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Doxycycline, a derivative of tetracycline, induces gene expression via reversible transcriptional activation. Levels of β-catenin
and other intra/extracellular genetic factors have been influenced in colorectal cancer cell lines, which make doxycycline a
potential candidate for cancer chemotherapy. With the aim to build better computational models that show good prediction on
test datasets, doxycycline treated cell lines might provide best training samples. This work tests the reproducibility of parameter
learning and predictions based on the estimated parameters, using the Naive Bayesian Networks for Wnt pathway in case of
missing observations for different nodes. The in silico experiments show the efficacy of causal models as one of the emerging
diagnostic tools in development of targeted cancer therapy.
Abstract

Recent efforts in predicting Wnt signaling activation via inference methods have helped in developing diagnostic models for
therapeutic drug targeting. In this manuscript the reproducibility of parameter learning with missing observations in a Bayesian
Network and its effect on prediction results for Wnt signaling activation is tested, while training the networks on doxycycline
treated LS174T cell lines as well as normal and adenomas samples. This is done in order to check the effectiveness of using
Bayesian Network as a tool for modeling Wnt pathway when certain observations are missing. Experimental analysis suggest that
prediction results are reproducible with negligible deviations. Anomalies in estimated parameters are accounted for due to the
Bayesian Network model. Also, an interesting case regarding usage of hypothesis testing came up while proving the statistical
significance of different design setups of the BN model which was trained on the same data. It was found that hypothesis testing
may not be the correct way to check the significance between design setups for the aforementioned case, especially when the
structure of the model is same. Finally, in comparison to the biologically inspired models, the naive bayesian model may give
accurate results but this accuracy comes at the cost of loss of crucial biological knowledge which might help reveal hidden
relations among intra/extracellular factors affecting the Wnt pathway.

1 Introduction

Bayesian network (BN) being a collection of probabilistic
classifiers or regressors constrained by conditional relation-
ships Heckerman et al.1, serve as useful models for inference
when data is missing or certain prior causal relations need to
be incorporated. For simple models which are acyclic in na-
ture, many inference algorithms exist that learn the param-
eters (here the conditional probability tables) and given an
evidence, help in estimation of the uncertainty or probabil-
ity regarding the feasibility of an event. Parameter learning
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is an important aspect when certain observations go missing
and it becomes necessary to estimate the parameters in order
to infer aspects about certain event in the network. In con-
text of signaling pathways, the most recent work by Yoruk
et al.2 develops statitical models for inference and establishes
reporducibility via repeated sub-sampaling validation. Repro-
ducibility of parameters via simulations help ascertain effec-
tiveness of the models used under varying conditions were ob-
servations might be missing. This work focuses on develope-
ment of a framework to test the different design setups has
been presented to investigate the reproducibility of parameters
for a BN model.

Verhaegh et al.3 present an extensive study of knowledge
based computational models to identify tumor driving signal-
ing pathways using primitive designs of naive BNs that incor-
porate minimal biological knowledge in various cancer types.
A similar but more focused work by Sinha4 goes further to
compare biologically inspired models with a modification of
the naive Bayesian Network model for Wnt pathway in hu-
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man colorectal cancer case. It has been shown that the bi-
ologically inspired models reveal hidden biological relations
among the intra/extracellular factors affecting the pathways at
a lower level of accuracy compared the naively designed mod-
els with minimal biological knowledge that show high pre-
diction accuracies. This drop in accuracy happens due to the
complexity of the knowledge incorporated in the networks. It
should be noted that lower does not necessarily mean bad re-
sults but might often present a more knowledge based belief
in the interpretations of the biological results.

In this work, the issues related to use of naive BN models
as knowledge based tools for identifying tumor driven signal-
ing pathways has been explored. The manuscript tests the ef-
fectiveness of using BN as a tool for modeling Wnt pathway
when certain observations are missing. Experimental analysis
suggest that prediction results are reproducible with negligible
deviations. Anomalies in estimated parameters are accounted
for due to the BN model. Also, an interesting case regarding
usage of hypothesis testing came up while proving the statisti-
cal significance of different design setups (that is scenarios of
missing observations) of the BN model which was trained on
the data. It was found that hypothesis testing may not be the
correct way to check the significance between design setups
for the aforementioned case, especially when the structure of
the model is same but the nodes where the observations are
missing is different.

Adopting a primitive structure of the Wnt signaling path-
way from Clevers5, the Wnt switch being active or inac-
tive can be encoded by investigating whether the transcrip-
tion complex (TRCMPLX) is active or inactive. The
TRCMPLX begins the transcription of a gene based on the
activation of Wnt signaling pathway at the cell membrane.
This is shown in figure 1(B). On capture of Wnt protein, the
destruction complex that helps in the phosphorylation of β-
catenin and its destruction via ubiquitination (figure 1(A)), is
not formed. Due to this, β-catenin becomes available in an
amount that is more than the required quantity. Excess β-
catenin on reaching the nucleus helps in the formation of the
TRCMPLX , by dislodging the Groucho (a lock that keeps
the TCF4 from helping in transcription) and combining with
the TCF4. The TRCMPLX then begins the transcription of
the Wnt target genes. These transcriptions are indicators of the
cancer at various stages in different parts of the body. It is pre-
sumed Clevers5, that the Wnt signaling is a universal pathway
that contributes in significant ways to various types of can-
cer, but the behaviour of the pathway itself is not fixed. Thus
cancer in hair follicles or colon or skin may all have contribu-
tions from the Wnt pathway, but there will be slight/significant
variations in the modus operandi of the pathway and proteins
acting in it. This asks for development of diagnostic compu-
tational models which may help in predicting the state of the
Wnt pathway for a specific cancer. The Wnt pathway being ac-

Fig. 1 A cartoon of wnt signaling pathway adapted and redrawn
from Clevers 5 and Verhaegh et al. 6. Part (A) represents the
destruction of β-catenin leading to the inactivation of the wnt target
gene. Part (B) represents activation of wnt target gene.

tive or inactive can be tested by inferencing whether the tran-
scription complex (TRCMPLX) is active or inactive. This
is done by capturing the expression values of the Wnt target
genes using a reference BN from Verhaegh et al.6.

Tetracyclines have been extensively used in many of the
cancer types and have found effective to a certain extent in
chemotherapeutic treatments in colorectal cancer (Gu et al.7).
Tetracycline controlled transcriptional activation is a method
of inducible gene expression where transcription is reversibly
turned on or off in the presence of the antibiotic tetracycline
or one of its derivatives like doxycycline (Berens and Hillen8,
Jardé et al.9 (http://en.wikipedia.org/wiki/
Tetracycline-controlled_transcriptional_
activation)). Current research has stressed on the
use of doxycycline (with stereochemical structure in fig-
ure 2 (http://en.wikipedia.org/wiki/File:
Doxycycline.svg)) either separately (Mokry et al.10,
Scholer-Dahirel et al.11) or in combination with other drugs
(Sagar et al.12, Lazarova et al.13) for therapeutic targeting of
Wnt signaling pathway. In recent efforts towards targeting
of colorectal cancer cases (Onoda et al.14, Onoda et al.15),
doxycycline has been found to effect the β-catenin levels
(Jardé et al.9) as well as some of the intra/extracellular genetic
factors affecting the Wnt pathway (Scholer-Dahirel et al.11,
Noubissi et al.16)

It has been found that the advantages of using doxycycline
over derivatives of tetracyclines is greater and is thus a poten-
tial candidate for cancer chemotherapy (Sagar et al.12). With
the aim to build better computational models that show good
prediction on test datasets, doxycycline treated cell lines might
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Fig. 2 Doxycycline structure provided by Dr. Al. K. Lisch on
wikipedia.

provide best training samples. The network was trained on
one such dataset containing measurements of expression lev-
els for a set of Wnt target genes. Inferencing the state of the
TRCMPLX based on the evidence provided by expression
levels of the same Wnt target genes for an unlabeled sample
leads to prediction of the state of Wnt pathway.

The aim of this work is to test the reproducibility of param-
eter learning and predictions based on the estimated parame-
ters, using the Wnt activation BN, in case of missing observa-
tions for different nodes. This is done to check if the models
perform well in case of missing observations, under different
setups. In short, this is achieved via the following experimen-
tal setting:

• A reference BN (Ref BN) was trained on 12 colon cancer
cell lines (complete real data, 6 Wnt on and 6 Wnt off)

• The parameter estimation and predictions are done using
BNs from simulated data and real data (for each setup)

• Observations were sampled from:

i colon cancer cell lines (real data) to train BN for each
setup (12 observations)

ii Ref BN to train BN for simulation for each setup.
(10000 samples in each setup)

• Five setups are designed involving nodes with complete
or missing observations

Significance of the results are achieved by comparing (i) the
estimated parameters from both real observations and sampled
observations for simulation, for every setup, with initially as-
signed parameters of the Ref BN, (ii) prediction results ob-
tained using learned parameters per setup, with prediction re-
sults obtained using the assigned parameters of the Ref BN
(iii) the estimated parameters from real observations and sam-
pled observations for simulation, for every setup and (iv) pre-
diction results obtained using learned parameters from real ob-
servations with prediction results obtained using learned pa-
rameters from sampled observations for simulation, per setup.

Section 2 gives a detailed description of the Ref BN. A set
of experiments performed on the modifications of the Ref BN
is explained in section 3. Next follows the results (section 4),
and conclusion 5.

2 Method

The reference network has three main layers with nodes denot-
ing (1) β-catenin, TCF4 and TRCMPLX (β-catenin and
TCF4 are parents of TRCMPLX), (2) Wnt target genes as
children of TRCMPLX and (3) probes as children of indi-
vidual genes. The model has been adopted and redrawn in
figure 3. Mathematically, the reference bnet can be defined
Directed Acyclic Graph (DAG) G ≡ (V,E) defined by a set
of vertices and edges. Here the nodes or vertices are V = { β-
catenin, TCF4, TRCMPLX , g1, ..., gn, p1, ... pm} and
the edges are E = { (β-catenin, TRCMPLX), (TCF4,
TRCMPLX), } ∪{

�
∀i (TRCMPLX , gi)} ∪ [

�
∀i{

�
∀ji

(gi, pji )}], were i denotes the genes and ji, a corresponding
set of probe(s) measuring the expression level of a particular
gene i. The complexes, genes and the corresponding probe
sets have been enlisted in table 1. Details of the network are
as follows.

β-catenin and TCF4 act as parents of TRCMPLX .
TRCMPLX transcribes a set of Wnt genes that act as child
nodes of the former. Parent child interaction is depicted via
the directed arrows in figure 3. The measurements for each of
the genes is culled via a set of probes per gene, which form the
child nodes per gene. For the reference network, a parameter
value per node represents the node’s (conditional) probabil-
ity table. In the current scenario, the states of all the nodes
are considered to be binary. This implies that β-catenin and
TCF4 can be on or off. Their combination, the TRCMPLX
can be active or inactive. The Wnt target genes can be ex-
pressed or inhibited and lastly the value of probe sets can be
high or low.

