. [42]). An 110

integral component of any ABC algorithm is therefore the simulation model operator 111

Model(y∗ik | θ) which generates simulated data y∗ik given parameters θ. In our proof of 112

concept study, the crop growth model F (·)ik represents the deterministic component of 113

Model(y∗ik | θ), to which a Gaussian noise variable distributed as N (0, σ2
e) is added as a 114

stochastic component. If Model(y∗ik | θ) is fully deterministic, the distribution sampled 115

with the ABC algorithm will not converge to the true posterior distribution when the 116

tolerance for the distance between the simulated and observed data goes to zero 117

(Sadegh and Vrugt [48]). 118

The weather and management data Ωk was assumed to be known, the physiological 119

traits, however, were unknown and modeled as linear functions of the trait specific 120

marker effects 121

yTLNi = µTLN + ziuTLN

yAMi = µAM + ziuAM

ySREi = µSRE + ziuSRE

yMTUi = µMTU + ziuMTU ,

(2)

where zi is the genotype vector of the observed biallelic single nucleotide polymorphism 122

(SNP) markers of genotype i, µTLN etc. denote the intercepts and uTLN etc. the 123

marker effects. For brevity, we will use θ to denote the joint parameter vector 124

[µTLN , . . . , µMTU ,uTLN , . . . ,uMTU ]. 125

We used independent Normal distribution priors for all components of θ. The prior 126

for µTLN was N (mTLN , σ
2
µTLN

). To simulate imperfect prior information, we drew the 127

prior mean mTLN from a Uniform distribution over the interval [0.8 · TLN, 1.2 · TLN ], 128

where TLN is the observed population mean of TLN. The average difference between 129

mTLN and TLN then is 10% of the latter value. The prior variance σ2
µTLN

, which 130

represents the prior uncertainty was equal to 2.252. The prior means of AM, SRE and 131

MTU were obtained accordingly and the prior variances σ2
µAM

, σ2
µSRE

and σ2
µMTU

were 132

1502, 0.32 and 2252, respectively. 133

The prior for the marker effects uTLN was N (0, σ2
uTLN

), which corresponds to the 134

BayesC prior (Habier et al. [57]). In BayesC, the prior variance of marker effects σ2
uTLN

, 135
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Figure 2. Simulated grain and total biomass development from the crop
growth model in 2012 and 2013 environments. The growth curves correspond to
a hypothetical genotype with average values for physiological traits TLN, AM, SRE and
MTU.

which introduces shrinkage, is the same across markers. For simplicity, we set this 136

variance to a constant value and did not attempt to estimate it. Also in this case we 137

simulated imperfect information by drawing the value of σ2
uTLN

from a Uniform 138

distribution over the interval [0.8 · var(TLN)/M, 1.2 · var(TLN)/M ], where M is the 139

number of markers and var(TLN) the observed population variance of TLN. The prior 140

variances of marker effects of the other traits were obtained accordingly. 141

The value of σ2
e , the variance of the Gaussian noise variable that is part of the model 142

operator Model(y∗ik | θ), was drawn from a Uniform distribution over the interval 143

[0.8 · ve, 1.2 · ve], where ve is the residual variance component of the phenotypic grain 144

yield values used to fit the model. 145

Algorithm 1 in Table 1 shows pseudocode for the ABC rejection sampling algorithm 146

we used. We used the Euclidean distance to measure the distance between the 147

simulated and observed data. The tolerance level ε for the distance between the 148

simulated and observed data was tuned in a preliminary run of the algorithm to result 149

in an acceptance rate of approximately 1 · 10−6. The number of posterior samples drawn 150

was 100. We will refer to this ABC based prediction method that incorporates the 151

CGM as ABC-CGM. The ABC-CGM algorithm was implemented as a C routine 152

integrated with the R software environment (R Core Team [58]). 153

Synthetic data set 154

To test the performance of ABC-CGM, we created a biparental population of 1,550 155

doubled haploid (DH) inbred lines in silico. The genome consisted of a single 156

chromosome of 1.5 Morgan length. The genotypes of the DH lines were generated by 157

simulating meiosis events with the software package hypred (Technow [59]) according to 158

the Haldane mapping function. On the chromosome we equidistantly placed 140 159

informative SNP markers. A random subset of 40 of these markers were assigned to be 160

QTL with additive effects on either TLN, AM, SRE or MTU. Each physiological trait 161

was controlled by 10 of the 40 QTL, which were later removed from the set of observed 162

markers available for analysis. 163
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Table 1. Pseudo code of ABC rejection sampling algorithm

while x <= no. posterior samples do
while d > ε do

draw candidate θ∗ from prior(θ)
for all i = 1, 2, . . . , N do

generate simulated data y∗ik from Model(y∗ik | θ∗)
end for

compute d =
√∑N

i=1(yik − y∗ik)2

end while
accept and store θ∗

increment x
end while

Basic ABC rejection sampling algorithm to sample from the approximate posterior
distribution of θ.

The additive substitution effects of the QTL were drawn from a Standard Normal 164

distribution. Then raw genetic scores for each physiological trait were computed by 165

summing the QTL effects according to the QTL genotypes of each DH line. These raw 166

scores were subsequently re-scaled linearly to the aforementioned value ranges. Finally, 167

phenotypic grain yield values were created as 168

yik = F (·)ik + eik, (3)

where eik is a Gaussian noise variable with mean zero and variance ve. The value of ve 169

was chosen such that the within-environment heritability of yik was equal to 0.85. We 170

generated 25 synthetic data sets by repeating the whole process. 171

Estimation, prediction and testing procedure 172

The models were fitted using N = 50 randomly chosen DH lines as an estimation set. 173

The remaining 1500 DH lines were used for testing model performance. Separate models 174

were fitted using the 2012 and the 2013 grain yield data of the estimation set lines. The 175

environment from which data for fitting the model was used will be referred to as 176

estimation environment. Parameter estimates from each estimation environment were 177

subsequently used to predict performance of the lines in the test set in both 178

environments. Predictions for the same environment as the estimation environment will 179

be referred to as observed environment predictions (e.g., predictions for 2012 with 180

models fitted with 2012 data). Predictions for an environment from which no data were 181

used in fitting the model will be referred to as new environment predictions (e.g., 182

predictions for 2013 with models fitted with 2012 data). 183

As a point estimate for predicted grain yield performance in a specific environment 184

we used the mean of the posterior predictive distribution for the DH line in question. 185

The posterior predictive distribution was obtained by evaluating F (·)ik over the 186

accepted θ samples, using the weather and management data Ωk pertaining to that 187

environment. 188

Prediction accuracy was computed as the Pearson correlation between predicted and 189

true performance in the environment for which the prediction was made. The true grain 190

yield performance was obtained by computing F (·)ik with the true values of the 191

physiological traits. 192

As a performance benchmark we used genomic best linear unbiased prediction 193
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(GBLUP, Meuwissen et al. [1]). The model is 194

yik = β0 + ziu + ei (4)

where β0 is the intercept, u the vector of marker effects and ei a residual. As before, zi 195

denotes the marker genotype vector. The GBLUP model was fitted with the R package 196

rrBLUP (Endelman [60]). GBLUP and BayesC are comparable in their shrinkage 197

behavior because both use a constant variance across markers. For GBLUP, predicted 198

values were computed according to eq. (4) as β0 + ziu. Note that because the 199

conventional GBLUP model does not utilize information about the target environment, 200

observed and new environment predictions are identical. 201

Results and Discussion 202

Predicting performance in observed environments 203

The accuracy for observed environment predictions achieved by ABC-CGM was larger 204

than that of the benchmark method GBLUP by 0.15 points, on average (Table 2, Fig. 205

3). This superiority of ABC-CGM over GBLUP can be explained by the presence of 206

non-additive gene effects which cannot be captured fully by the latter. In the example 207

scenario we studied, the non-additive gene effects on grain yield are a result of 208

non-linear functional relationships between the physiological traits and grain yield, 209

which was particularly pronounced for TLN (Fig. 4). This thus presents a particular 210

case of epistasis, which might be called biological epistasis, that can arise even if the 211

gene effects on the physiological component traits underlying the final trait of interest 212

(grain yield in our case) are purely additive (Holland [33]). 213

Table 2. Accuracy of grain yield predictions of test DH lines

Estimation Env. Prediction Env. ABC-CGM GBLUP
2012 2012 0.81 0.68

2013 0.58 0.38
2013 2012 0.60 0.46

2013 0.78 0.64

Prediction accuracy for grain yield of DH lines in the test set, averaged over 25
replications. All differences within a row are statistically significant at a significance
level of < 0.005.