In a BN, the (conditional) probability value or parame-
ters for the different nodes indicate the initial belief regard-
ing the uncertainty of an event (in some cases given another
event). These parameters can be fixed manually based on
user’s choice or expert knowledge or estimated using exper-
imental data. In the reference BN, the parameter values for
β-catenin, TCF4, TRCMPLX and the selected Wnt tar-
get genes have been set based on expert knowledge. Lastly,
the parameter values for the probe sets are computed based
on median thresholding of the available probe values from the
training samples and addition of pseudo counts.

In this paper, training of Ref BN is done on expression val-
ues for Wnt target genes from doxycycline treated colon can-
cer cell line LS174T Mokry et al.10. This is done in order
to have robust training of the BN which further lead to bet-
ter classification. Later on, results on test data from network
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Fig. 3 A bnet model from Verhaegh et al. 6, showing the different kinds of complexes contributing to Wnt Signaling pathway. Nodes include
β-catenin, TCF4, TRCMPLX , the genes and their measurements in the form of probe (set) intensities.

trained on normal and adenomas samples are compared with
those obtained from Ref BN. Twelve samples were retrieved,
six of which indicated Wnt signal was off and the rest showed
Wnt signal was on. In six samples, were the Wnt signal was
switched off, doxycycline was used to knockdown β-catenin
in three of them. The other half that had the Wnt signal turned
off was obtained using doxycycline to knockdown TCF4.
Corresponding controls that had Wnt signal as on, were also
generated when doxycycline was not used to treat either β-
catenin or TCF4. For each of the twelve samples, 74 differ-
ent probes were measured that gave expression values for a
set of 33 different Wnt target genes. For each probe, parame-
ter or the conditional probability values were estimated using
frequency counts and median thresholding. Thus the proba-
bility that a probe value is low given that a particular gene
is off is the ratio of the number of expression values of sam-
ples treated with doxycycline that are smaller than the median
of expression values of all samples. Similarly, the probability
that a probe value is high given that a particular gene is on is

the ratio of the number of expression values of control sam-
ples that are greater than the median of expression values of
all samples. Corresponding complements of these probabil-
ities can be computed easily. In some cases, the probability
values turn out to be zero, leading to loss of uncertainty in the
interpretation. This implies that there is 100% surety that ei-
ther the probe is high or low, just by measuring six samples
each of Wnt on and Wnt off. To avoid this, a pseudo count
of one is added to each of the ratios in the numerator and
two to the denominator, for all conditions (gene off or on) and
states of a probe (low or high). An example of this compu-
tation is shown in figure 4. Most of the genes get expressed
when the TRCMPLX is active, except for a few that get in-
hibited. While assigning parameter values for genes during
the construction of the Ref BN, certain values are reversed for
genes which are inhibited when the TRCMPLX is active.
The probability tables for the respective probesets measuring
the gene expression values do not flip. This is because, the
probeset values by themselves only state whether the gene is
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4 LSBcat Dox Wnt off low 61.4903996299231

5 LSBcat Con Wnt on high 442.934280093479

6 LSBcat Dox Wnt off low 180.970935148635

7 L8Tcf4 Con Wnt on high 135.479647982923

8 L8Tcf4 Dox Wnt off low 18.9972008544379

9 L8Tcf4 Con Wnt on high 153.476728052

10 L8Tcf4 Dox Wnt off low 9.49853366194321

11 L8Tcf4 Con Wnt on high 222.467555313762

12 L8Tcf4 Dox Wnt off low 70.9895129896984

MEDIAN of expression value as 
threshold (Tm) = 144.4781880174615
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Fig. 4 Estimation of cpd for probeset 222695-s-at for Axin2 gene, via thresholding and addition of pseudo counts.

expressed or not. They do not signify whether a particular
gene is inhibited or not. In order to capture the inhibited state
of a gene (if it is behaving in that manner on TRCMPLX’s
activation) its parameter values need to be flipped. While gen-
erating the inferencing engine for the Ref BN, the estimated
parameter values for genes and probes (for both expressed and
inhibited genes along wi) may be found swapped. This hap-
pens because, the Ref BN is unaware of the meaning of the
discrete values (1 as on and 2 as off) and swapping happens
randomly.

These parameter values represent the state of gene being off
or on given the TRCMPLX is active or inactive. This can
be seen from the probability values assigned to Axin2 in fig-
ure 3. The probability values of the different nodes have been
tabulated in 1. Once the state of the nodes, the causal arcs be-
tween them and the (conditional) probability tables have been
defined for the Ref BN, inference need to be done. Before the
inference, the inferencing engine is generated via the junction
tree engine Lauritzen and Spiegelhalter22. The junction tree
engine is used here as it forms the state of the art algorithm

for exact inferencing. The current work employs the BNT
toolbox Murphy et al.23. After the engine has been gener-
ated, predictions are made for each sample in the testing data.
These predictions are estimated via inferencing the state of
Wnt signal being on or off. This state in turn is measured
by estimating the probability of TRCMPLX being active,
given the expression values of the probe sets of a test sam-
ple as evidence. Mathematically, the estimation is depicted
in the following equation P(TRCMPLX = active|∀j probe
instances pj for a particular sample). A positive value of the
log odds ratio of this conditional probability indicates that the
Wnt signal is on and the sample is labeled as cancerous.

The predicted labels are compared with that of the ground
truth labels available with the gene expression datasets to
match the quality of prediction. A similar experiment is re-
peated by training on normal colon and colon adenomas
(GSE8671 Sabates-Bellver et al.17) and testing on rest of the
data sets in table 2. These datasets were retrieved from GSE
Omnibus Edgar et al.24 and Barrett et al.25. A table simi-
lar to that shown in table 1, showing the cpd values for the
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Parameter values for nodes of Bayesian net partly using Colon cancer cell lines LS174T
No. NODES (Parents) Reference BNET (C)PTs NODES (Parents) Reference BNET (C)PTs NODES (parents) Reference Bnet (C)Pts
1 B-cat [0.40 0.60] 222695 s at (AXIN2) [0.75 0.25 0.25 0.75] 221557 s at (LEF1) [0.625 0.375 0.375 0.675]
2 TCF4 [0.10 0.90] 222696 at (AXIN2) [0.875 0.125 0.875 0.125] 221558 s at (LEF1) [0.625 0.375 0.375 0.675]
3 TRCMPLX [0.99 0.99 0.99 0.01 224176 s at (AXIN2) [0.875 0.125 0.875 0.125] 210515 at (HNF1A) [0.625 0.375 0.375 0.675]

(B-CAT, TCF4) 0.01 0.01 0.01 0.99]
4 AXIN2 (TRCMPLX) [0.95 0.30 0.05 0.70] 224498 x at (AXIN2) [0.75 0.25 0.25 0.75] 216930 at (HNF1A) [0.625 0.375 0.375 0.675]
5 EPHB2 (TRCMPLX) [0.95 0.30 0.05 0.70] 209588 at (EPHB2) [0.875 0.125 0.875 0.125] 201579 at (FAT1) [0.50 0.50 0.50 0.50]
6 EPHB3 (TRCMPLX) [0.95 0.30 0.05 0.70] 209589 s at (EPHB2) [0.875 0.125 0.875 0.125] 226360 at (ZNRF3) [0.875 0.125 0.125 0.875]
7 MYC (TRCMPLX) [0.95 0.30 0.05 0.70] 210651 s at (EPHB2) [0.875 0.125 0.875 0.125] 1554685 a at (KIAA1199) [0.875 0.125 0.125 0.875]
8 CCND1 (TRCMPLX) [0.95 0.30 0.05 0.70] 211165 x at (EPHB2) [0.875 0.125 0.875 0.125] 212942 s at (KIAA1199) [0.875 0.125 0.125 0.875]
9 SP5 (TRCMPLX) [0.95 0.30 0.05 0.70] 1438 at (EPHB3) [0.875 0.125 0.875 0.125] 218704 at (RNF43) [0.875 0.125 0.125 0.875]
10 LGR5 (TRCMPLX) [0.95 0.30 0.05 0.70] 204600 at (EPHB3) [0.875 0.125 0.875 0.125] 209081 s at (COL18A1) [0.50 0.50 0.50 0.50]
11 ASCL2 (TRCMPLX) [0.95 0.30 0.05 0.70] 202431 s at (MYC) [0.875 0.125 0.875 0.125] 209082 s at (COL18A1) [0.50 0.50 0.50 0.50]
12 PPARG (TRCMPLX) [0.45 0.95 0.55 0.05] 208711 s at (CCND1) [0.625 0.375 0.375 0.675] 1555832 s at (KLF6) [0.875 0.125 0.125 0.875]
13 CD44 (TRCMPLX) [0.95 0.30 0.05 0.70] 208712 at (CCND1) [0.625 0.375 0.375 0.675] 208960 s at (KLF6) [0.875 0.125 0.125 0.875]
14 SLC1A2 (TRCMPLX) [0.95 0.30 0.05 0.70] 235845 at (SP5) [0.75 0.25 0.25 0.75] 208961 s at (KLF6) [0.875 0.125 0.125 0.875]
15 BMP7 (TRCMPLX) [0.95 0.30 0.05 0.70] 210393 at (LGR5) [0.875 0.125 0.875 0.125] 211610 at (KLF6) [0.875 0.125 0.125 0.875]
16 LEF1 (TRCMPLX) [0.95 0.30 0.05 0.70] 213880 at (LGR5) [0.875 0.125 0.875 0.125] 224606 at (KLF6) [0.875 0.125 0.125 0.875]
17 HNF1A (TRCMPLX) [0.95 0.30 0.05 0.70] 207607 at (ASCL2) [0.875 0.125 0.875 0.125] 206128 at (ADRA2C) [0.50 0.50 0.50 0.50]
18 FAT1 (TRCMPLX) [0.95 0.30 0.05 0.70] 229215 at (ASCL2) [0.875 0.125 0.875 0.125] 203705 s at (FZD7) [0.50 0.50 0.50 0.50]
19 ZNRF3 (TRCMPLX) [0.95 0.30 0.05 0.70] 208510 s at (PPARG) [0.875 0.125 0.875 0.125] 203706 a at (FZD7) [0.50 0.50 0.50 0.50]
20 KIAA1199 (TRCMPLX) [0.95 0.30 0.05 0.70] 1557905 s at (CD44) [0.75 0.25 0.25 0.75] 202859 x at (IL8) [0.625 0.375 0.375 0.625]
21 RNF43 (TRCMPLX) [0.95 0.30 0.05 0.70] 204489 s at (CD44) [0.875 0.125 0.875 0.125] 211506 s at (IL8) [0.625 0.375 0.375 0.625]
22 COL18A1 (TRCMPLX) [0.95 0.30 0.05 0.70] 204490 s at (CD44) [0.875 0.125 0.875 0.125] 219682 s at (TBX3) [0.50 0.50 0.50 0.50]
23 KLF6 (TRCMPLX) [0.45 0.95 0.55 0.05] 209835 x at (CD44) [0.75 0.25 0.25 0.75] 222917 s at (TBX3) [0.50 0.50 0.50 0.50]
24 ADRA2C (TRCMPLX) [0.95 0.30 0.05 0.70] 210916 s at (CD44) [0.75 0.25 0.25 0.75] 225544 at (TBX3) [0.50 0.50 0.50 0.50]
25 FZD7 (TRCMPLX) [0.95 0.30 0.05 0.70] 212014 x at (CD44) [0.75 0.25 0.25 0.75] 229576 s at (TBX3) [0.50 0.50 0.50 0.50]
26 IL8 (TRCMPLX) [0.95 0.30 0.05 0.70] 212063 at (CD44) [0.875 0.125 0.875 0.125] 1553115 at (NKD1) [0.50 0.50 0.50 0.50]
27 TBX3 (TRCMPLX) [0.95 0.30 0.05 0.70] 217523 at (CD44) [0.625 0.375 0.375 0.675] 204602 at (DKK1) [0.50 0.50 0.50 0.50]
28 NKD1 (TRCMPLX) [0.95 0.30 0.05 0.70] 229221 at (CD44) [0.50 0.50 0.50 0.50] 207814 at (DEFA6) [0.75 0.25 0.25 0.75]
29 DKK1 (TRCMPLX) [0.95 0.30 0.05 0.70] 1558009 at (SLC1A2) [0.75 0.25 0.25 0.75] 200648 s at (GLUL) [0.75 0.25 0.25 0.75]
30 DEFA6 (TRCMPLX) [0.95 0.30 0.05 0.70] 1558010 s at (SLC1A2) [0.625 0.375 0.375 0.675] 215001 s at (GLUL) [0.75 0.25 0.25 0.75]
31 GLUL (TRCMPLX) [0.95 0.30 0.05 0.70] 208389 s at (SLC1A2) [0.75 0.25 0.25 0.75] 242281 at (GLUL) [0.625 0.375 0.375 0.625]
32 OAT (TRCMPLX) [0.95 0.30 0.05 0.70] 225491 at (SLC1A2) [0.50 0.50 0.50 0.50] 201599 at (OAT) [0.50 0.50 0.50 0.50]
33 LECT2 (TRCMPLX) [0.95 0.30 0.05 0.70] 209590 at (BMP7) [0.75 0.25 0.25 0.75] 207409 at (LECT2) [0.50 0.50 0.50 0.50]
34 REG1B (TRCMPLX) [0.95 0.30 0.05 0.70] 209591 s at (BMP7) [0.875 0.125 0.875 0.125] 205886 at (REG1B) [0.50 0.50 0.50 0.50]
35 SOX9 (TRCMPLX) [0.95 0.30 0.05 0.70] 211259 s at (BMP7) [0.75 0.25 0.25 0.75] 202935 s at (SOX9) [0.75 0.25 0.25 0.75]
36 TDGF1 (TRCMPLX) [0.95 0.30 0.05 0.70] 211260 at (BMP7) [0.50 0.50 0.50 0.50] 202936 s at (SOX9) [0.75 0.25 0.25 0.75]
37 210948 s at (LEF1) [0.625 0.375 0.375 0.675] 206286 s at (TDGF1) [0.50 0.50 0.50 0.50]