We accounted for non-linear functional relationships among traits with the CGM. 214

This enabled us to capture biological epistasis through simple linear models relating 215

marker genotypes to the unobserved underlying physiological traits. Previously 216

developed WGP models attempted to capture epistasis by directly fitting non-linear 217

marker effects to the final trait of interest (e.g., Xu [61], Sun et al. [62], Howard et 218

al. [63]). While these models showed some promise, they have not been adopted by 219

practitioners on a larger scale. By combining statistics with biological insights captured 220

by CGMs, ABC-CGM takes a fundamentally different approach and presents a 221

potentially powerful alternative to purely statistical WGP models. 222

Predicting performance in new environments 223

New environment prediction accuracy was considerably lower than observed 224

environment prediction accuracy, for both prediction methods (Table 2, Fig. 3). The 225

average prediction accuracy for performance in 2012 when using the 2013 estimation 226
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Figure 3. Predicted vs. observed grain yield of 1500 DH lines in testing set for
prediction methods ABC-CGM (top row) and GBLUP (bottom row). The estimation
environment was 2012. Results shown are from a representative example data set. In
this example, the accuracy for same environment predictions was 0.82 (ABC-CGM) and
0.72 (GBLUP). For new environment predictions it was 0.64 (ABC-CGM) and 0.47
(GBLUP).

environment was 74% (ABC-CGM) and 68% (GBLUP) of the respective prediction 227

accuracy achieved when using the 2012 estimation environment. The corresponding 228

values for the accuracy of predicting performance in 2013 were 74% (ABC-CGM) and 229

59% (GBLUP). 230

The rank correlation between true performance in 2012 and 2013 was only 0.73 231

(averaged over 25 simulated data sets), which indicated the presence of considerable 232

G×E interactions, including changes in rank (Fig. 5). That new environment prediction 233

under the presence of G×E interactions is considerably less accurate than observed 234

environment prediction was expected and already observed in other studies (Resende et 235

al. [64], Windhausen et al. [11]). That the reduction in accuracy for ABC-CGM was less 236

severe than for the conventional benchmark method GBLUP is encouraging because it 237

indicates that the former method did succeed in predicting G×E interactions to some 238

degree. 239

Predicting G×E interactions in new environments in which no yield testing was 240

carried out previously, requires WGP models that link genetic effects (e.g., marker 241

effects) with information that characterizes the environments. Jarqúın et al. [40] 242

accomplished this by fitting statistical interactions between markers and environmental 243

covariates. A similar approach was taken by Heslot et al. [41], who in addition used a 244

CGM to extract stress covariates from a large set of environmental variables. 245

ABC-CGM takes this approach a step further by making the CGM an integral part of 246

the estimation procedure. 247

However, while novel prediction methods might succeed in narrowing the gap 248

between new and observed environment prediction, the former should always be 249

expected to be less accurate than the latter. Field testing should therefore be carried 250

out in environments of particular importance for a breeding program to achieve the 251

maximum attainable prediction accuracy for these. The same applies for target 252

environments in which G×E interaction effects are expected to be particularly strong. 253
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Figure 4. Relationship between grain yield in 2012 and total leaf number
(TLN). Results shown are from a representative example data set.

CGMs can help in identifying such environments, inform experimental design and 254

utilization of managed environments (Messina et al. [27], Messina et al. [29]). However, 255

the range of the target population of environments of modern plant breeding programs 256

is much too large for facilitating yield testing in all of them (Cooper et al. [2]). 257

Predicting performance in completely new environments will therefore always be 258

required and novel methods like ABC-CGM are anticipated to be instrumental for 259

enabling and enhancing success in this particularly daunting task. 260

Further developments 261

More sophisticated CGMs For this first proof of concept study, we assumed that 262

the crop growth model used in the estimation process fully represented the systematic 263

component of the data generating process, besides the random noise component. This 264

was clearly a “best case scenario”. However, decades of crop growth modeling research 265

have provided the know-how necessary to approximate real crop development to an 266

almost arbitrary degree of accuracy (Keating et al. [17]), Renton [65], Hammer et 267

al. [30]). Advanced CGMs such as APSIM (Keating et al. [17]), for example, model 268

functional relationships between various crop parameters and external factors such as 269