Table 1 Manually fed and estimated parameter values (cpd) for nodes of a BN constructed from colon cancer cell line LS174T (Mokry
et al. 10). Nodes and their parents represent the various protien complexes, genes and the corresponding probes that measure the gene
expression, at different levels of the network. For colon cancer cell line data, Genes PPARG and KLF6 coloured in red indicate that they
are inhibited when TRCMPLX is active.

network trainined on normal colon and colon adenomas is
shown in tab 3. The gene expression profiles of many of the
datasets were obtained from the Gene Expression Omnibus.
Affymetrix GeneChip HG-U133plus2 was used for the mea-
surement of the gene expression levels.

3 Experiments

Given the model design in figure 3, the proposed work inves-
tigates the different conditions in which the observations of
the data are missing. The reason for conducting such exper-
iments is to verify the efficacy of BNs in checking the con-
vergence of parameters under simulated conditions and also
the reproducibility of the predictions for the test data under
these conditions. It should be noted that in the two runs of the
training phase, one with (1) 12 samples of cancer colon cell

lines (6 of which contain Wnt being on and 6 in which the
Wnt is knocked down using doxycycline) (GSE18560) Mokry
et al.10 and the other (2) 32 samples, each of normal colonic
mucosa and colorectal adenomas (GSE8671) Sabates-Bellver
et al.17, some genes are inhibited when the TRCMPLX is
active. For the case, when 12 colon cancer cell lines are em-
ployed for training, genes PPARG and KLF6 are found
to be inhibited. In the case, when normal colon and colon
adenomas samples are employed, genes SCL1A2, TCF7L2,
COL18A1, KLF6 and OAT are found to be inhibited. Also,
apart from the set of genes used in colon cancer cell lines, gene
TCF7L2, and its corresponding probeset involving 212759-
s-at, 212761-at, 212762-s-at, 216035-x-at, 216037-x-at and
216511-s-at are used in the normal colon and colon adenomas
training data.

In order to check the reproducibility of the parameters and
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Parameter values for nodes of Bayesian net partly using Normal colon and colon adenomas
No. NODES (Parents) Reference BNET (C)PTs NODES (Parents) Reference BNET (C)PTs NODES (parents) Reference Bnet (C)PTs
1 B-cat [0.40 0.60] 222695 s at (AXIN2) [0.882 0.118 0.118 0.882] 216037 x at (TCF7L2) [0.647 0.353 0.353 0.647]
2 TCF4 [0.10 0.90] 222696 at (AXIN2) [0.971 0.029 0.029 0.971] 216511 s at (TCF7L2) [0.618 0.382 0.382 0.618]
3 TRCMPLX [0.99 0.99 0.99 0.01 224176 s at (AXIN2) [0.971 0.029 0.029 0.971] 210948 s at (LEF1) [0.589 0.411 0.411 0.589]

(B-CAT, TCF4) 0.01 0.01 0.01 0.99]
4 AXIN2 (TRCMPLX) [0.95 0.30 0.05 0.70] 224498 x at (AXIN2) [0.941 0.059 0.059 0.941] 221557 s at (LEF1) [0.735 0.265 0.265 0.735]
5 EPHB2 (TRCMPLX) [0.95 0.30 0.05 0.70] 209588 at (EPHB2) [0.912 0.088 0.088 0.912] 221558 s at (LEF1) [0.735 0.265 0.265 0.735]
6 EPHB3 (TRCMPLX) [0.95 0.30 0.05 0.70] 209589 s at (EPHB2) [0.912 0.088 0.088 0.912] 210515 at (HNF1A) [0.50 0.50 0.50 0.50]
7 MYC (TRCMPLX) [0.95 0.30 0.05 0.70] 210651 s at (EPHB2) [0.882 0.118 0.118 0.882] 216930 at (HNF1A) [0.50 0.50 0.50 0.50]
8 CCND1 (TRCMPLX) [0.95 0.30 0.05 0.70] 211165 x at (EPHB2) [0.882 0.118 0.118 0.882] 201579 at (FAT1) [0.735 0.265 0.265 0.735]
9 SP5 (TRCMPLX) [0.95 0.30 0.05 0.70] 1438 at (EPHB3) [0.882 0.118 0.118 0.882] 226360 at (ZNRF3) [0.912 0.088 0.088 0.912]
10 LGR5 (TRCMPLX) [0.95 0.30 0.05 0.70] 204600 at (EPHB3) [0.853 0.147 0.147 0.853] 1554685 a at (KIAA1199) [0.912 0.088 0.088 0.912]
11 ASCL2 (TRCMPLX) [0.95 0.30 0.05 0.70] 202431 s at (MYC) [0.971 0.029 0.029 0.971] 212942 s at (KIAA1199) [0.971 0.029 0.029 0.971]
12 PPARG (TRCMPLX) [0.95 0.30 0.05 0.70] 208711 s at (CCND1) [0.824 0.176 0.176 0.824] 218704 at (RNF43) [0.971 0.029 0.029 0.971]
13 CD44 (TRCMPLX) [0.95 0.30 0.05 0.70] 208712 at (CCND1) [0.824 0.176 0.176 0.824] 209081 s at (COL18A1) [0.647 0.353 0.353 0.647]
14 SLC1A2 (TRCMPLX) [0.45 0.95 0.55 0.05] 235845 at (SP5) [0.912 0.088 0.088 0.912] 209082 s at (COL18A1) [0.676 0.324 0.324 0.676]
15 BMP7 (TRCMPLX) [0.95 0.30 0.05 0.70] 210393 at (LGR5) [0.882 0.118 0.118 0.882] 1555832 s at (KLF6) [0.853 0.147 0.147 0.853]
16 TCF7L2 (TRCMPLX) [0.45 0.95 0.55 0.05] 213880 at (LGR5) [0.882 0.118 0.118 0.882] 208960 s at (KLF6) [0.853 0.147 0.147 0.853]
17 LEF1 (TRCMPLX) [0.95 0.30 0.05 0.70] 207607 at (ASCL2) [0.882 0.118 0.118 0.882] 208961 s at (KLF6) [0.794 0.206 0.206 0.794]
18 HNF1A (TRCMPLX) [0.95 0.30 0.05 0.70] 229215 at (ASCL2) [0.941 0.059 0.059 0.941] 211610 at (KLF6) [0.647 0.353 0.353 0.647]
19 FAT1 (TRCMPLX) [0.95 0.30 0.05 0.70] 208510 s at (PPARG) [0.618 0.382 0.382 0.618] 224606 at (KLF6) [0.912 0.088 0.088 0.912]
20 ZNRF3 (TRCMPLX) [0.95 0.30 0.05 0.70] 1557905 s at (CD44) [0.971 0.029 0.029 0.971] 206128 at (ADRA2C) [0.618 0.382 0.382 0.618]
21 KIAA1199 (TRCMPLX) [0.95 0.30 0.05 0.70] 204489 s at (CD44) [0.971 0.029 0.029 0.971] 203705 s at (FZD7) [0.765 0.235 0.235 0.765]
22 RNF43 (TRCMPLX) [0.95 0.30 0.05 0.70] 204490 s at (CD44) [0.971 0.029 0.029 0.971] 203706 a at (FZD7) [0.676 0.324 0.324 0.676]
23 COL18A1 (TRCMPLX) [0.45 0.95 0.55 0.05] 209835 x at (CD44) [0.971 0.029 0.029 0.971] 202859 x at (IL8) [0.941 0.059 0.059 0.941]
24 KLF6 (TRCMPLX) [0.45 0.95 0.55 0.05] 210916 s at (CD44) [0.971 0.029 0.029 0.971] 211506 s at (IL8) [0.882 0.118 0.118 0.882]
25 ADRA2C (TRCMPLX) [0.95 0.30 0.05 0.70] 212014 x at (CD44) [0.971 0.029 0.029 0.971] 219682 s at (TBX3) [0.941 0.059 0.059 0.941]
26 FZD7 (TRCMPLX) [0.95 0.30 0.05 0.70] 212063 at (CD44) [0.971 0.029 0.029 0.971] 222917 s at (TBX3) [0.794 0.206 0.206 0.794]
27 IL8 (TRCMPLX) [0.95 0.30 0.05 0.70] 217523 at (CD44) [0.853 0.147 0.147 0.853] 225544 at (TBX3) [0.971 0.029 0.029 0.971]
28 TBX3 (TRCMPLX) [0.95 0.30 0.05 0.70] 229221 at (CD44) [0.941 0.059 0.059 0.941] 229576 s at (TBX3) [0.941 0.059 0.059 0.941]
29 NKD1 (TRCMPLX) [0.95 0.30 0.05 0.70] 1558009 at (SLC1A2) [0.559 0.441 0.441 0.559] 1553115 at (NKD1) [0.735 0.265 0.265 0.735]
30 DKK1 (TRCMPLX) [0.95 0.30 0.05 0.70] 1558010 s at (SLC1A2) [0.559 0.441 0.441 0.559] 204602 at (DKK1) [0.529 0.471 0.471 0.529]
31 DEFA6 (TRCMPLX) [0.95 0.30 0.05 0.70] 208389 s at (SLC1A2) [0.529 0.471 0.471 0.529] 207814 at (DEFA6) [0.794 0.206 0.206 0.794]
32 GLUL (TRCMPLX) [0.95 0.30 0.05 0.70] 225491 at (SLC1A2) [0.588 0.411 0.411 0.588] 200648 s at (GLUL) [0.706 0.294 0.294 0.706]
33 OAT (TRCMPLX) [0.45 0.95 0.55 0.05] 209590 at (BMP7) [0.647 0.353 0.353 0.647] 215001 s at (GLUL) [0.735 0.265 0.265 0.735]
34 LECT2 (TRCMPLX) [0.95 0.30 0.05 0.70] 209591 s at (BMP7) [0.559 0.441 0.441 0.559] 242281 at (GLUL) [0.441 0.559 0.559 0.441]
35 REG1B (TRCMPLX) [0.95 0.30 0.05 0.70] 211259 s at (BMP7) [0.529 0.471 0.471 0.529] 201599 at (OAT) [0.794 0.206 0.206 0.794]
36 SOX9 (TRCMPLX) [0.95 0.30 0.05 0.70] 211260 at (BMP7) [0.471 0.529 0.529 0.471] 207409 at (LECT2) [0.50 0.50 0.50 0.50]
37 TDGF1 (TRCMPLX) [0.95 0.30 0.05 0.70] 212759 s at (TCF7L2) [0.706 0.294 0.294 0.706] 205886 at (REG1B) [0.676 0.324 0.324 0.676]
38 212761 at (TCF7L2) [0.706 0.294 0.294 0.706] 202935 s at (SOX9) [0.824 0.176 0.176 0.824]
39 212762 s at (TCF7L2) [0.559 0.441 0.441 0.559] 202936 s at (SOX9) [0.971 0.029 0.029 0.971]
40 216035 x at (TCF7L2) [0.618 0.382 0.382 0.618] 206286 s at (TDGF1) [0.941 0.059 0.059 0.941]

Table 3 Manually fed and estimated parameter values (cpd) for nodes of a BN constructed from normal colon and colon adenomas samples
from GSE8671 Sabates-Bellver et al. 17. Nodes and their parents represent the various protien complexes, genes and the corresponding
probes that measure the gene expression, at different levels of the network. For normal colon and colon adenomas, genes SLC1A2,
TCF7L2, COL18A1, KLF6 and OAT coloured in red indicate that they are inhibited when TRCMPLX is active. Note that gene
TCF7L2 measured via its corresponding probesets are not included in the colon cancer cell lines training data.

the results, 5 different setups were designed. Each setup rep-
resents missing observations at different locations in the BN.
Thus each setup represents a BN with a particular setting
where a particular set of nodes have missing observations.
A schematic representation of the setup is shown in figure 5.
Training was done on each of the 5 setups based on simulated
observations, sampled using the reference BN. Training was
also done on each of the 5 setups based on observations ob-
tained from real data. The reference BN was built using the
real data.

For simulated observations, in each setup, 1 run of training
and testing was done. Training phase generated single param-
eter values for each of the nodes. These were then used to

generate a separate prediction results for each sample in the
test data. For simulated data sets, in each setup, 100 runs of
training and testing were done. This generated 100 parame-
ter values for each of the nodes in the training phase. These
were then used to generate 100 separate prediction results for
each sample in the test data. 95% confidence bounds were
estimated on the prediction results.

The (estimated mean of the) prediction results on simulated
data was compared with the prediction results obtained us-
ing the real observations for a particular setup as well as with
the prediction results obtained using the reference BN, respec-
tively. This comparison is based on checking the statistical
significance of the estimated results with respect to those at-
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Fig. 5 Ref BN used to infer and predict labels on test data sets. These labels matched with the ground truth labels available with the test data.
Also the Ref BN is used to generate samples for all the nodes, based on the parameter values assigned to the Ref BN. In setup 1. the complete
data set is present 2. observations for β-catenin, TCF4 and TRCMPLX are missing, 3. observations for all genes are missing, 4. except for
probes, all observations for other nodes are missing and 5. observations for β-catenin, TCF4 and genes are missing. Missing data is shown
with black coloured slabs. Parameters estimated from simulated observations and the predictions made using these parameters are compared
with those obtained using the real observations for each setup. Also, parameters estimated from real observations and predictiosn made using
the real data via reference BN are compared.

tained from real observations for a particular setup as well as
the reference BN. (The estimated parameter values were nu-
merically compared to see how much the deviate from those
assigned to the reference BN).

The statistical significance is checked via the McNemar’s
Test McNemar26. In a 2×2 contingency table, the McNemar’s
test gives a statistic similar to the chi squared statistic which
is formulated as:

χ2 =
(n01 − n10)2

n01 + n10
(1)

where, n01 and n10 are the false positives and the false nega-
tives, respectively. In this study a χ2 value of 3.84 and above
was set as a standard to account for the significant difference

of one algorithm against another. This means that with a sig-
nificance level of α = 0.05 and a critical value of 3.84 or less
impies p < 0.95. For test statistic greater than the critical
value 3.84, the null hypothesis is rejected, i.e. it is highly un-
likely, that a setup is insignificant from the one that it is being
compared with. Or the reverse, that with p ≥ 0.95 and a test
statistic greater than 3.84, the setup is highly significant from
the one it is being compared with.

3.1 Setup 1

As discussed in detail in section 2, setup 1 uses the Ref BN
framework to train on both real and simulated observations. In
this network, all nodes are observed. When using the real data,
the 12 observations are derived for each of the nodes, in the
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SNo. Datasets Summary
1. GSE18560 12 samples colon cancer cell lines,

half of which are treated with doxy-
cycline Mokry et al.10

2. GSE8671 32 samples each of normal colonic
mucosa and colorectal adenomas
Sabates-Bellver et al.17

3. GSE4183 45 samples (15 each of CRC, ade-
noma and IBD) of diseased cases
and 8 normal colonic controls Gy-
orffy et al.18, Galamb et al.19

4. GSE15960 18 colon samples (including nor-
mal, adenoma, colorectal cancer tis-
sues) Galamb et al.19

5. GSE20916 105 samples of (colon/adenoma)
carcinoma tissues and 40 samples
of normal colon tissues Skrzypczak
et al.20

6. GSE24795 16 replication error proficient and
14 replication error deficient col-
orectal cancer cell lines Wilding
et al.21

Table 2 Summary of datasets used in the experiments.

network. This means that each node has 6 on/active/expressed
state and 6 off/inactive/not-expressed state. For probesets, the
discretized observations are made using the computed median
thresholds. For a particular gene, a discretized state is deter-
mined based on majority voting on on/off states of the probes
that measure its expression. The TRCMPLX , is assigned
discretized states based on the available information that it
is on for 6 doxycycline treated cases and off for 6 controls.
The discretized cases for β-catenin and TCF4 are randomly
assigned to half on and half off states. This is done because,
the knowledge of the states of TRCMPLX explains away
the effects of both β-catenin and TCF4. The (c)pt parameters
are randomly initialized for the learner before inference can
take place to generate the network engine.

In case of simulated observations, for 1 run, after the Ref
BN engine has been generated the Ref BN is sampled 10000
times to generate random observations for the nodes. The (c)pt
values are randomly initialized in case of a simulation run.
Next, the (c)pts are learnt via inference through the maximum
likelihood (ML) estimates for a simulation based new BN. The
engine is generated based on the ML estimated parameters.
For both the BNs (one generated based on real observations
and another on simulated observations), inference is done us-
ing all probes from the testing data to predict the state of Wnt
pathway.

3.2 Setup 2

In this setup, an exception w.r.t setup 1 is that the observa-
tions for nodes β-catenin, TCF4 and TRCMPLX are miss-
ing. Thus for runs on real observations, the observations are
available for genes and probesets that measure the genes. The
remaining experimental setup remains same as in setup 1. In
case of missing observations, the (c)pts are learnt via the ex-
pectation maximization (EM) algorithm Dempster et al.27 for
a new BN. Next, the engine is generated based on inference.
Inference continues the same way as was done in setup 1.

3.3 Setup 3

The design of this setup is same as the previous setup except
that the only hidden observations are for nodes for the genes.
The remaining experimental setup remains same as in setup 1.
In case of missing observations, the (c)pts are learnt via the
expectation maximization (EM) algorithm Dempster et al.27

for a new BN. Next, the engine is generated based on infer-
ence. Inference continues the same way as was done in setup
1.

3.4 Setup 4

The design of this setup is same as the setup 2, except that the
only observed nodes are those of the probes. An important
aspect of this setup is that this is the state of the situation as it
exists in reality. It implies that the only available data retrieved
are the expression values. The network model built partially
captures the behaviour of Wnt signaling pathway.

3.5 Setup 5

The design of this setup is same as the setup 3, except that the
nodes β-catenin and TCF4 are also hidden.

Since the amount of training data is small (12 for colon can-
cer cell lines and 64 for normal colon and colon adenomas) it
may happen that the estimated parameter values in the training
phase may become exact (1 or 0). Thus the there would not
exist a degree of belief in the happening of an event. To avoid
this, an error value of 0.005 is added and the probabilities in
the (c)pts are normalized to the scale of 1.

It should be noted that even though the setups are different,
the dataset used is the same (leading to non independence).
Thus a hypothetical test may not be valid for checking the sig-
nificant differences among the various conditions imposed on
a BN, trained on the same dataset. Currently, the authors are
not aware of this interesting issue. In order to analyse the issue
further, McNemar’s test was conducted both with the setups
and between setups using predictions on different test datasets,
while the training on these setups was done using two inde-
pendent dataset namely (1) colon cancer cell lines GSE18560
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Fig. 6 Prediction of Wnt State for 32 normal (left) and 32 adenoma
(right) samples. The state of Wnt is computed via the degree of
belief estimated through p = Pr(TRCMPLX is active|All
probesets instances of a sample). Positive and negative values in the
graph indicate adenoma and normal states, respectively. The Ref BN
is trained on Colon caner cell lines.

dataset (Mokry et al.10) and (2) GSE8671 (Sabates-Bellver
et al.17). Details of the analysis are presented later on.