water and nutrient availability, soil properties as well as weed, insect and pathogen 270

pressure. Thus, the tools are principally available for applying ABC-CGM in much 271

more complex scenarios than the one studied by us. 272

Stochastic CGMs There are examples of the use of fully deterministic model 273

operators in ABC (Toni et al. [66], Liepe et al. [67]). However, with fully deterministic 274

model operators the sampled distribution would not converge to the true posterior when 275

the tolerance level ε goes to zero (Sadegh and Vrugt [48]) and instead reduce to a point 276

mass over those parameter values that can reproduce the data. The CGM we used was 277

fully deterministic. We therefore followed the example of Sadegh and Vrugt [48], who 278

constructed a stochastic model operator by adding a random noise variable, with the 279

same probabilistic properties as assumed for the residual component of the phenotype, 280

to the deterministic functional model. A more elegant and possibly superior solution, 281

however, would be to integrate stochastic processes directly into the CGM. While the 282
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Figure 5. Distribution of simulated grain yield in 2012 and 2013
environments. The colored lines indicate the performance of specific genotypes in
both environments. Data shown is from a representative example replication.

vast majority of CGMs are deterministic (Keating et al. [17], van Ittersum et al. [16]), 283

there are examples of stochastic CGMs (Brun et al. [68]). In addition to incorporating 284

inherently stochastic processes of development (Curry et al. [69]), stochastic CGMs 285

could also serve to account for uncertainty in the parameters of the functional equations 286

comprising the model (Wallach et al. [70]). 287

Advanced ABC algorithms For this proof of concept study we used the basic 288

ABC rejection sampling algorithm (Tavare et al. [42], Pritchard et al. [43]). 289

Considerable methodology related advances have been made, however, over the last 290

decade that have led to algorithms with improved computational efficiency. Of 291

particular interest here are population or sequential Monte Carlo algorithms, which are 292

based on importance sampling (Sisson et al. [71], Toni et al. [66], Peters et al. [72]). 293

These algorithms can dramatically increase acceptance rates without compromising on 294

the tolerance levels. They achieve this by sampling from a sequence of intermediate 295

proposal distributions of increasing similarity to the target distribution. Unfortunately, 296

importance sampling fails when the number of parameters gets large, because then the 297

importance weights tend to concentrate on very few samples, which leads to an 298

extremely low effective sample size (Bengtsson et al. [73]). In the context of sequential 299

Monte Carlo, this is known as particle depletion and was addressed by Peters et al. [72]. 300

We implemented their approach, but were not able to overcome the problem of particle 301

depletion. The number of parameters we estimated was 404 (100 marker effects per 302

physiological trait plus an intercept), which seems well beyond the dimensionality range 303

for importance sampling (Bengtsson et al. [73]). 304

Another interesting development is MCMC-ABC, which incorporates ABC with the 305

Metropolis-Hastings algorithm (Marjoram et al. [74]). MCMC-ABC should result in 306

high acceptance rates if the sampler moves into parameter regions of high posterior 307

probability. However Metropolis-Hastings sampling too can be inefficient when the 308

parameter space is of high dimension. 309

The greatest computational advantage of the original ABC rejection algorithm over 310

Monte Carlo based ABC methods is that it generates independent samples and 311

therefore readily lends itself to “embarrassingly” parallel computation (Marjoram et 312

al. [74]). The computation time thus scales linearly to the number of processors 313

available. Using the ABC rejection algorithm therefore allowed us to fully leverage the 314
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high performance computing cluster of DuPont Pioneer. In the era of cloud computing 315

(Buyya et al. [75]), high performance computing environments are readily available to 316

practitioners and scientists in both public and private sectors. Generality, scalability to 317

parallel computations, and ease of implementation make the basic rejection sampler a 318

viable alternative to more sophisticated approaches. 319

Using prior information We used mildly informative prior distributions, the 320

parameters of which were derived from the population means and variances of the 321

physiological traits. In practice, the required prior information must be obtained from 322

extraneous sources, such as past experiments or from the literature (Brun et al. [68]). 323

Such information is imperfect and only partially matches the true population 324

parameters of the population in question. We determined the prior parameters from the 325

population itself, but perturbed them considerably to simulate erroneous prior 326

information. Specifically, the average relative discrepancy between the prior parameter 327

used and the true population parameter was 10%. When we increased the relative 328

discrepancy to 25%, prediction accuracy dropped, but only slightly (Table S1). Thus, 329