4 Results

The Ref BN is trained on colon cancer cell lines GSE18560
(Mokry et al.10) with measurements of expression levels for
a particular set of Wnt target genes. Perfect prediction was
obtained on normal colon and colon adenoma samples from
GSE8671 Sabates-Bellver et al.17. This is depicted in figure 6.
In the figure, the y-axis depicts the log2 odds ratio of the prob-
ability that the TRCMPLX is active given the evidence that
the values of the probes measured for a particular test sample
(i.e. p = P(TRCMPLX|∀j probe instances pj for a particu-
lar sample)). The prediction in all the setups is the estimation
of this marginal probability of the node TRCMPLX given
the probe values. The log2 odds ratio of p captures the rela-
tive difference between the probability of an event occurring
to the probability of the same event not occurring. Also, this
relative measure marginalizes all values to a standard value of
0. Positive log odds above zero indicate probability values of
the occurrence of an event being above 0.5 (i.e. log2

pthres

1−pthres

= 0 =⇒ pthres = 0.5) and vice versa.

4.1 Analysis of Parameter Deviation

In the simulations across the different setups, it was found that
there were deviations in the estimated parameters. These de-
viations indicate the spread of the estimated parameters. Un-
der different conditions depicted by the different setups, a few

points can be observed. In this analysis, parameter values for
two genes with their corresponding probesets have being de-
picted. In each of the graphs in the following figures 7 and
8, the y-axis depicts the probability of the node being 1 or off
when the parent node is 2 or on and the x-axis depicts the prob-
ability of the node being 1 or off when the parent node is 1 or
off. The motivation behind comparing these two probabilities
is to see how much reproducible the parameter estimates are
for a particular state of the node (here the gene under consid-
eration) under the different states in which the parent node can
be.

In the graphs shown in the above mentioned figures, the red
coloured points indicate how close the estimated parameters
are to parameter values assigned to the node under considera-
tion, in the reference network. The blue points indicate the flip
in the estimated parameter values while learning the parame-
ter on the bayesian network. The flips occur mainly due to the
fact that while estimating the parameters for parent nodes with
hidden (or no parameter) values, the bayesian network is un-
able to decide the which value to assign to a particular state of
the child node. In this study, in a hundred simulations, these
flipping can happen along rows of the cpt or along the columns
of the cpt. It is also expected that if the flipping occur, they
will happen approximately half of time as there are only two
discretized stated for a node and the bayesian network would
provide solutions for both normal and flipped cases, equally.

Considering column one in figure 7, the deviations in esti-
mated parameters for AXIN2 have been tabulated for setups
one to five from top to bottom. Using setup 1, when all the
nodes are observed, the estimated value of the parameters (i.e
p(AXIN2 = 1 or off | TRCMPLX = 1 or off) and p(AXIN2
= 1 or off | TRCMPLX = 2 or on)) spread around the values
(0.95 and 0.30) of the same parameters assigned in the ref-
erence bayesian network. In the second row and first column,
with the the TRCMPLX being hidden, flipping of the values
of the parameters occur for AXIN2. This is evident in second
row and first column graph of the same figure. In the third
setup, the nodes for the genes is hidden. Thus the estimation
of the parameters gets flipped around the column of the cpt
table as this time the bayesian network does not know the dis-
tinction between whether discrete state 1 means a gene off or
on (vice versa for discrete state 2). In the forth setup, both the
genes and the TRCMPLX are hidden, thus flipping happens
both at row level and column level. This is clearly evident
from the two cluster formations in both the red and blue re-
gions. Lastly, setup five is similar to setup three as knowledge
of information about TRCMPLX explains away the effects
induced by β-catenin and TCF4. Thus the bottom graph looks
similar to the graph in the third row.

Considering graphs in a row of figure 7, the parameter val-
ues of the corresponding probesets show similar behaviour
based on that shown by the respective gene for which the for-
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Fig. 7 Plot of deviations in estimated parameter for AXIN2 and its corresponding probesets. Rows represent the different setups. Columns
indicate the node name on the top. x-axis indicates the probability of child being off given that the parent is off i.e. p(C = 1|P = 2). y-axis
indicates the probability of child being off given that the parent is on i.e. p(C = 1|P = 1).

mer encode the activation values. The mixed cluster of blue
dots and red dots for the probesets point to number of parame-
ter values for probes for which flipping of parameter values for
the genes have happened. In case the probeset values have non

discriminative noisy parameter values, then it is often found
that estimated parameter values for the genes (if the gene node
is hidden) are completely noisy. This can be seen in the graphs
for setups 3, 4, and 5 in figure 8. In rows 1 and 2 for the same
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figure, the spread in the parameter values for the genes do not
show any affect even if the parameter values for the probesets
are noisy. This is due the fact that the nodes for the genes
are observable. Thus these deviation plots point to the repro-
ducibility of the parameter values. Also, for noisy probeset
values, it is not possible to estimate good parameter values for
their respective genes, in case the gene nodes are hidden. The
deviation study shows a way of the sensitivity of the estimated
parameter values for each and every node under different se-
tups using the bayesian network. Finally, deviations across all
setups for each of the nodes for one of the simulation run is
depicted in figures 9 and 10.

4.2 Results from setups based on real observations

Next for each of the setups, the real data was used to generate
discretized observations and depending on complete or miss-
ing observations, ML or EM algorithm was employed to learn
the (c)pt values. These were then used to predict the state of
samples as normal colon or colon adenoma. The predictions
for each of the setup using the real data set is shown in figure
11. In the graphs for predictions made via estimates computed
from observations, a pseudo count of 10−10 is added to the
probability values in order to circumvent the problem of null
behaviour (log2 odds computes to zero as prediction evaluates
to 0.5) or infinite relative difference (log2 odds computes to
∞) that afflicts the graphical depiction.

Comparing the predictions obtained via the observations in
different setups to that obtained via the predictions obtained
from Ref BN using real data, shows that the results do not de-
viate significantly. This is depicted in the plots of figure 11.
It can be seen that the EM based estimates generate misclas-
sifications on samples (for example the 50th sample) that are
nearly classified to colon adenomas by the reference BN us-
ing complete data. The misclassifications may be attributed to
the probeset values for those samples that do not satisfy the
threshold criterion by a negligible amount. The predictions
may appear to be same due to the clipping effect induced by
addition of pseudo counts to the probability values, but in re-
ality are not the same. Thus, non significance does not imply
equality in prediction. Even though the label assigned in most
cases may be same, the relative values of the estimated proba-
bilities and their respective log odds can be different (example,
the log odds ratio of the prediction on 50th sample in graphs
for all setups generated from real observations show dissimilar
values but same assigned label).

This non significance was indicated by the χ2 value gen-
erated via the McNemar’s test using equation 1, for all pre-
dictions obtained through each of the BNs from all the setups
vs the predictions obtained via the Ref BN. The respective χ2

values per setup have been depicted in column 2 of table 4.
All values lying below 3.84, indicate that the probability of

the deviation being high is lower that 0.95. Thus with an α =
0.05, the null hypothesis holds i.e. the deviations of predic-
tions from BNs representing different setups based on real ob-
servations are insignificant from predictions made using Ref
BN. It must be noted that the insignificance does not imply
equality in results.

Finally, table 5 shows the deviations in predictions using the
real observations with respect to predictions obtained using
the Ref BN. The error is computed using the norm-2 formula-
tion, i.e. if ysetupi is the prediction generated using a particular
setup and yrefi is the prediction generated using the ref BN for
ith sample:

err =

� N�

i=1

(ysetupi − yrefi )q
� 1

q

(2)

were q = 2. Besides the err, the avg err which is the mean of
the err in equation 2 and the std err which is the standard devi-
ation of the norm-1 (q = 1) err is also computed. The average
error is depicted in %. It can be seen that most predictions
made using the real observations has been clipped by addi-
tion of pseudo count to the estimated p values. Thus most of
the estimated error depicted in the table show similar values,
which may not be the case. These error do not point to miss-
classification but only to the value of prediction that is being
made using the real observations with respect to the prediction
made using the reference network. The major deviations may
be accounted for the fact that the BN trained on observations
contain very less amount of training data which may not lead
to good parameter estimation during the training phase. Due
to not so good parameter estimates, it is possible that the pre-
diction values on sample even though correct may have large
deviations from the prediction values obtained using Ref BN.
This is supplemented by the fact that, error computed using
predictions from simulation are much lower. This can be seen
in the tabulated values of the err, avg err and std err from pre-
dictions using simulation in the same table. A reason for close
predictions via simulation is due to the fact that observations
are sampled from the same ref BN. But the error deviations
jump by two to three times when using setups III, IV and V, in
comparison to deviations obtained from setups I and II. Details
of peculiar behavior in deviations generated using simulations
are discussed later.

4.3 Results from setups based on simulated observations

Once the predictions have been made using real observations,
another run across the setups is done using observations sam-
pled from respective BNs through simulation. The interpreta-
tions of the graphs and the McNemar’s test remain the same as
in the previous subsection. Similar significance results were
obtained while comparing the predictions from BNs based
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Fig. 8 Plot of deviations in estimated parameter for DKK1 and its corresponding probesets. Rows represent the different setups. Columns
indicate the node name on the top. x-axis indicates the probability of child being off given that the parent is off i.e. p(C = 1|P = 2). y-axis
indicates the probability of child being off given that the parent is on i.e. p(C = 1|P = 1).

on sampled observations from simulation in respective setups
apropos to predictions from Ref BNs. These significance val-
ues can be viewed in the 4th column of table 4. Figure 12
depict the prediction results obtained using BNs based on the

sampled observations for each of the setups. It should be noted
that the error rates computed from deviations

Finally, 5 shows the prediction deviations computed using
the BNs based on simulations with respect to predictions given
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BN Simulations - Train on CL
PPARG & KLF6 Inhibited

BLUE - Observed swaps, BLACK - Near match with complete data, 
RED - Inhibition from literature

DATE COMPLETE HIDDEN 
COMPLEXES

HIDDEN GENES HIDDEN GENES 
& COMPLEXES

HIDDEN PROBES

B-CAT

TCF4

TR-COMPLX

AXIN2

EPHB2

EPHB3

MYC

CCND1

SP5

LGR5

ASCL2

PPARG

CD44

SLC1A2

BMP7

LEF1

HNF1A

FAT1

ZNRF3

KIAA1199

RNF43

COL18A1

KLF6

ADRA2C

FZD7

IL8

TBX3

NKD1

DKK1

DEFA6

GLUL

OAT

LECT2

REG1B

SOX9

TDGF1

[0.40 0.60] [0.79 0.21] [0.40 0.60] [0.79 0.21] [0.39 0.61]

[0.11 0.89] [0.55 0.45] [0.09 0.90] [0.55 0.45] [0.10 0.90]

[0.98 0.98 0.99 0.01 
0.02 0.01 0.01 0.99]

[0.53 0.64 0.43 0.02 
0.47 0.36 0.57 0.98]

[0.98 0.99 0.99 0.01 
0.01 0.01 0.01 0.99]

[0.53 0.64 0.44 0.02 
0.47 0.36 0.56 0.98]

[0.99 0.98 0.99 0.01 
0.01 0.01 0.01 0.99]

[0.94 0.31 0.06 0.69] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70]

[0.96 0.28 0.04 0.72] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70]

[0.96 0.30 0.04 0.70] [0.95 0.30 0.05 0.70] [0.06 0.73 0.94 0.26] [0.06 0.74 0.94 0.26] [0.95 0.30 0.05 0.70]