ABC-CGM seems to be relatively insensitive to moderate prior miss specification, as 330

long as the value range supported by the prior distribution is not completely out of 331

scope. If prior information is unavailable, uninformative priors, such as Normal 332

distributions with mean zero and a very large variance, have to be used. This, however, 333

will require a reduced acceptance rate to retain a given tolerance threshold because 334

most of the parameter vectors drawn from the prior in step 1 of the algorithm (1) will 335

be far from the bulk of the posterior. As a consequence, computational efficiency could 336

be reduced considerably. 337

In contrast to the complex trait of interest, component physiological traits may be 338

realistically modeled based on a relatively simple genetic architecture and for such traits 339

QTL explaining a sizable proportion of genetic variance can be mapped and 340

characterized (Reymond et al. [76], Bogard et al. [77], Yin et al. [78], Welcker et al. [79], 341

Tardieu et al. [80]). In fact, such component trait QTL were already successfully used to 342

parametrize CGMs for studying genotype dependent response to environmental 343

conditions (Chenu et al. [28], Messina et al. [29], Bogard et al. [77], Chenu et al. [81], 344

Yin et al. [78], ). Knowledge about the location of such QTL or of transgenes (Dong et 345

al. [82], Guo et al. [83], Habben et al. [84]), could be incorporated as an additional 346

source of prior information. Then, instead of estimating marker effects for the whole 347

genome, ABC-CGM could focus on the QTL regions, which reduces the dimensionality 348

of the parameter space dramatically. The effects of the QTL estimated in previous 349

experiments could inform prior distributions, too. Prior knowledge about QTL positions 350

and effects should therefore be leveraged for improving prediction accuracy and 351

computational efficiency of ABC-CGM. 352

Other applications The idea of incorporating biological insights into WGP models 353

is not limited to CGMs. Plant metabolites are chemical compounds produced as 354

intermediate or end products of biochemical pathways. They are seen as potential 355

bridges between genotypes and phenotypes of plants (Keurentjes [85]) and are therefore 356

of particular interest in plant breeding (Fernie and Schauer, [86]). Metabolic networks 357

model the interrelationships between genes, intermediate metabolites and end products 358

through biochemistry pathways (Schuster et al. [87]). Elaborate metabolic network 359

models are available today that allow studying and simulating complex biochemical 360

processes related to important crop properties, such as flowering time, seed growth, 361

nitrogen use efficiency and biomass composition (Dong et al. [82], Pilalis et al. [88], 362

Simons et al. [89], Saha et al. [90]). Liepe et al. [47] demonstrate how ABC can be used 363

for parameter estimation with metabolic and other biochemical networks. Using the 364
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principles outlined here for ABC-CGM, metabolic networks might add valuable 365

biological information for the purpose of WGP, too. 366

Despite ever increasing sample sizes and marker densities, most of the genetic 367

variance of complex traits remained unaccounted for in genome-wide association studies 368

(Maher [91]). Marjoram et al. [49] argued that signal detection power could be increased 369

by augmenting the purely statistical association models used thus far with biological 370

knowledge. They demonstrate their approach by using ABC for incorporating gene 371

regulatory networks into their analysis. Here we showed that the same principle can be 372

applied to WGP by using ABC for integrating a CGM in the estimation of whole 373

genome marker effects. While this study is only a first step and many open questions 374

remain, we conclude that ABC-CGM presents a promising novel path forward towards a 375

new class of WGP models that leverage previously unused sources of knowledge and 376

information and thereby increase prediction accuracy in settings that have proved 377

challenging thus far for plant breeding. 378

Supporting Information 379

S1 Table 380

Table S1. Accuracy of grain yield predictions of test DH lines with 381

increased error in prior parameters 382

Acknowledgments 383

References

1. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value
using genome-wide dense marker maps. Genetics 157: 1819–1829.

2. Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, et al. (2014)
Predicting the future of plant breeding: complementing empirical evaluation with
genetic prediction. Crop and Pasture Sci 64: 311-336.

3. Yang W, Tempelman RJ (2012) A Bayesian antedependence model for whole
genome prediction. Genetics 190: 1491-1501.

4. Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant
breeding: a comparison of models. Crop Sci 52: 146–160.
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