[0.94 0.29 0.06 0.71] [0.95 0.30 0.05 0.70] [0.03 0.67 0.97 0.33] [0.06 0.70 0.94 0.30] [0.95 0.30 0.05 0.70]

[0.95 0.28 0.05 0.72] [0.95 0.30 0.05 0.70] [0.89 0.16 0.11 0.84] [0.90 0.16 0.10 0.84] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.85 0.38 0.15 0.62] [0.78 0.33 0.22 0.67] [0.95 0.30 0.05 0.70]

[0.95 0.29 0.05 0.71] [0.95 0.30 0.05 0.70] [0.96 0.30 0.04 0.70] [0.23 0.83 0.77 0.17] [0.95 0.30 0.05 0.70]

[0.94 0.30 0.06 0.70] [0.95 0.30 0.05 0.70] [0.84 0.19 0.16 0.81] [0.06 0.71 0.94 0.29] [0.95 0.30 0.05 0.70]

[0.44 0.96 0.56 0.04] [0.44 0.95 0.56 0.05] [0.86 0.24 0.14 0.76] [0.78 0.25 0.22 0.75] [0.45 0.95 0.55 0.05]

[0.94 0.34 0.06 0.66] [0.95 0.30 0.05 0.70] [0.05 0.70 0.95 0.30] [0.05 0.70 0.95 0.30] [0.95 0.30 0.05 0.70]

[0.93 0.30 0.07 0.70] [0.95 0.30 0.05 0.70] [0.12 0.76 0.88 0.24] [0.19 0.79 0.81 0.21] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.06 0.70 0.94 0.29] [0.06 0.72 0.94 0.28] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.42 0.75 0.58 0.25] [0.40 0.79 0.60 0.21] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.34 0.67 0.66 0.33] [0.37 0.70 0.63 0.30] [0.95 0.30 0.05 0.70]

[0.96 0.30 0.04 0.70] [0.95 0.30 0.05 0.70] [0.32 0.62 0.68 0.38] [0.32 0.62 0.68 0.38] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.31 0.05 0.69] [0.96 0.33 0.04 0.67] [0.94 0.30 0.06 0.70] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.06 0.71 0.94 0.29] [0.07 0.74 0.93 0.26] [0.95 0.31 0.05 0.69]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.69 0.42 0.30 0.58] [0.57 0.55 0.43 0.45] [0.95 0.29 0.05 0.71]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.65 0.75 0.35 0.25] [0.63 0.73 0.37 0.27] [0.95 0.30 0.05 0.70]

[0.47 0.95 0.53 0.05] [0.46 0.95 0.54 0.05] [0.44 0.95 0.56 0.05] [0.45 0.95 0.55 0.05] [0.45 0.95 0.55 0.05]

[0.95 0.32 0.05 0.68] [0.95 0.30 0.05 0.70] [0.68 0.64 0.32 0.36] [0.73 0.65 0.27 0.35] [0.95 0.30 0.05 0.70]

[0.97 0.30 0.03 0.70] [0.95 0.30 0.05 0.70] [0.74 0.50 0.26 0.50] [0.78 0.52 0.22 0.48] [0.95 0.30 0.05 0.70]

[0.92 0.30 0.08 0.70] [0.95 0.30 0.05 0.70] [0.37 0.71 0.63 0.79 [0.41 0.70 0.59 0.29] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.40 0.40 0.60 0.60] [0.43 0.41 0.57 0.59] [0.95 0.30 0.05 0.70]

[0.94 0.32 0.06 0.68] [0.95 0.28 0.05 0.72] [0.72 0.64 0.28 0.36] [0.72 0.64 0.28 0.36] [0.95 0.30 0.05 0.70]

[0.96 0.29 0.04 0.71] [0.95 0.30 0.05 0.70] [0.63 0.55 0.37 0.45] [0.63 0.54 0.37 0.46] [0.95 0.32 0.05 0.68]

[0.93 0.28 0.07 0.72] [0.95 0.30 0.05 0.70] [0.70 0.43 0.30 0.57] [0.63 0.48 0.37 0.52] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.11 0.76 0.89 0.24] [0.11 0.74 0.89 0.26] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.44 0.55 0.56 0.45] [0.44 0.55 0.56 0.45] [0.95 0.30 0.05 0.70]

[0.95 0.29 0.05 0.71] [0.94 0.30 0.06 0.70] [0.58 0.53 0.42 0.47] [0.60 0.56 0.40 0.44] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.30 0.70 0.70 0.30] [0.30 0.70 0.70 0.30] [0.95 0.30 0.05 0.70]

[0.96 0.31 0.04 0.69] [0.95 0.30 0.05 0.70] [0.08 0.65 0.92 0.34] [0.14 0.75 0.85 0.25] [0.95 0.30 0.05 0.70]

[0.95 0.29 0.05 0.71] [0.95 0.30 0.05 0.70] [0.24 0.22 0.76 0.78] [0.30 0.24 0.75 0.76] [0.45 0.25 0.55 0.75]

Fig. 9 Deviation of parameters using GSE18560 dataset (Mokry et al. 10)

by the Ref BN. One of the peculiar result is the error obtained
using the setup IV, where the predictions are actually inverted
as can be seen in figure 12. The flip mainly occurs due to
the fact that nodes for both the TRCMPLX and the genes
are hidden in case of simulations. In such a scenario, while

estimating the parameter values, as can be seen in the forth
row of figure 7 for example, there is no clear indication of a
parameters converging to those assigned in the Ref BN, with
flips happening both row (i.e. at TRCMPLX level) and col-
umn wise (i.e. at gene level). This leads to inversion in the
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DATE COMPLETE HIDDEN 
COMPLEXES

HIDDEN GENES HIDDEN GENES 
& COMPLEXES

HIDDEN PROBES

B-CAT

TCF4

TR-COMPLX

AXIN2

EPHB2

EPHB3

MYC

CCND1

SP5

LGR5

ASCL2

PPARG

CD44

SLC1A2

BMP7

TCF7L2

LEF1

HNF1A

FAT1

ZNRF3

KIAA1199

RNF43

COL18A1

KLF6

ADRA2C

FZD7

IL8

TBX3

NKD1

DKK1

DEFA6

GLUL

OAT

LECT2

REG1B

SOX9

TDGF1

[0.42 0.56] [0.79 0.21] [0.40 0.60] [0.80 0.20] [0.40 0.60]

[0.10 0.90] [0.55 0.45] [0.1 0.9] [0.55 0.45] [0.10 0.90]

[1.00 0.98 0.98 0.00 
0.00 0.02 0.02 1.00]

[0.53 0.64 0.44 0.02 
0.47 0.36 0.56 0.98]

[0.99 0.99 0.99 0.01 
0.01 0.01 0.01 0.99]

[0.53 0.64 0.43 0.02 
0.47 0.36 0.57 0.98]

[0.99 0.99 0.99 0.01 
0.01 0.01 0.01 0.99]

[0.95 0.33 0.05 0.67] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70] [0.95 0.30 0.05 0.70]

[0.94 0.29 0.06 0.71] [0.95 0.31 0.05 0.69] [0.95 0.31 0.05 0.69] [0.95 0.31 0.05 0.69] [0.95 0.30 0.05 0.70]

[0.94 0.30 0.06 0.70] [0.95 0.30 0.05 0.70] [0.06 0.72 0.94 0.28] [0.06 0.72 0.94 0.28] [0.95 0.30 0.05 0.70]

[0.95 0.27 0.05 0.73] [0.95 0.29 0.05 0.71] [0.91 0.06 0.09 0.94] [0.90 0.06 0.10 0.94] [0.95 0.30 0.05 0.70]

[0.94 0.29 0.06 0.71] [0.95 0.29 0.05 0.71] [0.94 0.27 0.06 0.73] [0.95 0.27 0.05 0.73] [0.95 0.31 0.05 0.69]

[0.94 0.27 0.06 0.73] [0.95 0.29 0.05 0.71] [0.13 0.89 0.87 0.11] [0.12 0.89 0.88 0.11] [0.95 0.28 0.05 0.72]

[0.94 0.31 0.06 0.69] [0.95 0.29 0.05 0.71] [0.08 0.74 0.92 0.26] [0.08 0.75 0.92 0.25] [0.95 0.30 0.05 0.70]

[0.95 0.32 0.05 0.68] [0.95 0.28 0.05 0.72] [0.06 0.70 0.94 0.30] [0.06 0.70 0.94 0.29] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.95 0.28 0.05 0.72] [0.34 0.63 0.66 0.37] [0.34 0.64 0.66 0.36] [0.95 0.30 0.05 0.70]

[0.95 0.29 0.05 0.71] [0.95 0.30 0.05 0.70] [0.05 0.69 0.95 0.31] [0.05 0.69 0.95 0.30] [0.95 0.30 0.05 0.70]

[0.49 0.95 0.51 0.05] [0.44 0.95 0.56 0.05] [0.60 0.36 0.40 0.64] [0.62 0.35 0.38 0.65] [0.45 0.95 0.55 0.05]

[0.96 0.33 0.04 0.67] [0.95 0.29 0.05 0.71] [0.15 0.52 0.85 0.48] [0.14 0.54 0.86 0.46] [0.95 0.30 0.05 0.70]

[0.41 0.95 0.59 0.05] [0.46 0.95 0.54 0.05] [0.81 0.36 0.19 0.64] [0.81 0.31 0.19 0.79] [0.45 0.95 0.55 0.05]

[0.94 0.30 0.06 0.70] [0.95 0.30 0.05 0.70] [0.44 0.87 0.56 0.13] [0.43 0.90 0.57 0.10] [0.95 0.30 0.05 0.70]

[0.95 0.30 0.05 0.70] [0.96 0.30 0.04 0.70] [0.58 0.64 0.42 0.36] [0.57 0.63 0.43 0.37] [0.95 0.30 0.05 0.70]

[0.94 0.29 0.06 0.71] [0.95 0.29 0.05 0.71] [0.85 0.28 0.15 0.72] [0.85 0.28 0.15 0.72] [0.95 0.30 0.05 0.70]

[0.96 0.28 0.04 0.72] [0.95 0.30 0.05 0.70] [0.90 0.18 0.10 0.82] [0.88 0.15 0.12 0.85] [0.95 0.30 0.05 0.70]

[0.96 0.30 0.04 0.70] [0.95 0.29 0.05 0.71] [0.95 0.29 0.05 0.71] [0.95 0.29 0.05 0.71] [0.95 0.29 0.05 0.71]

[0.95 0.31 0.05 0.69] [0.95 0.29 0.05 0.71] [0.08 0.91 0.92 0.09] [0.08 0.92 0.92 0.08] [0.95 0.29 0.05 0.71]

[0.43 0.95 0.57 0.05] [0.46 0.95 0.54 0.05] [0.99 0.88 0.01 0.12] [0.99 0.85 0.01 0.15] [0.46 0.95 0.54 0.05]

[0.49 0.96 0.51 0.04] [0.44 0.94 0.56 0.06] [0.56 0.06 0.44 0.94] [0.56 0.06 0.44 0.94] [0.46 0.95 0.54 0.05]

[0.94 0.28 0.06 0.72] [0.95 0.30 0.05 0.70] [0.78 0.49 0.22 0.51] [0.79 0.50 0.21 0.50] [0.95 0.29 0.05 0.71]

[0.96 0.30 0.04 0.70] [0.95 0.29 0.05 0.71] [0.64 0.49 0.36 0.51] [0.84 0.29 0.16 0.71] [0.95 0.32 0.05 0.68]

[0.95 0.28 0.05 0.72] [0.95 0.30 0.05 0.70] [0.93 0.28 0.07 0.72 [0.94 0.29 0.06 0.71] [0.95 0.30 0.05 0.70]

[0.94 0.31 0.06 0.69] [0.95 0.28 0.05 0.72] [0.05 0.72 0.95 0.28] [0.05 0.72 0.95 0.28] [0.95 0.29 0.05 0.71]

[0.96 0.32 0.04 0.68] [0.95 0.29 0.05 0.71] [0.85 0.35 0.15 0.65] [0.84 0.33 0.16 0.67] [0.95 0.30 0.05 0.70]

[0.94 0.30 0.06 0.70] [0.95 0.29 0.05 0.71] [0.58 0.53 0.42 0.47] [0.57 0.53 0.43 0.47] [0.94 0.30 0.06 0.70]

[0.96 0.28 0.07 0.72] [0.95 0.30 0.05 0.70] [0.19 0.94 0.81 0.06] [0.19 0.94 0.81 0.06] [0.95 0.30 0.05 0.70]

[0.95 0.27 0.05 0.73] [0.95 0.30 0.05 0.70] [0.06 0.56 0.94 0.44] [0.07 0.57 0.93 0.43] [0.94 0.30 0.06 0.70]

[0.44 0.95 0.56 0.05] [0.44 0.95 0.56 0.05] [0.82 0.27 0.18 0.73] [0.82 0.26 0.18 0.74] [0.45 0.95 0.55 0.05]

[0.96 0.29 0.04 0.71] [0.95 0.31 0.06 0.69] [0.40 0.42 0.60 0.58] [0.38 0.40 0.62 0.60] [0.95 0.30 0.05 0.70]

[0.94 0.29 0.06 0.71] [0.95 0.31 0.05 0.69] [0.67 0.26 0.33 0.74] [0.68 0.26 0.32 0.74] [0.94 0.30 0.06 0.70]

[0.94 0.27 0.06 0.73] [0.95 0.31 0.05 0.69] [0.92 0.25 0.08 0.75] [0.92 0.25 0.08 0.75] [0.95 0.30 0.05 0.70]

[0.96 0.25 0.04 0.75] [0.96 0.30 0.04 0.70] [0.87 0.04 0.13 0.96] [0.87 0.03 0.13 0.97] [0.18 0.25 0.82 0.75]

BN Simulations - Train on NA
SLC1A2, TCF7L2, COL18A1, KLF6 & OAT Inhibited

BLUE - Observed swaps, BLACK - Near match with complete data, 
RED - Inhibition from literature

Fig. 10 Deviation of parameters using GSE8671 (Sabates-Bellver et al. 17)

prediction values of the samples in the test case. To see the
actual error, the generated prediction values were inverted and
err was recomputed. These inverted values then point to devi-
ations that are near to those predictions made by the Ref BN.
Also, hiding genes in setups III, IV and V often lead to greater

deviations in predictions. This is because, if probeset values
are non discriminative and noisy (as in figure 8), then the esti-
mation of parameters for genes is also noisy. With a BN based
on noisy set of parameters, it may happen that the inference on
the state of TRCMPLX given the new test sample readings
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Fig. 11 Description same as in figure 6. Left to right row wise, the graphs depict the predictions for BNs obtained from (a) complete data (Ref
BN) (b) complete observations (BN from setup 1) (c) observed probes and genes (BN from setup 2) (d) observed probes and complexes (BN
from setup 3) (e) observed probes (BN from setup 4) and (f) observed probes and TRCMPLX (BN from setup 5). BNs for all setups here
use real observations.

(that is the probeset values for a sample) may give prediction
values, which are far from those estimated by the Ref model
where the assigned values of genes are based on expert knowl-

edge.
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Fig. 12 Description same as in figure 6. Left to right row wise, the graphs depict the predictions for BNs obtained from (a) complete data (Ref
BN) (b) complete observations (BN from setup 1) (c) observed probes and genes (BN from setup 2) (d) observed probes and complexes (BN
from setup 3) (e) observed probes (BN from setup 4) and (f) observed probes and TRCMPLX (BN from setup 5). BNs for all setups here
use sampled observations from simulation.

4.4 Comparing predictions from simulated vs real obser-

vations

Lastly, for each of the setups, the statistical significance of the
prediction results within the setup also need to be compared.

This is done to insure the quality of reproducibility based on
real and simulated observations. The values found in 6th col-
umn of table 4 indicates the significance between the results.
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Comp. 1 Test Comp. 2 Test Comp. 3 Test
Setup I 2.25 Setup I 0 Setup I 2.25
Setup II 2.25 Setup II 0 Setup II 2.25
Setup III 2.25 Setup III 0.5 Setup III 0.5
Setup IV 2.25 Setup IV 0.5 Setup IV 0.5
Setup V 2.25 Setup V 0.5 Setup V 0.5

Table 4 Comparison 1. BNs based on Obs. from real data VS Ref
BN based on real data (a between setup comparison). Comparison 2.
BNs based on Simulated Obs. VS Ref BN based on real data (a
between setup comparison). Comparison 3. BNs based on
Simulated Obs. from real data VS BNs based on Obs. from real data
(a within setup comparison). McNemar’s Test with significance
level α = 0.05 and χ

2 value of 3.84 =⇒ p < 0.95 with 1 degree
of freedom. Values higher than the critical value imply significant
differences with a p ≥ 0.95.

Predictions of Sim. BN vs Ref BN
Setups err avg err std of err

in %
I 6.4862 10.13 0.6802
II 6.7011 10.47 0.5767
III 20.2022 31.56 1.6364
IV 302.08 4.7200 12.0053

on inversion 15.4472 0.2413 0.9253
V 20.2023 0.3156 1.6364

Predictions of Real obs. BN vs Ref BN
Setups err avg err std of err

in %
I 112.93 176.46 5.3649
II 112.93 176.46 5.3643
III 113.09 176.71 6.2144
IV 114.09 178.26 7.1350
V 113.09 176.71 6.2140

Table 5 Error measurements generated from deviation of predictions
made via BNs based on simulations and real observations for
different setups with respect to the predictions made via the ref BN.
Here err denotes the norm-2 error, avg err denotes the average of the
norm-2 error and std err denotes the standard deviation of the error
per sample computed using norm-1.

It is found that prediction deviations generated from simulated
observations are not significant with respect to those generated
via the real observations.

It is imperative to note that non-significance does not imply
equality in results. Prediction values can be dissimilar for a
particular sample but the assigned label can be same. The
McNemar’s test captures the deviation in prediction labels and

not the deviations in the prediction values. Thus similarity in
BN results do not imply equality. In case of using observations
when the complete set of nodes is observable, the prediction
labels match the ground truth values for NA. Thus the BN is
found to be accurate in labeling the samples given the full set
of nodes is observable. These minute aspects can be seen in
the graphs of figures 11 and 12.

Finally, the deviations in the predicted probability values for
the 53 samples of the test data set GSE4183 have been plot-
ted. This is done to check the reproducibility of the prediction
results for 100 simulations in each of the setups. Figure 14
shows the box plot measurements of the predicted probabili-
ties for each of the sample of the GSE4183 dataset. Table 6 is
refers to the error in predictions made while using the setups
with respect to those made by the RefBN. In figure 14, the box
plots represent the spread of the probability values that repre-
sent Pr(TRCMPLX = on | all instances of probeset values
per sample). The red bar within the blue boxes represent the
median while the bottom and the top portions of the boxes rep-
resent 25 and 75 percentile of the data. The whiskers beyond
the boxes represent the extreme areas up to which the pre-
dictions spread. The plus symbols in red colour indicate the
outliers that are not a part of the spread. It can be seen that the
deviations in the predicted probability values is less for setups
I, III and V. Setup V gives similar results as compared to setup
III, because the observations of TRCMPLX makes the read-
ings of β-catenin and TCF4 redundant. The predictions devi-
ate much more for setups II and IV (figures 15 and 16). This
can be attributed to the fact that when the TRCMPLX is
hidden, then estimation of its parameters may not depict prob-
ability values close to those in the Ref BN. Using simulated
BNs based on these estimated parameters leads to large devi-
ations in predicted probabilities. These are then reflected with
high average percentage error in table 6. Table 6 shows the
deviations in the error over 53 samples and the average per-
centage error with respect to predictions made using the Ref
BN. Clearly, setups I, III and V outperform setups II and IV.
But a slight strange result is also noticed when setup I gives
slightly bad result compared to setups III and V. We could not
come up with as reasonable answer for this behaviour.

4.5 Prediction results on various test data sets

Next, the focus is shifted to evaluating the quality of results
for samples obtained from different types of cancer. The list
of these datasets are tabulated in table 2. The prediction results
for Ref BN trained on two different datasets and tested on the
tabulated data in table 2 are show in table 8. In table 8, the
tabular results on top are predictions from Ref BN trained on
12 (6 each from doxycycline treated Wnt pathway i.e. Wnt off
and controls i.e. Wnt on) samples from Colon cancer cell lines
GSE18560 (Mokry et al.10). The bottom tabular results depict
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Fig. 13 Y-axis - Log ratios of marginal probability of TRCMPLX being active (indicating Wnt on) on samples from GSE4183. Inference
was based on Ref BN trained on 64 samples of GSE8671 (Sabates-Bellver et al. 17).

Log-odds Error Statistics w.r.t Ref BN
Avg. Err Std. in Err

Setup I 1.3539 1.9547
Setup II 328.68 298.87
Setup III 2.6005 2.6995
Setup IV 211.87 191.82
Setup V 2.5835 2.6847

Table 6 Average error w.r.t predictions made by the corresponding
RefBN trained on colon cancer cell lines and the standard deviation
in the error for each of the setups has been shown.

predictions from Ref BN trained on 64 (32 each of normal
colon and colon adenomas) samples from GSE8671 Sabates-
Bellver et al.17.

Before, discussing the details of the table and the evaluated
measures, a succinct analysis of one of the prediction results

on 53 samples from GSE4183 Gyorffy et al.18 and Galamb
et al.19, is presented in figure 13. Among the 53 test samples,
the first 8 represent normal (N) cases, the second 15 represent
adenoma (AD) cases, the third 15 represent colorectal cancer
(CRC) cases and last 15 represent inflamatary bowel disease
(IBD) cases. These ground truth labels were retrieved from
respective GSE profile from GSE Omnibus Edgar et al.24 and
Barrett et al.25. These labels for these samples are denoted in
the previously mentioned figure, along with the log ratios. To
reiterate, +ive log odds indicate Wnt on and vice versa. Thus,
it is expected that for AD and CRC cases the log odds are
+ive and for N and IBD cases, the log odds are −ive. Given
the predications on this test data, the quality of the predictions
need to be assessed.

This assessment is done via a list of measures, a descrip-
tion of which follows. Contingency matrix values were used
to derive the measures. A contingency matrix compares how
the predicted observations behave with respect to the observed
ground truth labels. Four measures indicate the match and de-
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Fig. 14 Box plot of the log2 odds of predicted p = Pr(TRCMPLX = on | all instances of the probesets are available), using 100 simulations
in setup I for all samples in GSE4183. The blue boxes indicate the 25 and 75 percentile. The red line in the blue boxes represent the median
value. The whiskers represent the extreme points and the red plus symbols represent the outliers.

Ground Truth
+ -

Predicted + TP FP
label - FN TN

Table 7 Contingency table for a binary problem

viations between the predictions and the ground truth labels.
These are true positive or TP , false positive or FP , true neg-
ative or TN and false negative FN , shown in table 7.

Next, the precision P of the prediction results indicate how
precise the labels are and is estimated via P = TP

TP+FP . This
does not mean that the results are accurate. Accuracy can be
measured using the total error computed via the final error in
predictions estimated via ERR = 1− TP+TN

TP+FP+TN+FN . The
recall R of the results indicate how many of the labels were
correctly retrieved from the original set of true labels (R =

TP
TP+FN ). To measure the effectiveness of retrieval, an Fβ

score is evaluated that gives β times as much weightage to pre-
cision as recall. Here β was taken as 1. The Fβ is computed
as follows: Fβ = (1+β2)×precision×recall

β2×precision+recall . Finally the false

positive rate FPR is also reported. The FPR is the proba-
bility of falsely rejecting the null hypothesis that the samples
are normal cases and is computed via FPR = FP

FP+TN . The
estimated values for each of the datasets can be seen in table
8.

As can be seen from the results on GSE4183 (predictions
based on Ref BN trained on GSE8671 samples), high value
(nearing to 1) of F1-score (0.81356) indicates both high pre-
cision (0.82759) and high recall (0.8). High precision points
to retrieval of high concentration of predictions. High recall
points to retrieval of maximum number of originally relevant
data. While giving equal weightage to both precision and re-
call, the high F1-score ensure that the quality of predictions
is good. Also, the low total error 0.20755 on the test data
indicate that prediction levels are nearly accurate using the
Ref BN trained on GSE8671. Finally, a low value of FPR
(0.21739) indicate the probability that less number of exam-
ples are falsely derived as positive cases of carcinoma in colon.

Also, while comparing the results obtained from Ref BN
trained on 12 colon cancer cell lines GSE18560, a low F1-
score with respect to that obtained from Ref BN trained on
64 normal colon and colon adenomas of GSE8671, indicate
that either the low number of samples is not enough to cor-
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Fig. 15 Box plot of the log2 odds of predicted p = Pr(TRCMPLX = on | all instances of the probesets are available), using 100 simulations
in setup II (top) and setup III (bottom) for all samples in GSE4183. Descriptions remain same as in figure 14

rectly classify the test data or data sets from controlled settings
(colon cancer cell lines treated with doxycycline) do not cap-
ture the actual phenomena and thus give low prediction results.
The latter case holds with much more weight as the number of
FN is higher for predictions obtained from colon cancer cell
lines GSE18560 than those obtained from GSE8671.

Overall, from all the test datasets assessed, the results ob-
tained from Ref BN trained on GSE8671 are much better
that those obtained from Ref BN trained on colon cancer cell

lines GSE18560. These indications are magnified in case of
datasets with large number of test examples. Taking the case
of GSE20916 Skrzypczak et al.20, the number of false neg-
atives has drastically reduced from 44 (while using Ref BN
trained on colon cancer cell lines GSE18560) to 3 (while us-
ing Ref BN trained on GSE8671). There is a corresponding
increase in recall from 0.64356 to 0.9703 and F1-score from
0.78313 to 0.98492. It must be noted that precision value re-
mains the same for both the results. This gives another insight
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Fig. 16 Box plot of the log2 odds of predicted p = Pr(TRCMPLX = on | all instances of the probesets are available), using 100 simulations
in setup IV (top) and setup V (bottom) for all samples in GSE4183. Descriptions remain same as in figure 14.

into why Fβ-scores are important in accessing the quality of
retrieved results. Lastly, the final estimated error reduces sig-
nificantly from 0.24828 to 0.02069.

Finally, coming back to the issue of validity of conduct-
ing McNemar’s test on setup designs which are different yet
trained on same data, it was found that hypothesis testing may
not be the correct way to prove the statistical significance of
setup designs. As expected from table 4, most of the setups
were found to be statistically insignificant from each other as

well as with the Ref BN, when the training set remained the
same. A further analysis of within setup and between setups
was also conducted. All setups where trained on two differ-
ent independent datasets namely (1) colon cancer cell lines
GSE18560 Mokry et al.10 and (2) GSE8671 Sabates-Bellver
et al.17. The evaluated McNemar values were generated using
independent test datasets mentioned previously. Table 9 shows
how the significance values behave with different datasets.
What can be inferred from these values is described next.
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Trained on Test dataset GSE4183 Gyorffy et al.18, Galamb et al.19

GSE8671 → Ref Setup I Setup II Setup III Setup IV Setup V
CCC lines ↓ BN BN BN BN BN BN

Ref BN 10.000 0.333 5.000 0.333 5.000 0.333
Setup I BN 12.000 3.000 7.000 3.000 7.000 3.000
Setup II BN 12.000 3.000 7.000 3.000 7.000 3.000
Setup III BN 12.000 3.000 7.000 3.000 7.000 3.000
Setup IV BN 12.000 3.000 7.000 3.000 7.000 3.000
Setup V BN 12.000 3.000 7.000 3.000 7.000 3.000
Trained on Test dataset GSE15960 Galamb et al.19

GSE8671 → Ref Setup I Setup II Setup III Setup IV Setup V
CCC lines ↓ BN BN BN BN BN BN

Ref BN 5.000 4.000 1.000 0.667 2.000 0.667
Setup I BN 7.000 1.000 0.000 0.000 4.000 0.000
Setup II BN 7.000 1.000 0.000 0.000 4.000 0.000
Setup III BN 7.000 1.000 0.000 0.000 4.000 0.000
Setup IV BN 7.000 1.000 0.000 0.000 4.000 0.000
Setup V BN 7.000 1.000 0.000 0.000 4.000 0.000
Trained on Test dataset GSE20916 Skrzypczak et al.20

GSE8671 → Ref Setup I Setup II Setup III Setup IV Setup V
CCC lines ↓ BN BN BN BN BN BN

Ref BN 33.000 0.818 6.250 3.267 21.160 3.267
Setup I BN 36.000 1.500 6.259 5.000 24.143 5.000
Setup II BN 36.000 1.500 6.259 5.000 24.143 5.000
Setup III BN 37.000 2.130 7.538 5.762 25.138 5.762
Setup IV BN 37.000 1.960 7.000 5.762 27.000 5.762
Setup V BN 37.000 2.130 7.538 5.762 25.138 5.762
Trained on Test dataset GSE24795 Wilding et al.21

GSE8671 → Ref Setup I Setup II Setup III Setup IV Setup V
CCC lines ↓ BN BN BN BN BN BN

Ref BN 6.000 5.000 5.000 5.000 5.000 5.000
Setup I BN 10.000 9.000 9.000 9.000 9.000 9.000
Setup II BN 10.000 9.000 9.000 9.000 9.000 9.000
Setup III BN 11.000 10.000 10.000 10.000 10.000 10.000
Setup IV BN 11.000 10.000 10.000 10.000 10.000 10.000
Setup V BN 11.000 10.000 10.000 10.000 10.000 10.000

Table 9 CCC implies colon cancer cell. McNemar values obtained
from comparing BNs for setups. Both within setup and between
setup comparison is done. McNemar’s Test with significance level
α = 0.05 and χ

2 value of 3.84 =⇒ p < 0.95 with 1 degree of
freedom. Values higher than the critical value imply significant
differences with a p ≥ 0.95.

From a global perspective, for each of the test dataset in
table 9, it can be seen that Ref BN trained on GSE8671 is sig-
nificantly different from all the BNs trained on colon cancer
cell lines GSE18560 (2nd column). This is not the case with
the Ref BNs trained on colon cancer cell lines (and tested on
each of the four independent datasets) which is significantly
different for some of the setups and significantly not differ-
ent from other setups (rows 3, 11, 19, 29). One may draw a
conclusion that the GSE8671 datasets capture more properties
than the colon cancer cell lines GSE18560 and are thus give
good performance in comparison to the later.

Similar consistent behaviour (as Ref BN trained on
GSE8671) can be found for Setup IV BN trained on GSE8671
(6th column). The consistency of the results obtained from
Setup IV also points to the fact that even when observa-
tions for probes are available (estimated from real dataset),
it is able to point to the significant difference between the
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GSE8671 and colon cancer cell lines GSE18560 dataset. This
fact gets blurred in the other design setups where the Mc-
Nemar values are not consistent within and between setups.
Values from Setup I while using GSE4183, GSE15960 and
GSE20916 show that GSE8671 is not significantly indepen-
dent from colon cancer cell lines GSE18560 (except in the
case of GSE24795). Similarly, values from Setup II while us-
ing GSE4183, GSE20916 and GSE24795 show that GSE8671
is significantly independent from colon cancer cell lines data.
For Setups III and V, using GSE4183 and GSE15960, the data
sets GSE8671 and colon cancer cell lines GSE18560 are in-
dependent. Thus, except for Ref BN and Setup IV all other
setups do not give a consistent indication of significance be-
tween the GSE8671 and colon cancer cell lines GSE18560.

The results show that McNemar test is one of the way to
test the significance of datasets when the design setups are
same as well as different. But hypothesis testing for statisti-
cal significance of design setups of the network (with same
structure) built on a single dataset might not give clear insight
and one needs to be careful regarding this matter. The author
currently lacks the awareness of resolving the statistical issue
of testing significance of design setups of networks with same
structure built on a single data. Finally, the hypothesis testing
works well when biological knowledge has been integrated
properly into the models as has been shown in Sinha4. This
work has tried to answer the two questions (1) Are predictions
from BNs accurate under different setups? and (2) What is the
veracity of obtained results in terms of reproducibility? The
first question was answered via generation of accurate results
using different training dataset on same test sets. The solution
to the second question was found by conducting the statistical
significance of the results among the various setups.

5 Conclusion

Learned BN on real data is able to accurately predict Wnt ac-
tivity status as seen in above plots (BN = accurate). Learned
BN on simulated data closely matches the BNs trained on real
data based on significance evaluation on prediction labels (BN
= reproducible). Also, if the probeset measurements are noisy
with no discriminative power of whether the gene is active
or not, then hiding the observations of genes in some setups,
lead to noisy estimation of parameters for genes. This does
not happen, if the probeset measurements are not noisy. Also,
from a statistical point of view, it was found that, hypothetical
testing may not be suitable for studying the behaviour of a net-
work under various criteria, given that the training data for the
network remains the same. This gets validated in our exper-
iments that when the various conditions captured via missing
observations for different nodes, do not show statistical signif-
icance in prediction levels when training dataset is same, but
do point to major statistical significance in prediction levels

when training on different training dataset. Theoretical analy-
sis of finding a solution for such a scenario would be benefi-
cial in establishing statistical significane of various conditions
in the absence of two independent training datasets.
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